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Healthy functioning is an emergent property of the network of interacting biomolecules
that comprise an organism. It follows that disease (a network shift that causes
malfunction) is also an emergent property, emerging from a perturbation of the network.
On the one hand, the biomolecular network of every individual is unique and this is
evident when similar disease-producing agents cause different individual pathologies.
Consequently, a personalized model and approach for every patient may be required for
therapies to become effective across mankind. On the other hand, diverse combinations of
internal and external perturbation factors may cause a similar shift in network functioning.
We offer this as an explanation for the multi-factorial nature of most diseases: they are
“systems biology diseases,” or “network diseases.” Here we use neurodegenerative
diseases, like Parkinson’s disease (PD), as an example to show that due to the inherent
complexity of these networks, it is difficult to understand multi-factorial diseases with
simply our “naked brain.” When describing interactions between biomolecules through
mathematical equations and integrating those equations into a mathematical model, we
try to reconstruct the emergent properties of the system in silico. The reconstruction of
emergence from interactions between huge numbers of macromolecules is one of the
aims of systems biology. Systems biology approaches enable us to break through the
limitation of the human brain to perceive the extraordinarily large number of interactions,
but this also means that we delegate the understanding of reality to the computer.
We no longer recognize all those essences in the system’s design crucial for important
physiological behavior (the so-called “design principles” of the system). In this paper we
review evidence that by using more abstract approaches and by experimenting in silico,
one may still be able to discover and understand the design principles that govern
behavioral emergence.
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INTRODUCTION
SYSTEM DESIGN IN HABITUAL AND SYSTEMS BIOLOGICAL
MODELLING
In spite of great effort, the pathophysiology of many diseases
remains unclear. In this paper, we focus on complicated, net-
work diseases, such as neurodegenerative diseases, in an effort to
identify the obstacles to understanding the mechanisms and pro-
cesses behind their development. Diverse phenomena appear to
be involved, the connections between them being unclear.

Our effort towards rationally understanding reality usually
translates into the need to model this reality. Here we use “model-
ing” in the broad sense, where a “model” is defined as a “represen-
tation of a limited part of reality by related elements,” a projection
of a system, e.g., the real world, into another system; the construc-
tion of physical, conceptual or mathematical simulations of the
real world. We may say that the way in which we see the real world

is just a model of it; it is our interpretation of this world based on
our theories. In fact, we do this type of modeling in everyday life.
Moreover, a lot of our everyday modeling is about the function
of some system, or, to be more precise, about the reality that we
perceive as a system. Then, in our minds, we make a connection
between the interacting components of the system and its emer-
gent properties and, even solely by intuition, we may end up with
an explanation of how the organization of the system ensures its
functionality: an explanation of the design of the system.

Design can be defined as “the constellation of system
components, their specific properties and their pattern of inter-
actions that together determine the integrated behavior of the
system” (Wall et al., 2004). In biology, this integrated behavior
corresponds to function and fitness. This understanding of how
the way of arranging the system is responsible for a generic set
of functions, may be summarized in the more general concept
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of a design principle. An explanation of the design of a system
builds a bridge between the underlying mechanism of interacting
components and a certain emergent property that is associated
with the design. In this respect, the design principle resembles the
causal explanation, but it also adds a new perspective by requiring
the emergent property to be functional, i.e., to play a certain role;
it also relates to the teleological explanation.

Let us consider a bicycle as an example. When we say “bicycle,”
in our minds we see a system consisting of several components
(wheels, brakes, steering bar, etc.). Rather intuitively, we build
a bridge between the interacting components and the emer-
gent property—the functioning of the system as a whole: the
bicycle moving—and use this model to understand a possible dys-
function of the system when some interactions between system
components do not work properly or when some components are
completely removed. For example, we can easily imagine what will
happen if the bicycle chain breaks.

In biology, we proceed with similar mental processes and this
works relatively well when we have a clear picture of the system
in mind. This is the case for some genetic diseases. We can easily
make the following associations: defect in gene → defect in pro-
tein → variance in emergent property → defect in function. But,
as in the example of neurodegenerative diseases, dysfunction may
well be more complicated; we may not be able to narrow down
the cause of the disease to one defective protein. Instead, we may
have to view the disease as a shift of homeostasis and to accept
the idea that homeostasis is shifted away from its normal range,
due to a large set of perturbations in the network of interacting
biomolecules in the entire organism (Del Sol et al., 2010).

PARKINSON’S DISEASE (PD) AS AN EXAMPLE
Protein aggregates, such as senile plaques and neurofibrillary tan-
gles (regarded as extracellular deposits of amyloid in the gray
matter) and complexes of hyperphosphorylated tau protein, relate
to many neurodegenerative diseases (Tiraboschi et al., 2004; Lee
et al., 2011), as do inflammation, degradation of the interac-
tions of neurons with glial cells, and mitochondrial dysfunction.
Here, we focus on the latter and on excessive ROS generation,
which plays a role in the death of dopaminergic neurons in
Parkinson’s disease (PD) (Choi et al., 2011; Mccoy and Cookson,
2011; Selivanov et al., 2011). Mitochondria are in a continuous
growth and apoptosis cycle. Normally, electrons pass through the
electron transfer chain (ETC) in mitochondria, from complex I to
complex IV, where they reduce molecular oxygen (O2) to water.
Some electrons escape from the ETC before reaching complex IV.
These escaped electrons reduce oxygen to other ROS, which are
continuously neutralized by super oxide dismutase (SOD) and
consumed by various antioxidants. Still, some ROS can escape
and cause an oxidative chain reaction resulting in mitochon-
drial damage. The latter activates even more ROS generation and
finally leads to mitochondrial apoptosis (Brady et al., 2004).

