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The study of spontaneous fluctuations of brain activity, often referred as brain noise,
is getting increasing attention in functional magnetic resonance imaging (fMRI) studies.
Despite important efforts, much of the statistical properties of such fluctuations remain
largely unknown. This work scrutinizes these fluctuations looking at specific statistical
properties which are relevant to clarify its dynamical origins. Here, three statistical features
which clearly differentiate brain data from naive expectations for random processes are
uncovered: First, the variance of the fMRI mean signal as a function of the number of
averaged voxels remains constant across a wide range of observed clusters sizes. Second,
the anomalous behavior of the variance is originated by bursts of synchronized activity
across regions, regardless of their widely different sizes. Finally, the correlation length
(i.e., the length at which the correlation strength between two regions vanishes) as well
as mutual information diverges with the cluster’s size considered, such that arbitrarily large
clusters exhibit the same collective dynamics than smaller ones. These three properties
are known to be exclusive of complex systems exhibiting critical dynamics, where the
spatio-temporal dynamics show these peculiar type of fluctuations. Thus, these findings
are fully consistent with previous reports of brain critical dynamics, and are relevant for
the interpretation of the role of fluctuations and variability in brain function in health and

disease.
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1. INTRODUCTION

It is now recognized that important information can be extracted
from the brain spontaneous activity, as exposed by recent analysis
(Biswal et al., 1995; Fox and Raichle, 2007; Smith et al., 2009). For
instance, the structure and location of large-scale brain networks
can be derived from the interaction of cortical regions during rest
which closely match the same regions responding to a wide variety
of different activation conditions (Fox and Raichle, 2007; Smith
et al., 2009). These so-called resting state networks (RSNs) can be
reliably computed from the fluctuations of the blood oxygenated
level dependent signal (BOLD) signals of the resting brain, with
great consistency across subjects (Xiong et al., 1999; Cordes et al.,
2000; Beckmann et al., 2005) even during sleep (Fukunaga et al.,
2006) or anesthesia (Vincent et al., 2007).

In the same direction, the information content of the brain
BOLD signal’s variability per se is receiving increasing inter-
est. Recently (Garret et al., 2010) it was shown in a group of
subjects of different age, that the BOLD signal variability (stan-
dard deviation) is a better predictor of the subject age than
the average. Furthermore, additional work focused on the rela-
tion between the fMRI signal variability and a task performance,
concluded that faster and more consistent performers exhibit sig-
nificantly higher brain variability across tasks than the poorer
performing subjects (Garrett et al., 2011). Overall, these results
suggest that the understanding of the brain resting dynamics

can benefit from a detailed study of the BOLD variability
per se.

In this work we characterize the statistical properties of the
spontaneous BOLD fluctuations and discuss its possible dynami-
cal mechanisms. The paper is organized as follow: in the next sec-
tion the origin of the data is described as well the pre-processing
of the signal. The definitions of regions of interest is described
as well as how to construct subsets of different sizes, needed to
compute fluctuations. The results section starts with the analy-
sis of the average spontaneous fluctuations for each RSN, which
identify anomalous scaling of the variance as a function of the
number of elements. Next, this anomaly is explored to determine
its origins by studying in detail the temporal correlations in clus-
ters of different sizes. Finally the analysis of the correlation length
is described, revealing a distinctive divergence with the size of the
cluster considered. The paper close with a discussion of the rele-
vance of the uncovered anomalous scaling for the current views
of large scale brain dynamics. For clarity of presentation, the cal-
culations that are not central to the main message of the paper,
are presented separately in an Appendix.

2. METHODS

2.1. DATAACQUISITION

fMRI data was obtained from five healthy right-handed sub-
jects (21-60 years old, mean = 40.2) using a 3T Siemens Trio

www.frontiersin.org

July 2012 | Volume 3 | Article 307 | 1


http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/about
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology/10.3389/fphys.2012.00307/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DanielFraiman&UID=12200
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=DanteChialvo&UID=557
http://www.frontiersin.org
http://www.frontiersin.org/Fractal_Physiology/archive

Fraiman and Chialvo

Anomalous scaling of brain resting fluctuations

whole-body scanner with echo-planar imaging capability and the
standard radio-frequency head coil. Subjects were scanned fol-
lowing a typical brain resting state protocol (Fox and Raichle,
2007) lying in the scanner and asked to keep their mind blank,
eyes closed, and avoid falling asleep. All participants gave written
informed consent to procedures approved by the IRB Committee
of the University of Islas Baleares (Mallorca, Spain) who approved
the study.

