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Systems Biology holds that complex cellular functions are generated as system-level
properties endowed with robustness, each involving large networks of molecular
determinants, generally identified by “omics” analyses. In this paper we describe four
basic cancer cell properties that can easily be investigated in vitro: enhanced proliferation,
evasion from apoptosis, genomic instability, and inability to undergo oncogene-induced
senescence. Focusing our analysis on a K-ras dependent transformation system, we
show that enhanced proliferation and evasion from apoptosis are closely linked, and
present findings that indicate how a large metabolic remodeling sustains the enhanced
growth ability. Network analysis of transcriptional profiling gives the first indication on this
remodeling, further supported by biochemical investigations and metabolic flux analysis
(MFA). Enhanced glycolysis, down-regulation of TCA cycle, decoupling of glucose and
glutamine utilization, with increased reductive carboxylation of glutamine, so to yield a
sustained production of growth building blocks and glutathione, are the hallmarks of
enhanced proliferation. Low glucose availability specifically induces cell death in K-ras
transformed cells, while PKA activation reverts this effect, possibly through at least two
mitochondrial targets. The central role of mitochondria in determining the two investigated
cancer cell properties is finally discussed. Taken together the findings reported herein
indicate that a system-level property is sustained by a cascade of interconnected
biochemical pathways that behave differently in normal and in transformed cells.
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INTRODUCTION
High-throughput technologies (e.g., transcriptomics, pro-
teomics, and metabolomics) aim to obtain a global molecular
description of complex biological processes and to reach a deeper
understanding of their behavior. The application of these tech-
nologies has characterized the last decade of biological research,
called “the post-genomic era” and each post-genomic technique
has already significantly contributed to molecular investigation
of many aspects of physiological and pathological processes in
many cellular types.

An important, widely analyzed target of post-genomic tech-
niques is the very diversified cancer phenotype. Gene expression
microarrays allowed to quantitatively characterize genome-wide
transcriptional profiles of various cancer types (Rhodes et al.,
2004; Shoemaker, 2006) showing that the expression of about
one to two thousand genes may vary between each cancer type
and its normal counterpart (Ruan et al., 2006; Kao et al., 2009)
observing also a great variability of gene expression during

cancer progression (Greaves and Maley, 2012). Statistical meth-
ods allowed to recognize specific gene expression “signatures”
that are up or down regulated in cancer cells as compared to their
normal counterparts (van de Vijver et al., 2002; Rhodes et al.,
2004; Balestrieri et al., 2012).

Unfortunately these “signatures” have only a statistical value:
for instance “signatures” of gene expression obtained from pri-
mary breast cancer that are found associated with recurrence of
the disease are not able to predict the outcome for individual
patients (Weinberg, 2007). This inability is linked to the fact that
the identification of these signatures has not increased under-
standing of the molecular mechanisms at the basis of oncogenic
transformation (Mata et al., 2005; Joyce and Palsson, 2006).

Considering that a large number of post-transcriptional mod-
ifications, relevant for cell function, are not captured by this type
of analysis, interest has been directed toward proteomic tech-
niques. Although this technology allowed at the beginning to
detect only the more abundant proteins, it has been possible
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to recognize proteins specifically expressed in transformed cells
and to propose the use of some of them as cancer biomark-
ers (von Eggeling et al., 2000; Russo et al., 2003; Stevens et al.,
2004). Two issues are confronting proteomic technologies: the
detection of proteins expressed in low amount and quantita-
tive identification of proteins post-translationally modified at
specific residues by phosphorylation, acetylation etc. Recent
developments have allowed to improve the sensitivity of the
technology so to estimate, for instance, that about 10,000 dif-
ferent types of proteins are expressed in a human cell, that
contains a total of about a billion proteins (Beck et al., 2011;
Nagaraj et al., 2011). Some structural proteins (of cytoskele-
ton, of ribosomes, of proteasome) and some catalytic proteins
(of carbohydrate metabolism) are very largely expressed, while
transcription factors and protein kinases are expressed in much
lower amounts, with about 600 proteins covering 75% of cell
mass (Nagaraj et al., 2011). Besides, cellular functions depend
upon protein activity, which can be modulated not only by
protein phosphorylation or acetylation, but also by allosteric
regulation and cellular localization. This awareness has pro-
moted the development of another high-throughput technology,
metabolomics.

Since metabolism is the outcome of the overall regulation from
genetic control to modulated kinetic activity of enzymes (Spratlin
et al., 2009), it potentially offers a more faithful readout of cellular
function (ter Kuile and Westerhoff, 2001; Griffin and Shockcor,
2004), that responds quickly to environmental changes. Metabolic
profiling—comparing normal and transformed cells—has been
used to identify new biomarkers (Chung et al., 2003) and to sup-
port cancer diagnosis (Boren et al., 2001; Serkova and Boros,
2005).

The real challenge posed by more and more efficient high—
throughput technologies becomes the availability of computa-
tional methods able to extract information and to transform
information into knowledge, so to define quantitative integrated
rules able to increase understanding and to confer predictive
ability.