If the cell was absolutely passive, than this would be the end of
the story. But the cell has a kind of “intelligence”; it is able to sense
the increase of ROS concentration and counteract this patholog-
ical condition e.g. by activation of the synthesis of antioxidants
or removal of damaged mitochondria. The latter involves com-
plicated regulatory network mechanisms with many feed-back

and feed-forward loops. Figure 1 presents a simplified scheme
of a small part of this regulatory network. In reality, many more
components and feed-back loops comprise the system. For exam-
ple, BECLIN1 activates the membrane permeability transition
pore (MPTP) and PINK 1, which in turn inhibits BECLIN1 (Cui
et al., 2011). There is also a mechanism of apoptosis of mitochon-
dria which involves Keep1, Nrf2, Bach and other components.
MPTP stabilizes PINK1 in the mitochondrial outer membrane
and PINK1 phosphorylates Miro; later Parkin degrades phospho-
rylated Miro, which arrests the motility of damaged mitochondria
(Wang et al., 2011).

The mitochondrial component of the disease should be
integrated with processes such as protein aggregates and inflam-
mation. For a more complete picture, these processes could addi-
tionally be integrated with the pathological process in the micro
flora of the gut, which contribute to the development of neu-
rodegenerative diseases (Forsyth et al., 2011; Renz et al., 2011).
As is evident by even this short summary, it is easy to get lost in
the maze of processes and interactions taking place in the pathol-
ogy of a neurodegenerative disease. Which one of these observed
processes is the cause and which is the consequence? Why does
one person get the disease and another person does not? Which
gene mutations contribute to the disease? To date, we have still
barely scratched the surface in our effort towards understanding
the mechanisms of complex diseases. The problem may even go
deeper than this: can we even be certain what we mean when we
talk about “understanding”? And, is the understanding we would
talk about operational, achievable and useful?

UNDERSTANDING DISEASE USING THE NETWORK APPROACH
The perception of a disease as a network perturbation (Hornberg
et al., 2006) has two important implications: first, there may be
multiple perturbations that could result in a single disease phe-
notype; and this agrees with our understanding of many complex
diseases. Second, the converse argument predicts that there could
be multiple ways to return the network back to the “healthy”
attractor; and targeting several points in the network may be the
most efficient way in which to achieve this homeostatic shift. This
provides the conceptual basis for the action of polypharmacy, or
multi-drug therapies (MDT) (Luni et al., 2010; Volpe et al., 2010)
and the development of network targeting drugs (Bakker et al.,
2002; Borisy et al., 2003; Lehar et al., 2009).

In the network approach we have to deal with very complex
network structures that may be too complicated to comprehend
in a “naked,” i.e., unaided brain. It is thereby logical that we always
try to simplify our model to something rationally understandable.
This is what biology has been trying to do for centuries, some-
times rather successfully. There are at least three serious reasons
why such an approach may fail, however. First, as we have seen
in the example of neurodegenerative diseases, the simplification
might not work if a disease is caused by too many factors, both
genetic and environmental; in essence, the simplified model is
too far from reality. Second, the simplification might not work
because, e.g., the substrate of a single enzyme is not necessarily
the metabolite causing the disease, but may belong to a pathway
that is impacted by the disease-causing mutation; we thus need
to determine cause versus consequence associations. Third, the
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FIGURE 1 | Proposed core mechanism for modeling of growth and

apoptosis of mitochondria. The basic assumption is that mitochondria can
be in one of three different states: normal mitochondria, damaged
mitochondria with non-active mitochondrial permeability transition pore
(MPTP), and damaged mitochondria with active MPTP (called MPTPact on
the diagram). Activation of the MPTP increases apoptosis of mitochondria

(Brady et al., 2004). ROS is produced by the mitochondria and is consumed,
e.g., by antioxidants. ROS activates mitochondrial damage and the MPTP.
ATP is produced by the functional mitochondria only (where MPTP is not
activated). ATP is used for the synthesis of mitochondria. BECLIN1 activates
MPTP and PINK 1 inhibits BECLIN1 (Cui et al., 2011). The core mechanism is
open to incorporating other components, e.g., Miro and Parkin.

reduction of the model might prevent the identification of the
important underlying design principles of the network, mean-
ing that we might miss the potentially most powerful therapeutic
targets if aiming to restore the network to normal homeostasis.