2.2. IMAGE PRE-PROCESSING AND ANALYSIS

In each subject, 240 BOLD images, spaced by 2.5s, were
obtained from 64 x 64 x 49 voxels of dimension 3.4375 mm x
3.4375mm X 3mm. Pre-processing was performed using
FMRIB Expert Analysis Tool [FEAT, Jezzard et al., 2001, http://
www.fmrib.ox.ac.uk/fsl], involving motion correction using
MCEFLIRT; slice-timing correction using Fourier-space time-
series phase-shifting; non-brain removal using BET; spatial
smoothing using a Gaussian kernel of full-width-half-maximum
5mm. Brain Images were normalized to standard space with
the MNI 152 (average brain image at Montreal Neurological
Institute) template using FLIRT (http://www.fmrib.ox.ac.uk/
analysis/research/flirt) and resampled to 2 x 2 x 2mm resolu-
tion. Data was band pass filtered (0.01 Hz—0.1 Hz) using a zero
lag filter to avoid scanner drift and high frequency artifacts.

2.3. CHOICE OF REGIONS OF INTEREST

It is known that the brain activity fluctuations at rest exhibit
large-scale spatial correlations. The presence of these robust
correlations is reflected on the coherent activity which deter-
mine the spatial domains of the RSN. Therefore, our analysis
is focussed on the statistical analysis of the RSN fluctuations.
At least since Beckmann et al. (2005). Probabilistic Principal
Component Analysis (PICA) is used to identify the eight most
relevant RSN. Each component corresponds to a characteris-
tic time series, and its respective spatial Z-score map. Under a
Gaussian/Gamma mixture model these Z-maps were thresholded
in order to find the locations of the voxels which significantly
contribute to each of the eight time-courses [see Figure6 in
Beckmann et al. (2005)] and used to define the clusters here. This
is illustrated in Figure 1A, where the depicted regions correspond
to the territory covered by each of the RSN extracted in Beckmann
et al. (2005) using ICA techniques. For each independent compo-
nent Z-map we arbitrarily set a threshold that segment the map
into isolated regions of different sizes (see Figure 1B). The criteria
to select regions is arbitrary, but the present results are indepen-
dent of the selection criteria, as long as the regions belong to
the same RSN. Alternatively, functional areas (such as Brodmann
areas) can be used to define clusters of different sizes (as for a
portion of the results in Figure 3). We proceed by using a spa-
tial mask for each of the eight networks to extract the time series
of the BOLD fMRI time series. The masks, in Figure 1, corre-
spond to the eight most important RSN, namely the visual medial
(box a) and lateral (b) cortical areas, the auditory (c), sensory
motor (d), default mode (e), executive control (f), and the fronto-
parietal right (g) and left (h) regions. Each network is comprised
by a variable number of spatial clusters, each cluster composed by
a variable number of voxels. For instance the visual RSN (VIS)

includes just three relatively large clusters, each one composed
by thousand of voxels, contrasting with the Fronto-Parietal Left
(FPL) network which involves seven clusters with sizes ranging
from a few up to thousands of voxels. Table 1 shows the thresholds
used in each independent component and how many regions have
been defined. The results presented in this paper are independent
of the particular value of threshold used.

3. RESULTS

To analyze the noise properties, we look at the behavior of the
variance and correlations under various manipulations of the size
of the ensemble of voxels where these fluctuations occurs. This
is a common strategy in other statistical physics problems where
very distinctive scaling behavior can be observed depending of the
type of fluctuations the system is able to exhibit (Stanley, 1987).