FROM “OMICS” DATA TO NETWORKS AND BEYOND
A first step along this line is for instance the identification of
differentially expressed genes or proteins, their hierarchical clus-
tering and pathway analysis (Okabe et al., 2001; LaTulippe et al.,
2002; Varambally et al., 2005; Wang et al., 2005). Quite often
differentially expressed gene products are mapped onto protein–
protein interaction (PPI) maps, so to give them a network struc-
ture, amenable to statistical and topological investigation, whose
results offer a first idea of structure of the PPI map underlying a
given function.

While network analysis offers the possibility to recognize the
presence of motifs or to investigate network architecture and
may suggest new lines of investigation, it does not substantially
increase understanding on the molecular mechanism of complex
cellular functions: at a minimum it needs to be accompanied by
a different type of representation able to structure the network
according to recognizable biochemical functions (Kaizu et al.,
2010). Even sophisticated analyses that investigate the bistabil-
ity of large-scale networks for various human cancers (Cui, 2010;

Shiraishi et al., 2010), seem unable to provide the breakthrough
that is required to extract a deeper understanding on cancer
growth from post-genomic findings.

It is clear, at this point, that a change of paradigm is required
since it is by now widely recognized that complex cellular func-
tions are generated by the dynamic interactions of a large num-
ber of molecular components (DNA, RNA, proteins and small
molecules) modulated by internal and external cues (Hartwell
et al., 1999; Lauffenburger, 2000). Thus the function is not deter-
mined by a single component or a single level of organization,
but is found distributed as an emergent (or system-level) prop-
erty over many levels and components (Hartwell et al., 1999;
Palumbo et al., 2010). Accordingly, a cell can be viewed as a
system composed of many interconnected modules coordinately
performing specific biological functions (metabolism, signaling,
transcription, growth, cycle, autophagy, apoptosis, differentia-
tion, etc.), each module being characterized by a network of
interacting molecules (Hartwell et al., 1999; Eisenberg et al., 2000;
Nurse and Hayles, 2011). These modules can conveniently be
described according to the “circuit” metaphor, that is widely used
by electronic engineers (Parhami, 2005) and is able to account
for biological functions as system-level properties, in a more
efficient and unambiguous way than network representation
(Palumbo et al., 2010).

In this perspective, one has to determine the structure (i.e.,
the topology) and the dynamics (i.e., the behavior as a function
of time) of the circuit. The analysis of circuit behavior in bio-
logical systems is quite well established from providing insight
into signaling pathways (Bhalla and Iyengar, 1999) to investi-
gate physiological angiogenesis (Niemisto et al., 2005). By using
this approach a better understanding of the cell cycle in bud-
ding yeast (Alberghina et al., 2001, 2009, 2012; Barberis et al.,
2007; Brummer et al., 2010; Palumbo et al., 2010) as well as in
mouse fibroblasts (Alfieri et al., 2009) has been reached, allow-
ing to identify two cell cycle regulatory functions as system-level
properties: the requirement of a critical cell size to enter into
S phase (Barberis et al., 2007) and the synchronous timing of the
onset of DNA replication (Brummer et al., 2010; Salazar et al.,
2011).

Since “Systems Biology deals with the mechanisms by which
macromolecules produce the functional properties of living cells
through dynamic interactions,” it follows that systems biology
is needed to reach a more satisfying understanding of the rela-
tions between genotype and phenotype in cancer. The inte-
gration of molecular analysis with mathematical modeling and
simulation, in an iterative process, characterizes the systems
biology approach (Kitano, 2002; Alberghina and Westerhoff,
2005). Mathematical models may be constructed at different
levels of resolution (Noble, 2002) and then simulation anal-
ysis will allow to detect system-level properties (Likic et al.,
2010). The identification of the network of a complex function
is often the first step for the construction of the corresponding
mathematical model, offering the constraints for the interac-
tions of the various partners, but it has to be complemented
with more information on the spatio-temporal coordinates of
the process and on the function obtained from cell physiology
studies.
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A NEW SYSTEMS BIOLOGY APPROACH TO CANCER
Many Authors have already applied mathematical modeling to
cancer in a systems biology perspective (Khalil and Hill, 2005;
Kreeger and Lauffenburger, 2010). Of great interest is the line of
research of Westerhoff and collaborators that over several years
have developed an innovative approach that takes into considera-
tion specific modules of cancer phenotype, from the activation
of signaling (Hornberg et al., 2006), to metabolism (Moreno-
Sanchez et al., 2010), at the same time offering tools to integrate
various modules and levels of organization (Hornberg et al., 2006;
Bruggeman et al., 2008).

In the following we are going to present our approach to
the problem that has many elements of novelty, while it fol-
lows Westerhoff ’s line of thought. We start from the consid-
eration, made by Hanahan and Weinberg (2000, 2011), that
despite a great cellular and molecular variability in cancer phe-
notypes, it is possible to identify a restricted number of phys-
iological alterations which together define the phenotype of
most human malignancies. They include: unlimited prolifera-
tion potential, self-sufficiency in growth signals, resistance to
anti-proliferative and pro-apoptotic cues, sustained angiogenesis,
ability to metastasize to distinct organs, reprogramming of cel-
lular energy metabolism, evasion of cancer cells from attack and
elimination by the immune system, genomic instability, tumor-
promoting inflammation, presence of a stress phenotype, that
although not required for initiating tumorigenesis is apparently
required for tumor maintenance (Hanahan and Weinberg, 2011).
Some of these properties can be analyzed at the cellular level,
while others are executed at the organismal level.