One solution is to give up on our ambition to simplify
complexity and accept the limitations of our brain. Three cen-
turies ago, Antony van Leeuwenhoek accepted the limitations of
human eyes and enhanced our vision with the invention of the
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microscope. Today, we need to accept the limitation of the human
brain and delegate the modeling (and also the understanding) of
reality to the computer and even more sophisticated Information
and Communication Technologies (ICT) (Lehrach et al., 2011).
Indeed, interactions between biomolecules are mostly physical
and chemical reactions; they are measurable processes and it
should therefore be possible to describe them through math-
ematical equations. These equations can be integrated into a
mathematical model and simulated on a computer (Snoep et al.,
2006; Westerhoff et al., 2009a). Such an approach can break
through the limitations of any single human mind to perceive the
extraordinarily large number of interactions and parameters that
are involved, and in fact serve the nonlinear integration of the
activities of a large number of human brains. The science aim-
ing to meet these expectations was born about 10 years ago and is
named bottom up systems biology (Westerhoff et al., 2009a).

We would like to emphasize that systems biology is not just
computation plus experimentation, and it is not just mathematics
plus biology either. Systems biology is a conceptual approach for
understanding biological complexity as such, in terms of interac-
tions between huge numbers of macromolecules (a number much
bigger than what a human brain can perceive). Mathematical
descriptions and computer simulations are tools that may be
used in this approach. Systems biology is a new science with new
paradigms (Westerhoff et al., 2009a) not identical to any of, but
arising from the integration of, physics, chemistry, and the life sci-
ences, with the help of mathematics, in order to reconstruct and
understand biological emergence in silico.

The success of systems biology would literally mean that we
do not have to hold a whole model of the processes we study
in our brain. Instead, we would have a computer replica of the
organism; we would reconstruct the biological emergence in silico
(Kolodkin et al., 2011a). With respect to a human organism, this
approach would lead to a mechanism-based computer replica of
the whole body – the so-called silicon human. In order to consoli-
date efforts in that direction, the Tokyo declaration (Hunter et al.,
2008) was signed by leading systems biologists in February 2008,
with the aim for a computer replica of a whole human body to
be 90% complete by 2038. The whole-body model approach does
not come without obstacles that need to be overcome. The main
concerns usually refer to the “astronomical” number of inter-
actions involved in the complete body (Noble, 2006). However,
because of the modular organization of the organism, the num-
ber of interactions may be large, but not quite “astronomical.”
Let us show what difference modularity makes for the numbers.
If we talk about a human being, and think about the interac-
tions between the 25,000 genes in each of the 1014 cells of the
whole body (2.5 × 1018 genes per body), then the number is
pretty high, i.e., 2.5 × 1018!/2 ≈ 102×10∧19, i.e., a 1 with 2 × 1019

zeros, much more than the number of atoms in the universe
(≈ 1080). If we only envisage binary interactions, the number
is smaller (2.5 × 1018× (2.5 × 1018 − 1)/2 ≈ 3 × 1036) but still
enormous. However, taking into account the modular organiza-
tion of the body and the fact that not everything may interact
with everything else, the number of interactions becomes much
smaller. Let us start with a single cell. If a cell contains about
1,000 metabolic enzymes (‘enzyme types’ really but we assume

that all enzymes defined by the same gene(s) behave as a single
ensemble) and about 500 metabolites (‘metabolite types’ really
but we again assume ensemble behavior), maximally 5 × 105

binary enzyme-metabolite interactions are possible. These are the
current numbers for yeast (Herrgård et al., 2008), but although
the yeast genome is approximately five times smaller than, e.g.
the human genome, we do not expect a high difference between
organisms in terms of the number of catalyzed reactions in a sin-
gle cell. Besides, 5 × 105 interactions are an overestimation since
in reality not every enzyme can interact with every metabolite. It
is much more likely that an enzyme interacts on average with at
most five metabolites, bringing down the number of metabolic
interactions to only 5000. Continuing this line of thought, there
are about 3000 human transcription factor genes. If every tran-
scription factor binds to 100 different genes, then there are about
3,000 × 100 = 3 × 105 interactions. If the average factor is much
more specific, then this number could be only 10,000. Together
with metabolic interactions, we approach the order of 104. The
addition of tens of thousands of interactions on the level of
transporters, receptors and so on would not change this order
of magnitude of the number of interactions in a cell substan-
tially. Now let us go to the intercellular level where 1014 cells are
organized in tissues and organs, five cell types per organ. Let us
say that each cell type interacts with 100 neighbors via maxi-
mally 50 metabolites (25,000 interactions), and that one organ
interacts with all other 71 organs via another 50 metabolites
(a little more than 3500 interactions). If we sum all interactions
mentioned above, we would be still in the order of 105. This is
indeed not a small number, but taking into account the increas-
ing computational power, we do not see that it should cause any
principal limitation. The essence of these calculations is that, if
one foregoes the natural organization of living systems, the num-
ber of interactions appears astronomical, but with a bit of realism,
these numbers turn out to become manageable. Another con-
cern is the lack of experimental information, e.g., concerning
the kinetic parameters for these interactions. Nevertheless, as dis-
cussed already, the number of interactions in the human body is
finite and, taking into account the huge leaps of progress in exper-
imental biology, we might anticipate that, in the future, much
of the information concerning these interactions will eventually
become available for the building of the silicon human.