3.1. ANOMALOUS SCALING OF THE VARIANCE
We start by studying the fluctuations of the BOLD signal around

its mean. The signal of interest, for the 35 RSN clusters, is
defined as

1
By 1) = B ) — 5= ) BGi.0). (1)

i=1

where X; represents the position of the voxel i that belongs to
the cluster H of size Ny. These signals will be used to study the
correlation properties of the activity in each cluster.

The mean activity of each h cluster is defined as

_ 1 M
B = 5~ > B, b, ()

i=1
and its variance is defined as

T
1 — =
%% = 7 2L (BO =B, (3)

t=1

where B = %ZtT:lﬁ(t) and T the number of temporal points.
Please notice that the average subtracted in Equation 1 is the mean
at time ¢t (computed over N voxels) of the BOLD signals, not to be
confused with the BOLD signal averaged over T temporal points.

Since the BOLD signal fluctuate widely and the number N of
voxels in the clusters can be very large, one might expect that the
aggregate of Equation 1 obeys the law of the large numbers. If

this was true, the variance of the mean field 0% ® in Equation 3

would decrease with N as N~!. In other words one would expect
a smaller amplitude fluctuation for the average BOLD signal
recorded in clusters [i.e., B(t)] comprised by large number of vox-
els compared with smaller clusters. However, the data in Figure 2
shows otherwise, the variance of the average activity remains
approximately constant over a change of four orders of magni-
tude in cluster’ sizes. The strong departure from the N~! decay
is enough to disregard further statistical testing. Nevertheless,
we test a null hypothesis recomputing the variance for artifi-
cially constructed clusters having similar number of voxels but
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FIGURE 1 | (A) Spatial maps of the eight most relevant brain resting fronto-parietal right and left, respectively. (B) Example (coronal, sagital, and
networks as described by Beckmann et al. (2005). Each map shows the axial views) of the four regions of interest extracted from the DMN. The red
locations of each RSN (shown in sagittal, coronal, and axial views) where the region is composed of 6611 voxels, the blue region of 761, the green one of
coordinates refer to mm distances from the anterior commissure. Label VIS 1308, and the yellow region contains 780 voxels. Black voxels correspond to
corresponds to visual; AUD to auditory; SM to sensory motor; DMN to the ones in the original thresholded Z-map. Bottom panels depict the sizes of
default model network; EXEC. C. to executive control; FPR and FPL to the 35 clusters (C) studied here as well as its cumulative size distribution (D).
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Table 1| Z-threshold used in each independent component for
defining the regions.

RSN Vis.1 Vis.2 Aud. Sens.M. D.M. EC. FPR FPL

Threshold 4 3.3 24 34 22 27 32 2.2
#regions 1 2 3 4 4 9 4 8
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FIGURE 2 | Anomalous scaling of brain BOLD temporal fluctuations.
Panel A show four examples of average BOLD time series (i.e., B(t) in
Equation 2) computed from clusters of different sizes N. Note that while
the amplitude of the raw BOLD signals (right panels) remains approximately
constant, in the case of the shuffled data sets (left panels) the amplitude
decreases drastically for increasing cluster sizes. Panel B shows the
calculations for the 35 clusters (circles) plotted as a function of the cluster
size demonstrating that variance is independent of the RSN's cluster size.
The squares symbols show similar computations for a surrogate time series
constructed by randomly reordering the original BOLD time series, which
exhibit the expected 1/N scaling (dashed line). Filled symbols in Panel B are
used to denote the values for the time series used as examples in Panel A.

composed of the randomly reordered By () BOLD raw time series
(panels in Figure 2A denoted “Shuffled”). As expected, in this
case the variance (plotted using squares symbols in Figure 2B)
obeys the N~! law (dashed line in Figure 2B). The variance of
the average BOLD signal is directly proportional to the coor-
dination between the voxels involved. In particular, under the
hypothesis that the BOLD signal of voxel k, Bi(¢), is a stationary
stochastic process (indexed by time ¢) with E(By(t)) = pk, and
Var(Bi(t)) = Gi, the variance of the average signal is maximum
in the case where there exist perfect coordination (i.e., all BOLD
signals are perfectly synchronized). In this last case, the value of
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FIGURE 3 | The value of the quotient g, expressing the measured
variance relative to its maximum possible value, as a function of
cluster size N. Empty circles correspond to the 35 regions derived from
the RSN (same as in Figure 2) and filled triangles to the 41 Brodmann
areas. The filled squares, obeying the 1/N scaling (dashed line), correspond
to clusters of different sizes constructed from a random selection of voxels.
The inset shows the average maximum of the BOLD signal variance of a
cluster (6%(1)) as a function of N.