We focus our attention on cellular hallmarks that may be easily
analyzed in vitro, given that they are relevant to sustain organis-
mal features. We reorganize in a different way more amenable to
experimental analysis some classical cancer hallmarks: for exam-
ple we consider enhanced cell proliferation that includes unlimited
proliferation, independence from growth factors and reprogram-
ming of energy metabolism. Following this line of thought, we
came to recognize four basic cancer properties: enhanced cell pro-
liferation, evasion from apoptosis, genomic instability, inability of
cancer cells to enter senescence, each considered as a system-level
property (Bhalla and Iyengar, 1999; Chiaradonna et al., 2012),
able to be disassembled in modules, that can be as small as a single
multi-domain protein (Sacco et al., 2012) or a protein complex.

The strategy that we follow and that—as outlined in sec-
tion From “Omics” Data to Networks and Beyond” above—has
been employed with success to investigate yeast growth and cycle
can be summarized as follows: to use genome-wide analysis
and molecular-tailored experiments to ascertain which molecular
components are involved in the function under evaluation; to take
into consideration all pertinent literature and make use of chem-
ical and/or genetic perturbations to reconstruct the sequence of
molecular events that underlay the function under analysis; to
design a concept map of the function describing also relevant
spatio-temporal coordinates; use the concept map to construct
a mathematical model, in terms of chemical kinetics; to esti-
mate, both from literature and from ad hoc experiments, relevant
parameters of the model (concentration of molecular species;
binding constants, etc.) as well as quantitative estimation of the

system-level property, under various experimental conditions; to
test the adequacy of the model by simulation of system’s behavior
under a variety of conditions; to run sensitivity analysis to assess
the relevance of each element of the model in determining the
system-level property.

Of course, as said before, a model can be constructed at var-
ious levels, considering different molecular players, as shown for
instance in the case of the circuit “osmostat” in the homeostatic
response to hyperosmotic stress (Klipp et al., 2005; Gennemark
et al., 2006; Schaber et al., 2011), with each model able to put in
evidence relationships that are obscured in other versions.

TWO BASIC SYSTEM-LEVEL PROPERTIES OF CANCER CELLS
The more obvious phenotype of cancer cells is given by their
uncontrolled proliferation, due to an enhanced cellular growth,
insensitive to anti-proliferative signals, and to a strong reduction
of their response to pro-apoptotic cues.

Among the various activated signaling pathways involved in
cellular transformation, a relevant place has to be given to ras,
whose oncogenic mutations are found in a large number of
human tumors (Bos, 1989; Rodenhuis, 1992). The relevance
of oncogenic ras mutations in different malignant phenotypes
derives from the fact that Ras proteins are intracellular switches
whose activation state—i.e., their binding to GDP and GTP—
controls downstream pathways leading to cell growth and differ-
entiation. Their activation state depends on the competing action
of GTPase Activating Proteins (GAPs) and Guanine nucleotide
Exchange Factors (GEFs). Deregulation of either GAP or GEF
activity may result in hypo- or hyper-activation of downstream
pathway(s), so that for instance over-expression of a GEF or inac-
tivation a GAP may both result in cell transformation (Reuther
and Der, 2000; Downward, 2003; Konstantinopoulos et al., 2007).
Different Authors have shown that attenuation of oncogenic Ras
signaling in cancer cells, by using Ras or GEF dominant negative
proteins, reverts ras-dependent cancer cells to normal pheno-
type on the basis of morphology, anchorage-independent growth,
ability to proliferate and strong reduction of tumor formation
in a nude mice model (Vanoni et al., 1999; Bossu et al., 2000;
Stewart and Guan, 2000; Fiordalisi et al., 2002; Oliva et al., 2004;
Ford et al., 2009). Therefore, cancer proliferation shows addiction
to K-ras.

As discussed in a recent review (Pylayeva-Gupta et al., 2011),
oncogenic ras activation promotes the stimulation of several sig-
naling pathway (Raf-MAPK, PI3K, Rho-Rac, and Ral-Gef) that
converge to activate cyclin D1 synthesis and stabilization, whose
increase together with the down-regulation of cyclin-dependent
kinase inhibitors, p27 and p21 promotes entrance into S phase
(Rivard et al., 1999; Sa and Stacey, 2004).

The strong mitogenic stimulation imposed by K-ras activates
DNA replication and hence the DNA damage response (DDR)
(Bartkova et al., 2005; Gorgoulis et al., 2005; Di Micco et al.,
2006; Koorstra et al., 2009). In normal cells, that possess a
functional DNA damage checkpoint machinery, DDR stimula-
tion by oncogenic ras brings to cell cycle arrest in a process
called oncogene-induced-senescence (OIS) (Serrano et al., 1997;
Ferbeyre et al., 2002; Di Micco et al., 2006). In transformed cells
(in which other mutations, for instance loss of p53, are present)
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genomic instability is induced, that is going to have a relevant role
in the clonal evolution of cancer cells (Loeb and Loeb, 2000; Little,
2010).