As we have mentioned above, in everyday mental modeling we
bridge the network of interacting components and the emergent
properties of the system intuitively. On the contrary, in systems
biological modeling, the emergence is reconstructed entirely in
a computer model. Consequently, the intuitive grasp might be
lost. Relating the components of the network to the emergent
properties might require more abstract understanding. Perhaps
we should first define more clearly what emergence is, classify
different types of emergence, and analyze the limitations of the
reconstruction of emergence.

DISCUSSION: TOWARDS RECONSTRUCTION OF
EMERGENCE AND UNDERSTANDING OF DESIGN
WEAK AND STRONG EMERGENCE
In a metaphysical setting, an emergent property of a system is
defined as a property which satisfies three criteria, which we will
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summarize as three theses or notions: (i) the thesis of being a
systemic, organizational property (a property that should not
be exhibited by elements in isolation); (ii) the thesis of physi-
cal monism, which restricts the nature of the system’s elements,
states the certification that the system consist of only physical
entities and denies any supernatural influences and (iii) the the-
sis of synchronous determinism, which restricts the way of how
systemic properties and the system’s microstructure are related
to each other and states, i.e., there can be no changes in sys-
temic properties without changes in the structure of the system
or in the properties of its components (Stephan, 2006). This def-
inition of emergence is of course open to debate. For instance,
according to the above definition, almost all properties of any
system could be considered emergent. Intuitively, we note the dif-
ference between the emergence of self-consciousness in human
behavior and the emergence of hardness in diamonds. The phi-
losophy of mind suggests making a distinction between strong
emergence (self-consciousness) and weak emergence (hardness
of a diamond) (Stephan, 2006) by the criterion of irreducibil-
ity. In the words of the philosopher Broad, irreducibility means
that “. . . the characteristic behavior of the whole could not,
even in theory, be deduced from the most complete knowl-
edge of the behavior of its components, taken separately or
in other combinations, and of their proportions and arrange-
ments in this whole (Broad, 1925)”. According to the contem-
porary philosopher Stephan, a systemic property is irreducible
if it satisfies at least one of the following criteria: “ if (i) it is
not functionally construable or reconstruable, if (ii) it cannot
be shown that the interactions between the system’s parts fill
the systemic property’s specified functional role, or if (iii) the
specific behavior of the system’s components, over which the sys-
temic property supervenes, does not follow from the components
behavior in isolation or in simpler configurations” (Stephan,
2006).

The emergence of a network disease such as PD would fol-
low the classification of strong emergence exactly because of the
third criterion of irreducibility. The disease might be functionally
construable or reconstruable, i.e. it can be shown that the inter-
actions between the system’s parts (genes, proteins, etc.) fulfill
the systemic property’s specified functional role, but, the spe-
cific (diseased) behavior of the system’s components (biochemical
network of the complete organism), over which the systemic
property supervenes, does not “follow” from the components
behavior in isolation (properties of proteins in isolation) or in
simpler configurations (isolated part of the network of inter-
acting biomolecules). Of course, it is important here to define
what “follow” means. If it were to refer to reconstruction, then
the third criterion would become tautologous with the first. For
the philosophy of systems biology (Boogerd et al., 2007) it may
be useful to define “follow” as “follow with the naked brain.” If
a computer replica is needed to reconstruct the emergence by
replaying the behavior and interactions of all the components,
then this will go far beyond our brain being able to follow emer-
gence. If a systemic property is strongly emergent, this does not
imply that this property cannot be reconstructed in a mechanis-
tic model, it merely means that our brain cannot understand the
emergence.

The reason why our brain cannot understand emergence is
that properties of in vivo components cannot be seen separately
from the system. For instance, the behavior of a certain protein
in the body depends not only on its own properties, but also on
whether other proteins such as activators, inhibitors or chaper-
ons are present, how all other proteins in the system change, pH,
macromolecule crowding, etc. In vitro, binding affinity of a sub-
strate for its isolated enzyme is a property of that enzyme. In vivo
however, it depends on all other enzymes in the system because
the latter determine the pH and the affinity depends on pH.
Properties of the protein of interest depend on the state of the sys-
tem as a whole; in biological systems, component properties are
state-dependent and therefore system dependent (Boogerd et al.,
2005).

A reason to interpret the property of strong emergence in this
way is to rid the discussion of the issue of vitalism or intelligent
design. Without the limitation of the definition of “to follow” to
what we propose here, strong emergence would correspond to
the admission of vitalism or “intelligent design” to systems biol-
ogy and biological design. Vitalism and intelligent design should
be kept out of these discussions of systems biology and modern
biology, as they make these disciplines nonoperational.

Different criteria may contribute to state-dependency and each
of these criteria may provide a possible measure for evaluating the
strength of emergence. The first criterion may be the number of
interactions leading to the emergence. For example, the prolifera-
tion of a healthy cell could be considered more strongly emergent
than the proliferation of a tumor cell, if proliferation of normal
cells were determined by more regulatory processes than that of
tumor cells.