0% ® is equal to the mean value of the individual time variances
defined as

B(t) = _ch (4)

The inset of Figure 3 (circles) shows that this maximum value
does not depend on N, i.e., the mean value of the variance of the
BOLD signal from a region does not depend on its size. Now we
ask how far from its maximum value is the observed variance of
the BOLD average signal. In particular, we compute the quotient

2

oZ
1= 5" 5)

OB

for this purpose. As it is shown in Figure 3 (empty circles) the
value of q decreases rather slowly with the size of the cluster.

In order to distinguish how much of the constancy of the vari-
ance demonstrated up until now is related with the fact that the
time series belong to clusters that are independent components
(Beckmann et al., 2005) we repeated the scaling analysis using
clusters defined by the Brodmann areas. The results in Figure 3
confirm the same anomalous scaling behavior demonstrated for
the regions selected from the RSN networks, as shown by the val-

ues of 6 O‘E ® and q for the Brodmann areas (filled triangles). As

before, we control the expected 1/N scaling for independent time
series by computing the quotient g for clusters of various sizes
constructed from a random selection of voxels. This is shown by
the filled square points in Figure 3.

Frontiers in Physiology | Fractal Physiology

July 2012 | Volume 3 | Article 307 | 4


http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive

Fraiman and Chialvo

Anomalous scaling of brain resting fluctuations

3.2. TEMPORAL FLUCTUATIONS AND SPATIAL CORRELATIONS

For spatio-temporal signals the relationship between the tempo-
ral fluctuations of the average signal and its space correlation
function is well defined (Ross, 1996). In our case, for the nor-
malized (see Appendix) BOLD signals, Z;(t) (Var(Zi(t)) = 1 and
E(Zk(t)) = 0), the relationship is:

1
Gy = I+ N =D+ (C). (6)

Where (C) is the mean spatial correlation,

5 N-1 N
C)= ——— iy 7
© =38 —D ;j;lp,] 7)

pi,j the correlation between voxels i and j, and o2 is the vari-

Z(v)
ance of the average signal (defined in Equation 3). Equation 6

shows that the variance of the mean activity depends on the size
of the region, and on (C), which is determined by the shape of the
correlation function, C(r) (see Appendix for a formal discussion).

Equation 6 suggest that it can be productive to investigate the
correlations properties of the BOLD data. The point to clarify is
whether the average spatial correlation (C) is constant through-
out the entire recordings or, alternatively, its average value is
the product of a combination of some instances of high spatial
coordination intermixed with moments of dis-coordination. The
relevance of this distinction, which will be further discussed latter,
is to establish up to which point correlations are dictated by the
structural (i.e., fixed) connectivity or by the dynamics. In order
to answer this question we study the mean correlation ({(C)) as a
function of time for regions of interest of various sizes. In partic-
ular, we compute this value using Equation 7 but estimating p; j
for non-overlapping periods of 10 temporal points.

Figure 4 shows the behavior of (C) over time for four differ-
ent cluster’s sizes. Notice that, in all cases, there instances of large
correlation followed by moments of week coordination, as those
indicated by the arrows in the uppermost panel. We have verified
that this behavior is not sensitive to the choice of the length of
the window in which (C) is computed (see the Appendix). These
bursts keep the variance of the correlations almost constant (i.e.,
in this example, there is a minor decrease in variance (by a factor
of 0.4) for a huge increase in size (by a factor of 170). This pecu-
liar behavior of the correlation is observed for any of the cluster
sizes as shown in the bottom panel of Figure 4 where the vari-
ance of (C) is approximately constant, despite the four order of
magnitude increase in sizes.

The results of these calculations implies that independently of
how large the size of the cluster considered, there is always an
instance in which a large percentage of voxels are highly coher-
ent and another instance in which each voxels activity is relatively
independent.