Beside its role in stimulating cell growth, a relevant action
of oncogenic ras has been reported in suppression of apopto-
sis, a complex process that can be activated by extracellular cues
such as withdrawal of growth factor or detachment from the
matrix, or it may be triggered by intracellular events such as
DNA damage or mitochondrial dysfunction. The extrinsic and
the intrinsic pathways converge in the activation of caspase-3
and they are regulated by the fine balance of network of pro-
apototic and anti-apototic molecules that respond to a large
number of cellular cues (Liou et al., 2000; Cox and Der, 2003;
Fritz and Fajas, 2010). The anti-apoptotic role of oncogenic ras
involves both the increase of levels of anti-apoptotic proteins—
such as BAK and IAPs—as well as the inactivation of pro-apototic
proteins, such as BAD which is inactivated by phosphorylation
(Gewies, 2003).

One of the standard procedures in systems biology consists
in perturbing the system by chemical or genetic alterations and
monitoring its behavior (Alberghina and Westerhoff, 2005): by
changing nutrient availability, differential growth and apoptotic
responses have been shown to be elicited in normal and cancer
cells.

An initial concentration of 25 mM glucose (HG) and of 4 mM
glutamine (HQ) is provided to cells growing under optimal con-
dition, while glucose limitation is imposed by an initial concen-
tration of 1 mM (LG) and glutamine limitation by one of 0.5 mM
(LQ). As previously described, ras activation induces OIS in nor-
mal cells (Serrano et al., 1997; Ferbeyre et al., 2002; Di Micco
et al., 2006), while in transformed cells it promotes sustained
cell growth and evasion from senescence and apoptosis (Serrano
et al., 1997; Ferbeyre et al., 2002). Glucose limitation induces G1

arrest both in normal and in transformed cells, but it specifi-
cally enhances cell death in transformed cells (Chiaradonna et al.,
2006). Glutamine limitation induces G1 arrest in normal cells
while transformed cells do not arrest in G1, but make an abortive
entrance into S phase, which is partially relieved by supplying
ribonucleotides in the medium (Gaglio et al., 2009).

By comparing transformed to normal cells, in the next sec-
tions we analyze the molecular players of the very large module
“enhanced cell growth” as well as those of the two connected
modules “evasion from apoptosis” and “LG-induced apoptosis”
considering both findings from our laboratory and literature data.

“ENHANCED CELL GROWTH”
Both in vivo and in vitro, normal cells, when they reach the
correct dimension of the organ to which they belong or the crit-
ical cell density—confluence—respectively, stop growing upon
contact inhibition (Eagle and Levine, 1967; Holley and Kiernan,
1968). In similar conditions, transformed cells continue to pro-
liferate and hence show an “enhanced cell growth” (Abercrombie,
1979; Fagotto and Gumbiner, 1996). Therefore, cancer cells rather
than an accelerated proliferation show an ability to avoid contact
inhibition. In fact when grown in vitro both normal and trans-
formed cells show the same initial growth rate when nutrients and
factors availability is not limiting (Chiaradonna et al., 2006).

Several Authors have tried to enlighten the molecular
mechanisms of contact inhibition. A recent report (Kuppers et al.,
2010) identified a large set of differentially expressed genes in
contact-inhibited as compared to sparsely growing NIH3T3 cells.
The majority of these genes was up-regulated suggesting that
contact-inhibition is an actively induced state. A sizable part of
up-regulated genes appears linked to general cellular metabolic
processes such as glutathione and nucleotide synthesis. Sustained
metabolic activity in contact-inhibited fibroblasts has been inde-
pendently confirmed in primary human fibroblasts using flux
analysis techniques (Lemons et al., 2010). Transcriptional pro-
filing indicates that in transformed cells high cell density does
not activate the metabolic response typical of contact inhibition
(Chiaradonna et al., 2012).

As shown since the 1920s by Otto Warburg, cancer cells are
characterized by an enhanced utilization of glucose by aerobic
glycolysis with a reduction of mitochondrial oxidative phospho-
rylation, the so called Warburg effect (Warburg et al., 1927).
Transcription of many genes encoding glycolytic enzymes is
up-regulated in transformed NIH3T3 fibroblsts harboring a
K-ras gene mutated in codon 12 (Chiaradonna et al., 2006).
Morphological, biochemical, and genetic mitochondrial dysfunc-
tion has been reported to occur in several cancer cells (Modica-
Napolitano and Singh, 2004; Shidara et al., 2005; Wallace,
2005). In K-ras transformed cells a substantial down-regulation
of oxidative phosphorylation, accompanied by a strong reduc-
tion of Complex I content and activity, has been reported
together with an increase of mitochondrial membrane poten-
tial and a reduction of the NADH ubiquinone reductase activity
(Baracca et al., 2010).

The decrease of ATP forming ability of cancer mitochondria
is compensated by the ATP produced by glycolysis because, in
the time required by a cancer cell in normoxic condition to com-
pletely oxidize one molecule of glucose through the TCA cycle so
to produce 36 molecules of ATP, ten more molecules of glucose
are converted to lactic acid to make additional 20 molecules of
ATP (Koppenol et al., 2011). Thus in the time period in which a
normal cell produces 36 ATP from a molecule of glucose, a cancer
cell appears able to produce 56 of them. Of course these calcula-
tions are only indicative, but they suggest that the very large and
fast flux of glycolysis—as compared to the slow rate of the TCA
cycle—may mediate a large pyruvate utilization that sustains the
energy requirement for cancer cell growth.

A very large number of reports reviewed in (Koppenol et al.,
2011) have investigated the role of mitochondrial mutations,
of tumor suppressor genes and oncogenes in sustaining cellu-
lar transformation, showing that in all cases there is an activated
signaling pathway followed by deregulation of glycolysis.