The second criterion is thermodynamics, which is connected
with the flux of energy through a cell. When a living organism
grows or even when it maintains itself, it requires free energy
dissipation to make its processes proceed at sufficiently high
rates (Glansdorff et al., 1974; Westerhoff and Van Dam, 1987).
Consequently it requires a high flux through a catabolic pathway
such as the pathway converting glucose to pyruvate. We cannot
reconstruct therefore the ability of a cell to exist without at least
qualitative information regarding this flux (Boogerd et al., 2007).
The knowledge of steady-state concentrations of intermediates
is not enough, because steady-state concentrations could be the
same for different values of the flux.

A third criterion may be connected with the occurrence of
hysteresis in a system, which restricts possibilities of predicting
the system’s state without looking at its history, largely because
it is difficult to know all relevant details of its present state.
Even though biological systems should be Markovian in prin-
ciple, insufficient detail may be known for one to understand
them in exclusively Markovian terms. A second realm where hys-
teresis may be important is that of bi-stability and irreversible
transitions.

For the time being, the above criteria for the evaluation of the
strength of emergence are just suggestions for further thinking.
There is still no solid theory on how to estimate quantitatively
to what extent “strong” emergence is strong. It is not our cur-
rent goal to arrive at an over-arching theory of how to integrate
the above, and most probably other criteria into a measure for
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the overall strength of emergence. We discuss this with a different
purpose: to show that there may be a gradation of how strong
emergence is (Kolodkin et al., 2011b).

WAYS TO RECONSTRUCT EMERGENCE, INCLUDING STRONG
EMERGENCE
There are various approaches towards the mathematical descrip-
tion of interactions in biological systems. The simplest one may be
the one based on graph theory. A graph is a set of objects called
nodes or vertices connected by links called lines or edges. Nodes
might be attributed to different species of biomolecules and edges
to interactions between these biomolecules. If a line from node
A to node B is considered to be identical to a line from B to A,
a graph is called an undirected graph. If the two directions are
counted as being distinct arcs, a graph is called a directed graph
(Kestler et al., 2008).

In quantitative mechanistic models, one needs to describe
interactions between species quantitatively and accurately, e.g.,
in terms of mass action or Michaelis-Menten kinetics. Then the
model describes the kinetics of the system, e.g., changes in the
concentrations of the variable intermediates as functions of time.
If reaction rates in a kinetic model are based on the real ensem-
ble averaged (thermodynamic) properties, this kinetic model
could also be called a (non-equilibrium) thermodynamic model
(Bruggeman and Westerhoff, 2006).

Models can be either global (referring to a network of sub-
systems such as organs) or detailed (referring to a network of
molecules). If detailed on the level of molecules, we further
distinguish between macro-, meso-, and microscopic modeling
of ensemble averages. For example, if we neglect the limita-
tions imposed on the reaction rates by the required diffusion of
molecules and consider each species of biomolecules as a sin-
gle pool, then the model would be called macroscopic and could
be described as a system of ordinary differential equations in
terms of thermodynamic variables (Westerhoff and Van Dam,
1987). Mesoscopic models require stochastic simulations using
the master equation and formulations in terms of probability
functions (Bruggeman et al., 2009). Microscopic models trace
every molecule individually (Andrews et al., 2010).

The final goal of systems biological modeling is to link the layer
of interacting biomolecules with the strong emergence of systemic
functioning of the organism. There are three different strategies
to build this link. One way is the bottom-up, mechanism-based
strategy: first, one describes the actual mechanism in terms
of mathematical equations, then one assigns model parameters
with experimentally determined values and lastly one verifies the
model by comparing its systemic behavior with the behavior of
a real system (Bakker et al., 1997, 2000; Rohwer et al., 2000;
Westerhoff, 2001). The term “bottom-up” refers to the direction
chosen: from known or assumed properties of the components
one deduces system functions (Westerhoff, 2001; Reijenga et al.,
2005; Kartal et al., 2011).

Another way is to start with the systemic behavior (top-down
modeling): first, one determines how the (often complicated) sys-
temic function of interest varies with conditions, or with time,
and from these observations one induces hypothetical structures
that can be responsible for this function. This is a data-driven,

“digital” approach (Lauffenburger, 2000). System behavior is
influenced (perturbed) and a top-down, bird’s eye view is taken,
looking “down” towards system components, on a genome-wide,
proteome-wide or metabolome-wide scale. There is yet another
top-down approach, which starts from physiology rather than
genomics and from macroscopic, often physical properties, such
as force and length, pressure and volume (Hunter et al., 2008).
This has been called the Virtual Physiological Human approach
(VPH).

A complex, small system, say a metabolic network consisting
of biomolecules and exhibiting its own emergent properties, can
be considered at the same time as a part of a larger system, like the
cell. In turn, cells interact with each other and form an even more
complex system, for example an organ, and so on. Consequently,
the fragmentary knowledge can also be integrated in a third, so-
called middle-out strategy that allows modeling the behavior of
a single organ or a single functional system in terms of inter-
actions between entities which do not necessarily belong to the
same molecular level of organization. These entities could be bio-
chemical pathways, or organelles, or cells, or even entire organs
(Noble, 2006). The above approaches already overlap to signif-
icant extents, e.g., the VPH approach shares the heart as major
focus with the middle-out approach. And in the recent ITFoM
initiative (Lehrach et al., 2011) bottom-up molecular systems
biology and the VPH approach integrate.