A very metaphorical way to visualize the behavior of the cor-
relations is to think of the patterns of spontaneous activity as
“clouds” of relatively higher activity moving slowly through-
out the brain’s cortex. Thus, the moments of large coordina-
tion shown in Figure 4 correspond to the passage of a “cloud”
throughout the entire region, regardless of how large the region is.
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FIGURE 4 | Bursts of high correlations are observed at all cluster sizes,
resulting in approximately the same variance, despite the four orders
of magnitude change in the cluster size. The top panels illustrate
representative examples of short-term mean correlation (C) of the

BOLD signals as a function of time for four sizes spanning four orders of
magnitude. The arrows show examples of two instances of highly
correlated and weakly correlated activity, respectively. Bottom panel shows
the variance of (C) as a function of cluster sizes. The four examples on the
top traces are denoted with filled circles in the bottom plot.

3.3. DIVERGENCE OF THE CORRELATION LENGTH
The results in the previous paragraphs indicate that the anoma-
lous scaling of the variance can be related to dynamical changes
in the correlations. A straightforward approach to understand the
correlation behavior commonly used in large collective systems
(Cavagna et al., 2010) is to determine the correlation length at
various system’s sizes. The correlation length is the average dis-
tance at which the correlations of the fluctuations around the
mean crosses zero. It describes how far one has to move to observe
any two points in a system behaving independently of each other.
Notice that, by definition, the computation of the correlation
length is done over the fluctuations around the mean, and not
over the raw BOLD signals, otherwise global correlations may
produce a single spurious correlation length value commensurate
with the brain size.

Thus, we start by computing for each voxel BOLD time series
their fluctuations around the mean of the cluster that they belong.
Recall the expression in Equation 1:

L
By, 1) = B 1) — = > BG, b, (8)

i=1
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where B is the BOLD time series at a given voxel and X; represents
the position of the voxel i that belongs to the cluster H of size Ng.
By definition the mean of the BOLD fluctuations of each cluster
vanishes,

Nk
Y ByGi.H=0 Vt. (9)
=1

Next we compute the average correlation function of the BOLD
fluctuations between all pairs of voxels in the cluster considered,
which are separated by a distance r:

(Bu(X,0)— < Bp(X.,6) >)Bu(¥
+r_u>, H— < Bh(Y + r_u>, 1) >¢)

) = B (R 07 1 — < Bu(R.0) D2 W57
(< By(X +r 4,02 >,
— < By(X +r4d, 1) >H2
(10)

where i is a unitary vector, and (.),, represent averages over w.
The typical form we observe for C(r) is shown in the top panel
of Figure 5. The first striking feature to note is the absence of a
unique C(r) for all clusters. Nevertheless, they are qualitatively
similar, being at short distances close to unity, to decay as r
increases, and then becoming negative for longer voxel-to-voxel
distances. Such behavior indicates that within each and any clus-
ter, on the average, the fluctuations around the mean are strongly
positive at short distance and strongly anti-correlated at larger
distances, whereas there is no range of distance for which the
correlation vanishes.

The most notorious result is the fact that correlations decay
with distance slower in larger clusters than in relatively smaller
clusters, giving rise to the family of curves shown in Figure5
(top panel). This is condensed in the calculation of the corre-
lation length &, which is the zero of the correlation function,
C(r = &) = 0 (as in the example shown by the arrow in Figure 5,
top). The correlation length diverges with the size of the cluster,
as demonstrated in the middle panel of Figure5. This diver-
gence extends up to the size of the brain, as shown by the &
values (red squares in middle panel of Figure 5) computed for
the eight unpartitioned RSN. Note that while the existence of a
zero crossing in C is warranted by the subtraction of the mean
cluster activity (in Equation 8), its divergence with cluster size
is not.