At this stage it is possible to conclude that the enhanced
growth of cancer cells is accompanied by a profound rewiring of
glycolytic and mitochondrial metabolism. Whether this rewired
metabolism is the force driving cancer growth will be discussed
later on.

In order to evaluate whether the mouse fibroblast model of
K-ras-induced transformation, used in many of the characteriza-
tion experiments of enhanced cell growth discussed so far, can
be considered a representative model of molecular events taking
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place in human tumors, we run a comparative gene expression
profile analysis (Balestrieri et al., 2012) over a set of human cancer
cell lines (NCI-60 cell collection). In both species the transfor-
mation process involves a change in transcriptome (mostly by
activation) being the transcriptional response of the mouse model
significantly close to that of K-ras-dependent human tumors. A
set of about 350 modulated genes is common to both mouse and
human transformed cells, the processes more profoundly affected
by transformation being: cellular metabolism, molecular biosyn-
thesis, oxidative phosphorylation with significant alterations of
mitochondrial structure and function. These findings support the
notion that K-ras transformed mouse fibroblasts are a valid model
of human cancer. Therefore we moved to analyze conditions that
affect apoptosis in these cells.

EVASION FROM APOPTOSIS AND LOW GLUCOSE-INDUCED
APOPTOSIS: ROLE OF PKA PATHWAY
We previously proposed that resistance of cancer cells to apopto-
sis may be linked to their alterations in mitochondria structure
and function (Chiaradonna et al., 2012) being for instance inter-
esting the observation that cancer cells have small mitochondria
(Baracca et al., 2010) with a prevalence of fission over fusion
(Palorini et al., 2012), that large mitochondria are resistant to
autophagy (Galluzzi et al., 2011) and that autophagic vesicles are
detectable in death-stressed cells undergoing apoptosis (Codogno
and Meijer, 2005; Fulda et al., 2010).

Recent reports provide interesting insight on the biochemi-
cal pathways that connect glucose starvation to specific apoptosis
activation in cancer cells. One of the pathways linking nutrient
availability to metabolic and energy activities of the cell is the
cAMP/PKA pathway (De Rasmo et al., 2011; Palorini et al., 2012).
It stimulates glucose transport and utilization (Hiraki et al., 1989;
Hosaka et al., 1992; Osawa et al., 1995), regulates mitochondrial
dynamics (Chang and Blackstone, 2007; Cribbs and Strack, 2007),
respiratory activity (Papa, 2006; Papa et al., 2008; De Rasmo
et al., 2011) and apoptosis (Harada et al., 1999; Bellis et al.,
2009). cAMP is compartmentalized in cytosol and in mitochon-
dria (Zippin et al., 2003; Sardanelli et al., 2006; De Rasmo et al.,
2009) with an increase of cytosolic cAMP able to enhance the
activity of Complex I (NADH-ubiquinone oxidoreductase) and
to decrease formation of reactive oxygen species (ROS) (Piccoli
et al., 2006; Papa et al., 2008).

K-ras-dependent human tumor cell lines of the NCI-60 col-
lection (Shoemaker, 2006) have been analyzed by transcriptional
profiling. Statistical analysis and hierarchical clustering of PKA-
related genes have been performed to show that in cancer cells
there is down-regulation of the large part of the transcripts of
the cAMP/PKA pathway (Balestrieri et al., 2009), thereby indicat-
ing that K-ras dependent oncogenic transformation may involve
reduction of cAMP/PKA pathway activity.

Exogenous stimulation of PKA activity, obtained by treatment
with the adenylate cyclase activator forskolin (FSK) (Hedin and
Rosberg, 1983) protects K-ras transformed mouse and human
cells from apoptosis induced by glucose shortage resulting in
increased Complex I activity, ATP production, prevalence of
fusion over fission and decrease in ROS production (Palorini
et al., 2012). Reduction of the functional activity of PKA, observed

in transformed cells, is not due to changes in the content of the
enzyme, but derives from its altered responsiveness to regulatory
molecules. Chemical inhibition of PKA activity reversed most of
the effects induced by FSK (Palorini et al., 2012).

Phosphorylation of mitochondrial proteins has been reported
by many Authors (Technikova-Dobrova et al., 2001; Chang and
Blackstone, 2007; Acin-Perez et al., 2009). Two targets of the PKA
promotion of cell survival in LG may be suggesyed. The NDUFS4
subunit of Complex I is critically relevant for Complex I activity.
As recently discussed (Papa et al., 2011), activated cytosolic PKA
phosphorylates NDUFS4, promoting its mitochondrial import.
Once arrived in the matrix, NDUFS4—that is critically relevant
for Complex I activity—may stabilize Complex I in its active
form, being known that Complex I dysfunction generates ROS
production. NDUFS4 localizes in the Complex I domain facing
the matrix, thereby specifically exposing the protein to oxida-
tive damage by ROS. Activation of the cAMP/PKA pathway may
thus promoting the import of newly synthesized NDUFS4 protein
which in a dynamic exchange with ROS-inactivated subunit may
maintain Complex I activity (Papa et al., 2011).