Availability of data concerning single interactions and knowl-
edge of hypothetical mechanisms drive the bottom-up strategy
while the development of bioinformatics and the availability of
large sets of measured variables drive the top-down strategy. At
least one goal of the three approaches is the same: to link the
underlying layer of interacting molecules with the physiological
behavior. For instance, when the systemic function in the middle-
out approach is extended to the whole organism and when the
underlying level of interacting component reaches the level of
physico-chemical interactions between biomolecules, the model
should be equivalent to one obtained by use of the bottom up
or top-down strategy. Analogously, the perfect top-down param-
eterization would create a model with the same functionality as a
model built using the bottom-up approach. If taken to their (per-
haps unattainable) extreme, it should not matter which approach
is used; the final aim is a unique computer replica of the living
organism. However, models built with top-down approaches are
phenomenological; consequently every new experiment would
require refitting the entire model. A model based on the bottom-
up approach, such as the silicon cell model, is free from this
drawback. Once known, the mechanism of interactions between
components and parameter values should not change anymore,
unless the model is wrong. If a module is modeled correctly,
it could always be incorporated as an “object” into a bigger
model. Building of the final, large-scale model would merely
mean the adequate interconnection of many existing “objects.”
One simple model could then be integrated with other sim-
ple models and should be amenable to stepwise expansion via
inclusion of additional network components. Allegorically, the
first object becomes a “crystallization point” with the potential
for further “growth.” This might seem to make the bottom-up
approach superior. However, this approach has the disadvantage
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that, for large numbers of pathways and networks, the required
mechanistic component knowledge is unknown and hard to
obtain, at least for the foreseeable future. Where implemented,
the approach has not yet led to complete agreement between
systems level prediction and experimental result (Teusink et al.,
2000).

A NEW LOOK AT DESIGN AS ANOTHER SIDE OF STATE
DEPENDENCY OF EMERGENCE
If we wish to understand the mechanism of strong emergence as it
is, or if we want to reconstruct strong emergence without deem-
ing it to be less strong, we need to know about all interactions
and we need information concerning all state-dependent proper-
ties of system components. Alternatively, perhaps we can identify
more general rules for the arrangement of system components in
the whole vis-à-vis its functions—the so-called design principles
(Wall et al., 2004). A design principle is a kind of knowledge about
the state dependency of the component properties. Then, con-
cepts of emergence and design meet each other. We can rephrase
this by saying that the reconstruction of a strongly emergent prop-
erty requires both (i) the knowledge of the system’s components
in isolation and (ii) the design principles used in the building of
this particular system.

A design study is not necessarily associated with computer
modeling. Design principles can be discovered in thought exper-
iments as well. For example, one may ask why tetrapods have
lungs and find several hypothetical advantages of having lungs.
These speculations may bring us to explanations for a design
which could be generalized to design principles (Wouters, 2007).
However, thought experiments are rather speculative and lack
objective criteria justifying that the design of an organism without
a certain trait, e.g., the design of Acanthostega (an extinct tetrapod
with gills instead of lungs) is less advantageous. It is difficult to
bring Acanthostega back to life in order to answer such questions
through experimentation. A solution is to build a model of this
organism and to reconstruct its emergent properties in silico. This
is quite possible. The advantage of confronting different designs
in silico is that it affords us the possibility of using strict, math-
ematically controlled comparison. According to wall, Hlavacek
and Savageau (Wall et al., 2004), mathematically controlled com-
parison is based on considering each design as a special case of
the same model. Then, each design will correspond to a region
in the parameter space and a priori mathematically precise con-
ditions may be applied when comparing systems selected from
these regions, so that “the systems under comparison can differ
in ways that are essential for distinguishing system types but are
otherwise constrained to be as similar as possible”. For example,
systems are allowed to have differences in transcriptional control
so that systems of different forms of coupling can be compared,
but are constrained to be identical with respect to translation. If
differences in functional effectiveness are observed, the various
system types are associated with optimal solutions for distinct
regulatory problems. If no differences are observed, variations
among system types are considered to be neutral.” (Wall et al.,
2004). These ideas can be used to develop a procedure for dis-
covering design principles of the system reconstructed in silico
(Kolodkin et al., 2010) and have been applied for identifying

design principles in various systems. Next, we discuss one such
example.

AN EXAMPLE OF in silico RECONSTRUCTION OF EMERGENCE
AND OF THE DISCOVERY OF SYSTEM DESIGN PRINCIPLES
We discuss an example of how emergent properties of the system
may be reconstructed in a kinetic model and how this recon-
struction of emergence can be used for understanding design
principles of the system. For this, we turn to the field of nuclear
receptor (NR) signaling. However, we anticipate that similar
approaches will prove useful for other systems, including those
determining disease.