3.4. MUTUAL INFORMATION

Although the present observations can be appropriately described
solely in terms of correlations, the same concept can be also
casted in terms of information measures, which are often used to
estimate the degree of coherence between regions or neural struc-
tures. The mutual information between any two X and Y time
series from different brain voxels is defined as:

MI(X;Y)=HX) — HX|Y) (11)
where H(X) is the entropy of X and H(X|Y) is the entropy

of X given Y computed as usual (Press et al., 1988). In prin-
ciple, given the behavior observed for the correlations, these

T IIIIIIII I IIIII|T| I IIIII|T| I :,I‘I‘I/H]?E

&00_

o oh‘ i

10' ‘!Is@«‘
9‘/
-#IVIIIIIII IIIIIII_I] IIIIIII_I] IIIIIII_ILI

10" 10® 10° 10" 10°
Size (N)

TTTTIT

IIIIII

IIIIIII

0 0.5 1
Rescaled x =(r/g)

FIGURE 5 | Contrary to naive expectations, large clusters are as
correlated as relatively smaller ones: the correlation length increases
with cluster size. Each line in the top panel shows the mean
cross-correlation C(r) of BOLD activity fluctuations as a function of
distance r averaged over all time series of each of the 35 clusters shown in
Figure 1. The correlation length &, denoted by the zero crossing of C(r) is
not a constant. The middle panel shows, in double log plot, the functional
dependence £ ~ dN'/3, i.e., & grows linearly with the average cluster’
diameter d for all the 35 clusters (filled circles). The rightmost points
(diamonds) corresponding to the & values computed for each of the eight
RSN without any partitioning shows that the correlation length keep
increasing up to the size of the brain (the dotted line is a guide to the eye
with slope 1/3). The scale invariance is graphically illustrated by the bottom
panel, where all C(r) data are replotted after rescaling the horizontal axis as
x = r/g, showing a good overlap. Note that a perfect collapse of these
curves can not be expected because of the severe anisotropy, imposed by
the brain anatomy, affecting the estimation of the distance r.
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information measures should exhibit scale-invariant scaling as
well. This is confirmed by the results in Figure 6, which demon-
strate that the average mutual information is not affected by the
size of the cluster considered, since information decays slower
in larger clusters. This analysis shows that, as was shown for the
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FIGURE 6 | Mutual information increases with cluster size. Each line in
the top panel shows the mutual information M/(r) as a function of distance
r averaged over all time series of each of the 35 clusters shown in Figure 1.
The length at which MI(r) decreased to a given value (red line in the top
panel) denoted as &, is an increasing function of the size of the cluster
(middle panel). The bottom panel illustrates the good data collapse after
rescaling the horizontal axis as x = r/g;.

correlation, the information length (determined here for an arbi-
trary threshold value of 0.4 bits) diverges with the size of the of the
clusters.

4. DISCUSSION

In this work, key statistical properties of the brain BOLD sig-
nal variability were investigated. The results are relevant to the
understanding of the brain spontaneous activity fluctuations in
health and disease. The three most relevant findings that we may
discuss are:

o the variance of the average BOLD fluctuations computed from
ensembles of widely different sizes remains constant, (i.e.,
anomalous scaling);

e the analysis of short-term correlations reveals bursts of high
coherence between arbitrarily far apart voxels indicating that
the variance’ anomalous scaling has a dynamical (and not
structural) origin;

e the correlation length measured at different regions increases
with region’s size, as well as its mutual information.

Concerning the constant variance of the BOLD activity, the
present results imply that the usual framework in which the
BOLD signal and noise are discussed need to be reconsidered.
For instance, it is commonplace to consider that the non-coherent
part of the activity (i.e., the noise) can be averaged out by enlarg-
ing the spatial (i.e., more voxels) or temporal (i.e., more samples)
scale. The presence of anomalous scaling implies that signal and
noise in the brain are at least ill defined and that filtering by aver-
aging (to improve its quality) signals with anomalous variance,
by definition, can be anomalous as well. The anomalous scaling
also has implication for the monitoring of the RSNs activity, a
topic that has received wide attention recently for its potential to
track healthy or pathological conditions. The results here imply
that, under these anomalous conditions, the signal of a few voxels
can be, asymptotically, as representative and informative as the
average of the entire RSN. It need to be noted, that the anoma-
lous scaling discussed here due to the emergence of collective
dynamics is not new, Kaneko (1990) demonstrated the breach
of law of large numbers in numerical models more than two
decades ago.