The Drp1 protein, which promotes mitochondrial fission
is inactivated by PKA phosphorylation (Dagda et al., 2011).
Treatment with FSK of K-ras transformed human cells (MDA-
MB-231) promotes Drp1 phosphorylation, increases mitochon-
drial fusion and reduces ROS production (Palorini et al., 2012).
Besides, a link between respiratory chain activity (in particularly
that of Complex I) and mitochondrial fusion/fission has recently
been reported (Koopman et al., 2005; Benard et al., 2007).

The tentative conclusion that can be drawn at this point is that
only small mitochondria with dysfunctional Complex I, reduced
respiratory activity and active ROS production are susceptible to
LG-induced apoptosis. When these features are reversed by PKA
activation even in cancer cells (harboring other mutations besides
activated K-ras) mitochondria are no longer susceptible to apop-
tosis promoted by glucose deprivation. It is interesting to recall at
this point that a myc-inducible human Burkitt lymphoma cell line
does not show LG-induced apoptosis, its survival being sustained
by glutamine metabolism (Le et al., 2012).

Therefore, mitochondria appear to have a central role in two
of the more basic system-level functions of cancer cells: enhanced
growth and glucose-shortage-induced apoptosis. In the following
a detailed analysis of mitochondrial metabolism in cancer cells is
presented.

MITOCHONDRIAL METABOLISM REMODELING
IN CANCER CELLS
Several reports have demonstrated the importance of metabolic
changes induced by oncogenic K-ras in the onset of transformed
phenotype, as reviewed in Drosten et al. (2010). In addition to
its role in the activation of glycolysis in cancer cells (Ramanathan
et al., 2005; Drosten et al., 2010), K-ras induces de novo lipid syn-
thesis (Fritz and Fajas, 2010). Moreover, Weinberg et al., recently
reported that the major function of glycolytically-produced ATP
is the energetic support of growth under hypoxic conditions and
showed that glutamine conversion into α-ketoglutarate (AKG)
is essential for K-ras-induced anchorage-independent growth
(Weinberg et al., 2010).

www.frontiersin.org September 2012 | Volume 3 | Article 362 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Physiology/archive


Alberghina et al. Cancer system-level properties

Metabolic flux analysis (MFA, described in greater detail in
“Studying the Dynamics of Metabolic Network”) is a recent devel-
opment of metabolomic techniques. By combining the use of
isotopic tracers and computer algorithms, MFA allows to actually
estimate in quantitative terms intracellular fluxes along metabolic
pathways (Metallo et al., 2009; Hiller et al., 2010), is going beyond
standard metabolomics that generates “snapshots” of metabolic
profiles in different experimental conditions.

By combining MFA and transcriptional profiling (Gaglio et al.,
2011), we could show that glucose and glutamine pathways
are decoupled in K-ras transformed cells. In both murine and
human colon carcinoma HCT116 cells, oxidation of pyruvate to
acetyl Co-A is substantially decreased, probably due to inhibition

of pyruvate dehydrogenase (PDH) by pyruvate dehydrogenase
kinase largely expressed in these an other cancer cells (Roche and
Hiromasa, 2007). This leads to a reduced flux of glucose-derived
carbon through the TCA cycle (Figure 1). Glucose is converted
to lactate to produce ATP and at the same time glutamine pro-
vides both carbon and nitrogen for the synthesis of building
blocks (amino acids, nucleotides) and glutathione through amino
acyl transferase (AAT) and glutamate dehydrogenase (GLUD)
activities (Figure 1). Building blocks and glutathione produc-
tion, sustaining growth and the ability to quench ROS produc-
tion, promote cancer cell proliferation and survival. Global gene
expression analyses of different isogenic HCT116-derived colon
carcinoma lines showed that disruption of both HIF-1α and

FIGURE 1 | Concept map of metabolic remodelling in cancer cells.

The map shows some of the more important aspects of metabolism in
proliferating cancer cells, including enhanced glycolysis; downregulation of
TCA cycle; stimulation of reductive carboxylation of glutamine sustaining

biosynthesis of proteins, nucleotides, and lipids. Red arrows represent
enhanced flux, green arrows represent reduced flux, black arrows represent
unchanged flux, red dotted arrows represent enhanced reductive
carboxylation flux.
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HIF-2α or oncogenic activation of the K-ras decreased aerobic
respiration and ATP production, with increased ROS generation
(Chun et al., 2010). Consistent results have also been obtained by
proteomics (Kang et al., 2012).