NRs are involved in a diverse range of regulatory func-
tions, such as in development, cellular growth, inflammation and
metabolism (El-Sankary et al., 2001, 2002; Phillips et al., 2003;
Aouabdi et al., 2006; Carlberg and Dunlop, 2006; Ebert et al.,
2006; Cutress et al., 2008). NRs work as transcription factors, the
activity of which is regulated by intra- and extracellular signal-
ing molecules. Many of these molecules are lipophilic compounds
such as steroid hormones (ligands for glucocorticoid receptors)
and vitamin D (Carlberg and Dunlop, 2006; Ebert et al., 2006;
Cutress et al., 2008). Hydrophobic, extracellular signal molecules
serving as NR ligands are able to diffuse through the plasma
membrane, the cytosol and gain entry to the nucleus (Gardner,
1975). There they are able to bind to the corresponding NRs,
which are already bound to their specific DNA binding site called
a response element (RE) (Figure 2A). This mechanism may be
grasped in the design shown on Figure 2A. However, we may
also consider more components involved in the NR signaling, for
example importin and exportin proteins which allow shuttling
of the receptor between the nucleus and cytoplasm. Taking into
account the nucleo-cytoplasmic shuttling of the receptor, the net-
work might be redrawn as shown on Figure 2B (Kolodkin et al.,
2010).

In this design (Figure 2B), active nuclear import of the core-
NR is lower than the nuclear import of the receptor bound with
its ligand (NRL). On the contrary, the nuclear export of liganded
receptor (NRL) is higher comparing to the core receptor.

If both network designs (Figures 2A,B) are transformed into
mathematical kinetic models, at least some of the emergent prop-
erties of the two systems would be different, but certain emergent
properties of the real life system are not displayed by the network
design in Figure 2A, e.g., the translocation of the receptor into the
nucleus upon the addition of ligand. Consequently, we consider
the more complex design to be more realistic. Then, the question

can be raised: why is the real system organized in the way it is,
i.e., according to the more complex design shown on Figure 2B
and not differently, e.g., not simpler? The model allows us to
explore this by simulating the emergent behavior of the network
with hypothetical designs and to determine which design is the
most advantageous. With respect to the example presented here,
simulation has shown that the design in Figure 2B is the most
advantageous, as only this design provides active pumping of the
ligand into the nucleus (Kolodkin et al., 2010). It was hypothe-
sized that the latter becomes possible because the NR does not
work as receptor only, but also as a smart “ferry-boat” transport-
ing the ligand into the nucleus. When the receptor is liganded,
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FIGURE 2 | Designs of NR signaling. (A) Classical design. The NR is
attached to its response element on the DNA and waits for a ligand
freely diffusing to the nucleus. Upon ligand binding the NR participates
in chromatin remodeling regulating the availability of genes for

transcription initiation. (B) Design inferred from the detailed NR signaling
network. There is an active nuclear import and export of the NR, with
core-NR having lower import into the nucleus than the receptor bound
with its ligand (NRL).

it is transported mostly into the nucleus. When the receptor is
free, it is transported mostly out of the nucleus. Consequently,
the ligand is actively pumped and might be accumulated in the
nucleus, which would allow a higher concentration of the lig-
anded receptor bound with the RE on the DNA (NRL), a higher
and quicker transcriptional response, and, as a result, may help
increase responsiveness and sensitivity of NR signaling (Kolodkin
et al., 2010). The reconstruction of the emergent properties of the
network allowed us not only to identify the best design, but also
to explain its advantages and, by these means, to understand the
mechanisms underlying the functioning of the system.

THE COMPLEXITY OF MODEL RECONSTRUCTION AND THE
STRENGTH OF EMERGENCE
Since the same biological object might be described by various
models, e.g., with a higher or lower number of interactions, this
implies that the same property of an object might be viewed
as having more than one strength of emergence; the strength
of emergence being related to the way in which we model the
object, or to the complexity of the components we use within the
model. Traditionally, modeling was oriented towards the descrip-
tion of an object in such a way that the property of interest
would be viewed as weakly emergent as possible: the less the
component properties are state dependent, the easier it should
be to deduce them from the knowledge of element properties
in isolation, the less we need to know about the system as a
whole, and the easier it should be to parameterize the model. The

model would then also be more universal, less state-dependent
and, consequently, more robust against the changes of initial and
boundary conditions.

However, we believe that this reductionist approach is flawed
from the perspective of the fundamental aim of Biology, i.e.,
understanding life. Vis-à-vis this aim, it would be more pru-
dent to start with constructing a model with a high number of
components and with a high degree of state-dependency of each
component property; a model that is realistic rather than simple
(Westerhoff et al., 2009b). Importantly, the emergence of proper-
ties then becomes dependent upon the network itself and not on
the assumptions used to drive a simulation towards a predicted
outcome. Although the construction of such a complex model
might be difficult, the payoff is a much improved probability of
discovering actual system properties in the real-life system and
of grasping new design principles (Teusink et al., 1998; Bakker
et al., 2000; Hornberg et al., 2005; Haanstra et al., 2008; Kolodkin
et al., 2010; Boogerd et al., 2011). In silico experimentation with
computer model have proved of immense value here. They have
helped discover important functions of complexity such as the
summation law of metabolic control (Kacser and Burns, 1973),
the connectivity law for concentration control (Westerhoff and
Chen, 1984), the function of trehalose inhibition of hexokinase in
yeast (Teusink et al., 1998), the function of the glycosomal mem-
brane in Trypanosoma brucei (Bakker et al., 2000; Haanstra et al.,
2008), and the function of NR in the cytosol (Kolodkin et al.,
2010). In addition, the added levels of complexity (and hence
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of biological realism) may help identify unexpected targets for
intervening in the biological reality, thus driving drug discovery
forward in a network-targeting, rather than a molecule-targeting,
paradigm (Bakker et al., 1999).