The second finding, showing that the observed dynamical
short-term changes in the correlations drives up the variance, is
relevant for the interpretation of the brain functional connec-
tivity. The evaluation of functional connectivity between regions
often uses the average correlation, and the results in Figure 4
show that, despite the relatively weak average functional connec-
tivity values, it can be instances in which the correlation reaches
high levels. In other words, under the demonstrated anomalous
scaling conditions, the usual pairwise measures has inherent lim-
itations for the proper interpretation of these collective states.
In passing, it need to be noted that these instances of high coher-
ence were recently confirmed using a different method, which
demonstrate avalanches of activity encompassing relatively large
regions of each RSN (Tagliazucchi et al., 2012). Of course, the role
of these epochs of transient synchronous states in driving percep-
tion, awareness, and consciousness are consistent with the views

www.frontiersin.org

July 2012 | Volume 3 | Article 307 | 7


http://www.frontiersin.org
http://www.frontiersin.org/Fractal_Physiology/archive

Fraiman and Chialvo

Anomalous scaling of brain resting fluctuations

championed by Varela and coworkers more than a decade ago
(Varela et al., 2001) as discussed recently (Werner, 2010).

The third result concerning the divergence of the correlation
length with increasing cluster size is perhaps the most telling one,
because is in contrast with the prevailing viewpoints about brain
functional connectivity. Indeed it is implicit in the interpretation
of functional connectivity studies the notion that brain activity
propagates between and across brain regions. However, for such
propagating waves a constant correlation length (i.e., its wave-
length) is always expected, which is not what it is consistently
found in the present data. The divergence of correlations with size
(and its associated anomalous scaling) suggests, in addition, that
our current mathematical approaches to model cortical dynam-
ics could be ill-fated. The issue is that most of the large scale
models [for superb reviews see Rolls and Deco, 2010; Sporns,
2010] are defined by an adjacency matrix specifying the “struc-
tural connectivity” between a large number of regions and some
kind of neural dynamics assigned to each node (i.e., cortical
region). Lets imagine that such model is scaled up by increasing
the number of regions an order of magnitude, while the corre-
lation length of the activity fluctuations is measured as in the
experiments here. A reasonable conjecture is that current large-
scale brain models would have problems to replicate the present
findings, since anomalous scaling only appears at criticality (dis-
cussed below) while current models are purposely tuned to the
ordered regime.

Finally, an important question is concerned with the origin
of the statistical properties unveiled in this work. We suggest
that a candidate explanation which is able to unify all the obser-
vations presented here can be found in the context of critical
phenomena (Stanley, 1987; Bak, 1996; Christensen and Moloney,
2005). It is well known that dynamical systems composed of very
large number of interacting non-linear elements, under some
conditions, exhibit emergent collective behavior with ubiquitous
properties (Anderson, 1972). Examples of emergent phenomena
sharing common features are the collective dynamics of birds
in a flock (Cavagna et al., 2010), spins of a magnet (Stanley,
1987), water molecules in the atmosphere (Peters and Neelin,
2006), peoples financial decisions (Lux and Marchesi, 1999), or
ants traffic in a foraging swarm (Rauch et al., 1995; Beekman
et al., 2001). In all these cases, each agent in isolation may have
its own stereotypical behavior, but when placed to interact in
very large numbers, and under certain conditions, the entire

transition between disordered and
ordered foraging in pharaohs ants.
Proc. Natl. Acad. Sci. U.S.A. 98,
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APPENDIX

Additional information is provided here to supplement the main
results. The first item is concerned with the robustness of the
short-term correlations presented in Figure 4. The second point
deals with the generality of the divergence of correlations and the
last one discuss formally the presence of long-range correlations
in the fMRI data.

SHORT-TERM CORRELATIONS

As discussed in Figure 4, the presence of bursts of high and low
correlations observed throughout clusters of very different size
is the dynamical base for the violation of the law of the large
numbers. It is then important to demonstrate that the estimation
of the short-term correlations’ variance is robust. For that, we
recomputed the results in Figure 4 for various window lengths.
This is presented in Figure A1 which shows that the variance of
(C) is independent of N regardless of the window length at which
it is estimated.