These data are in complete agreement with the large litera-
ture on cancer cell metabolism (DeBerardinis and Cheng, 2010;
Metallo et al., 2011; Anastasiou and Cantley, 2012; Le et al., 2012;
Ying et al., 2012). An important role of glutamine in determin-
ing cell fate was previously demonstrated for K-ras transformed
cells (Gaglio et al., 2009), as well as for cells transformed by
myc oncogene (Yuneva et al., 2007; Yuneva, 2008). Several stud-
ies have also reported the role of tumor suppressors, such as p53
and PTEN in the control of glycolytic and oxidative metabolism
(Lian et al., 2006; Matoba et al., 2006). More recently, p53
has been assigned an important regulatory role in glutamine
metabolism and in maintaining the balance between glycolysis
and oxidative phosphorylation (Hu et al., 2010; Suzuki et al.,
2010; Vousden, 2010), leading Wise and Thompson to propose
that “glutamine addiction” could offer a new therapeutic target
for cancer (Wise and Thompson, 2010). Since then, several other
reports along the same line have been published, mostly deal-
ing with the effect of the myc oncogene on glutamine utilization.
Using MFA, Le et al. (2012) could show that under glucose depri-
vation, an alternative, energy-generating glutaminolysis pathway
involving a glucose-independent TCA cycle is operative in a
myc-inducible human Burkitt lymphoma cell line. In other can-
cer cells—including the K-ras transformed fibroblasts described
herein—glutamine alone is unable to sustain growth and glu-
cose deprivation induces cell death. Accordingly, inhibition of
expression of the gene encoding lactate dehydrogenase A (LDHA)
by siRNA or LDHA inhibition by a small-molecule inhibitor
induces significant cell death and inhibits progression of human
lymphoma and pancreatic cancer xenografts (Le et al., 2010).
LDH-A silencing has also been reported to significantly decrease
tumorigenicity ability of breast cancer cells (Wang et al., 2011).
Besides acting as a nitrogen source for nucleotide and amino acid
biosynthesis, glutamine plays a signaling role in TOR activation
(Wise and Thompson, 2010).

AKG derived from glutamate is converted to isocitrate by isoc-
itrate dehydrogenase 2 (IDH2), possibly relieving the burden on
NADH reoxidation given by the dysfunction of Complex I, previ-
ously discussed to be a relevant characteristic of K-ras-dependent
cancer cells. Recently, Metallo and colleagues, have shown in a
variety of human cancer cell lines, both under hypoxic and nor-
moxic conditions, that reductive metabolism of AKG promotes
lipid biosynthesis (Figure 1) (Metallo et al., 2011). Similar results
have been obtained by Wise and colleagues, that have shown
an increased glutamine-dependent citrate production in hypoxic
cells from reverse flux of AKG by mitochondrial IDH2 activity
(Wise et al., 2011).

Besides, cancer-associated mutations in the IDH1-encoding
gene result in a new ability of the enzyme to catalyse the NADPH-
dependent reduction of AKG to R(–)-2-hydroxyglutarate (2HG)
(Dang et al., 2009). 2HG has then been identified as an
“oncometabolite” in a subset of gliomas harboring mutations in
the genes encoding IDH1 and 2 (Kalinina et al., 2012). 2HG-
producing IDH mutants are impaired in histone demethylation

that is required for lineage-specific terminal differentiation of
progenitor cells (Lu et al., 2012). Mutations in the IDH1-encoding
gene are sufficient to establish the glioma hypermethylator phe-
notype, a powerful determinant of glioma pathogenicity (Turcan
et al., 2012). (R)-2HG, but not (S)-2HG, stimulates prolyl
4-hydroxylases, thereby reducing HIF levels, event that promotes
transformation as judged by enhanced proliferation and soft agar
growth of human astrocytes (Koivunen et al., 2012).

In some cancer cells, a large amount of glycolytic carbon is
diverted to serine and glycine through phosphoglycerate dehy-
drogenase (PHGDH) (Locasale et al., 2011). The PHGDH gene
is found amplified in several tumors, while ectopic expres-
sion of PHGDH predispose to tumorigenesis and inhibition of
PHGHDH expression reduces proliferation of cancer cell lines
(Locasale et al., 2011). Besides, sarcosine, an N-methyl derivative
of glycine has been identified non-invasively in urine as a differ-
ential metabolite that is largely increased during prostate cancer
progression (Cavaliere et al., 2011; Wu et al., 2011). High resolu-
tion mass spectrometry (MS) on isolated mitochondria has been
recently used to provide global metabolic information (Roede
et al., 2012), an approach that could be extended to obtain a fine
characterization of the differences between normal and cancer
cells.

Taken together these findings indicate that there is an exten-
sive metabolic remodeling in cancer cells in both cytoplasm and
mitochondria and that these metabolic changes may deeply affect
the interplay between genetic and epigenetic changes in human
cancers. Cancer-associated alterations in metabolism should no
longer be regarded as an indirect response to cell proliferation
and survival signals (Ward and Thompson, 2012). It is becom-
ing increasingly clear that cellular signaling and metabolism are
deeply intertwined in a “two-way street” (Wellen and Thompson,
2012) allowing fine tuning of metabolism, cell death/survival and
proliferation.

MITOCHONDRIA AS A FOCUS FOR A SYSTEMS BIOLOGY
APPROACH TO CANCER
Both “enhanced growth” and “evasion from apoptosis/LG-
induced apoptosis”, i.e., relevant system-level properties of cancer
cell proliferation, largely rely on mitochondrial remodeling. For
this reason, it is indispensable, in order to develop a sound sys-
tems biology approach, to utilize several convergent techniques
able to yield a detailed molecular picture of the changes induced
in mitochondria by the passage from normal to cancer cell pro-
liferation: from bioenergetics analysis to metabolomic profiling,
from proteomics to bioimaging.