In fact, when building systems biology models, we should be
led by the principle of the “biological binocular,” rather than by
the law of parsimony (Kolodkin and Westerhoff, 2011). Let us
discuss this issue in more detail. The law of parsimony suggests
that “the simplest explanation is most likely the correct one.”
Consider a phenomenon which can be explained in two differ-
ent ways, the first explanation requiring entities (terms, factors,
transformations etc.) A, B and C, and the second explanation
requiring entities A, B, C and D. Assume that both explanations
give the same result. Then, according to the law of parsimony,
entity D is unnecessary and the first (the simpler) explanation
is most likely the correct one. The law of parsimony is based
on “Occam’s razor” – a heuristic method consisting of “shaving
away” unnecessary assumptions. William of Occam (1285–1349)
formulated his principle as follows: “One should not postulate
(pose) more things without necessity” (Pluralitas non est ponenda
sine necessitate). After Occam’s death, this statement was modified
to “Entities should not be increased (multiplied) without neces-
sity” (Entia non sunt multiplicanda praeter necessitatem) (Murta,
2012). The application of Occam’s razor provided then (early
fourteenth century) much-needed motivation to view the behav-
ior of physical objects as being determined by simple physical laws
rather than by divine intervention. And this continues to be an
essential precondition for modern science. However, when call-
ing a generalization a law, one implies that the generalization may
be validated, e.g., it may be empirically observable, and should
always be true, at least in its defined, somewhat extensive regime
of validity. The absence of repeatable contradictory observations
does not guarantee that this generalization is a law rather than
a particular consequence from other, more universal laws. The
law of gravity constitutes an example. The universality of the
force of gravity is presently being questioned. It is now suggested
that gravity could be described as a phenomenon emerging from
more fundamental forces, such as the entropic force (Verlinde,
2011).

The principle of Occam’s razor has never been proven to be
universally valid. It will never be proven either that the simpler
explanation is always the right one: it has been shown repeat-
edly that the more complex explanation can be true; we only
need refer to the examples of chemiosmotic coupling (Mitchell,
1961), the control of metabolic fluxes (Groen et al., 1982), and
general relativity (Einstein, 1961). There are examples in physics
where the simplest explanation turned out to be the more realis-
tic one. However, this does not imply that those explanations were
more realistic because of any universal tendency towards simplic-
ity. On the contrary, the second law of thermodynamics suggests
that there is a tendency to complexity rather than to simplicity
(Westerhoff et al., 2009b). An important issue here is that whereas
physics may study the unlimited, biology studies large but lim-
ited systems. Instead of shaving pluralitatem away, one should
be interested in discovering, in seeing, in distinguishing these
pluralitates and in taking them into account: “One should not
remove things without necessity” (Pluralitas non est eliminanda

sine necessitate) (Kolodkin and Westerhoff, 2011). Then the law of
parsimony will become also the law of completeness: “If entities
A, B, C and D (e.g., proteins) are discovered in a system S (e.g.,
cell, organism, ecosystem) for the fitness of which A, B, C, and D
are all known to be essential, and if some properties of system S
can be equally well explained either via A, B and C or via A, B, C
and D, then the more complex explanation is most likely the cor-
rect one”; in the language of the concept of emergence, we should
assume emergence to be as strong as possible.

CONCLUDING REMARKS
Modeling, in its general sense, is an everyday process that our
brains employ to make sense of the physical world around us.
When applied to science, and specifically in the study of biological
networks, modeling may take the form of describing these bio-
logical processes with mathematical models that help us unravel
the intricacies and complexities of the convoluted and highly
interacting biological networks we have to deal with. The appli-
cation of modeling in studying complex biological networks does
not need to rob us of our ability to infer design principles and
observe the emergent properties of the system. By reconstructing
the emergence of the properties of a system, we can identify its
design and understand the mechanisms underlying its function.
In silico experimentation in support of conceptual analyses can
help here.

The example of neurodegenerative diseases is well suited for
the application of the systems biology approach. Such diseases
are complicated, multifactorial constructs, and improving our
knowledge of their function requires understanding of the emer-
gent properties of the interacting components of the system that
is the human body. Since disease (a pathological shift of home-
ostasis) emerges from the perturbation of the network as a whole,
the biomolecular network of every individual is unique and this
is observed when similar disease-producing agents cause differ-
ent individual pathologies. Consequently, a personalized model
for every patient may be required for therapies to become uni-
versally effective (Lehrach et al., 2011). This fits well with the P4
medicine concept of contemporary medicine (Tian et al., 2012).

The “silicon human,” as well as the in silico reconstruction of
biological emergence may prove invaluable for the comprehensive
understanding of body functioning, for novel paradigms of drug
discovery, and for the development of patient-specific treatments,
especially in the case of multifactorial network diseases such as
neurodegenerative diseases, including Parkinson’s disease.
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