& SCALING

The divergence of correlation length discussed in Figure 5 pre-
dicts a functional dependence & ~ dN'/3, i.e., £ grows linearly
with the average cluster’ diameter d. The results in Figure A2,
obtained from the analysis of fMRI data from four different
subjects, confirm such scaling relation.

LONG-RANGE CORRELATIONS

In spatio-temporal data it is well known the relationship between
the temporal fluctuations of a mean magnitude and the space cor-
relation function. Let suppose we want to study a brain region
(our clusters in the main text) of N voxels. Denote a voxel of the
region as i which is characterized by its position in space (7 ;),
and by its dynamics represented in the BOLD signal [B;(#)]. In
addition, to simplify the notation we are going to work here with
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FIGURE A1 | The variance of the mean short-term spatial correlation
(C) (already shown in Figure 4) is independent of the cluster’ sizes N
regardless of the window length (10-40 time steps) at which it is
estimated.

normalized BOLD signals,

Zi(t) =

Bi(?) .—Bi’ (12)

1

B;)2. Each voxel signal [Z;(t)] has now zero mean and variance
one. The average signal over the region, which is:

_ 1 N
Z() = ) 2, (13)
i=1

fluctuates in time. Our interest here are the fluctuations of Z(¢).
It can be shown, using the definition of the variance of a sum of
random variables, that the variance of the average signal of the
cluster is:

Var(Z) = %(1 + (N = 1)(C)), (14)

where (C) is the spatial correlation, Var(Z) =

IS @ —-2?andZ= L7 Zo).

Since we are interested also on how correlations affect variance,
let consider some cases. If there exist null variability between all
the voxels in the region, that is all voxels of the region do exactly
the same in time, the left term of Equation 14 remains equal to
one no matter the size (N) of the region is. In any other case
Var(Z) will be less than one. The variance of the mean activity
depends on the size of the region, and on (C), which is deter-
mined by the shape of the correlation function, C(r). Therefore,
in order to understand the asymptotic behavior of Var(Z) with N
we need to make some hypothesis over C(r).

First, the mean correlation,

mean

2
(€)= mzwr(zi, Zj), (15)
i<j
is approximated by its continuous version
2T (7
(C) ~ —”/ C(r)i2dr, (16)
V Jos

where 7* is the radius of the spherical region under study, and V
its volume. Now, we discuss some hypothesis about the asymptotic
behavior of C(r). For example, if there exist an exponential decay,

C(r) ~ e, (17)
then the mean correlation satisfies:
(C)~N"". (18)
In the case where long-range correlations are present,
1
Cr) ~ —, (19)
7-0(
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FIGURE A2 | Estimation of the correlation length £ divergence. In all cases the results are very close to the scaling found in Figure 5; & ~ dN'/3.
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the mean correlation satisfies:
(C) ~ N~/3, (20)

Putting all together in Equation 21, the spatial decay of the fMRI
data correlations will be given by the product of N by Var(Z) as a
function of N, leading to two very different asymptotic statistical
behavior:

NVar(Z) ~ N1—¢/3
NVar(Z) ~ k.

For long-range correlations (1)
For short-range correlations

Figure A3 shows N.Var(Z) as a function of N for brain data.
The straight line in the log-log plot confirm that in the brain
data there exist long range correlations. In particular, we obtain a
exponent o = 0.9 (for C(r) ~ r%) which agrees very well with the
result recently obtained by Expert et al. (2011). For completeness
we plot also the results of numerical calculations using an expo-
nential correlation function which clearly depart from the brain
data.
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FIGURE A3 | Long-range correlations. Black circles correspond to brain
data and red squares to the results from an exponential interaction model
with the same geometry for each cluster. In the exponential case as N
grows the average correlation converges, meanwhile for the brain data it
continues growing demonstrating the presence of long-range correlations
in the data. The black line corresponds to a power law fit y = kx~%7. From
Equation 21 we obtain an exponent a = 0.9. The inset corresponds to the
variance of the mean activity as a function of N.
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