Mitochondria are semi-autonomous organelles that change
in shape, size and association in different tissues or physio-
pathological conditions. They derive from an ancestral
endosymbiotic bacterium. Accordingly, mitochondria (Figure 2)
are characterized by the interaction of two genomes: nuclear
and mitochondrial. Mitochondrial DNA (mtDNA) is found in
high copy number (around 103) in all eukaryotic cells, both in
conditions of homoplasmia or heteroplasmia. Since evolution
resulted in loss of several bacterial pathways—and their encoding
genes—modern mitochondria encode only a small number of
genes. The 16.6 Kb human mtDNA encodes 2 ribosomal RNA
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required for assembling of the 70 S mitochondrial ribosomes and
22 tRNA, that is the minimal requirement for the autonomous
protein synthesizing machinery of the mitochondria. Only
13 of the 85 proteins composing the OXPHOS complexes are
encoded by human mtDNA. All other mitochondrial proteins
are encoded by the nuclear genome (Gabaldon and Huynen,
2004). MitoMiner (http://mitominer.mrc-mbu.cam.ac.uk/v2.

0-2012_01) lists 1164 and 1265 proteins in the human and mouse
mitochondrial proteome, respectively.

Mitochondria play a key role in cellular bioenergetics, ion
homeostasis, carbohydrate, and fatty acids metabolism and cell
signaling. They are at the center of several inter-connected
important metabolic pathways, which are further connected to
other important cellular functions (Schatz, 2007) (Figure 2).

FIGURE 2 | Biogenesis of mitochondria results from the interaction of two genomes. The chart outlines the role of the nuclear and mitochondrial
genomes in mitochondrial biogenesis and function. See text for further details.
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Consequently any local mitochondria dysfunction can potentially
have direct or indirect effects on intra or extra mitochondrial
metabolic pathways, which could lead to very complex pheno-
types.

THE MITOCHONDRIAL PROTEOME
General issues for mitochondrial proteomics do not differ from
general proteomics (Yates et al., 2009). Analysis and definition
of the mitochondrial proteome is not a trivial task because of
extensive biological and technical variability (Da Cruz et al.,
2005). As mitochondrial studies progress, the amount of infor-
mation regarding the mitochondrial proteome increases in size
and complexity. Several on-line databases dealing with the human
mitochondrial proteome have been recently listed (Gianazza et al.,
2011) and new ones are constantly appearing. By way of example,
MitoMiner (Smith et al., 2012) covers studies from eleven species
and as more and more data from normal and diseased tissues will
become available, it may contribute to the study of mitochon-
drial (dys)function in mitochondrial-associated diseases such as
cancer.

MS in combination with a variety of separation meth-
ods is the principal methodology for proteomics. Fractionation
steps—based on organelle separation, and/or on physiochemical
properties—prior to MS analysis are mandatory for the identi-
fication of low abundant proteins. Most methods for studying
the mitochondrial proteome rely on purification of mitochondria
from cellular homogenates, although methods that allow to study
mitochondrial proteins without resorting on cell fractionation
have been recently reviewed (Gianazza et al., 2011).

The definition of contaminants of the mitochondrial proteome
is not straightforward. As pointed out by a recent study in S. cere-
visiae (Ben-Menachem et al., 2011), dual targeting may greatly
increase the ability of the mitochondria to respond dynamically
to changing environmental conditions and should be taken into
account in studies of mitochondrial proteome. Accordingly, rig-
orous quantitative analysis and careful data mining is required in
studies of the mitochondrial proteome (Abadi et al., 2009).

Proteomics techniques in which proteome fractionation—
i.e., separation at the protein level—precedes sample diges-
tion and subsequent peptide-level separation and detection are
referred to as bottom-up techniques and allow a high number of
identifications.

Gel-based methods require staining, protein excision, in-gel
digestion with trypsin and MS analysis. One-dimensional gels
separate highly abundant proteins according to their apparent
molecular weight (MW) and are suitable for hydrophobic pro-
teins, such as membrane proteins (Lefort et al., 2009). In a 2D
gel approach, after S–S bridge reduction, mitochondrial pro-
teins are first separated according to their isoelectric point (pI)
and then by MW. 2D gels offer good separation and quantiza-
tion of proteins in the sample, allow to provide sample quality
control (e.g., degradation) and to visualize PTMs that modify
either pI (e.g., phosphorylation, left horizontal shift) or the MW
(e.g., glycosylation, vertical up-shift). For semiquantitative stud-
ies 2D fluorescence difference in-gel electrophoresis (DIGE), in
which two or more samples, including the internal standard, are
labeled with different fluorescent dyes and separated on a 2D gel,

is the most accurate technique. Changes in intensity of the dyes
indicate whether a protein is up- or down-regulated (Gelfi and
De Palma, 2012). Mitochondrial studies using a 2D gel approach
are discussed in Distler et al. (2008).

To overcome limitations of 2D gels, techniques based on
reversed phase liquid chromatography can be used (shotgun
approach). Sample is digested in solution to peptides that are frac-
tionated before being directly analyzed by MS. With the shotgun
approach, protein is not lost with extraction from the gel, how-
ever, high abundant proteins are digested prior to MS, so these
high abundant fragments can blunt many fractions.

The intensity of a peak detected in a single mass spectrum is
directly proportional to the ion concentration. Differential label-
ing with heavy and light tags specifically designed to react with
a particular amino acid (cysteine or lysine) of proteins extracted
from two samples, induces a mass shift of the labeled peptides
which will appear as a doublet on the mass spectrum, allowing the
calculation of the peptide ratio and hence up- or down-regulation
of the corresponding protein (Smolka et al., 2002; Schmidt et al.,
2005).

In top-down proteomics intact proteins are directly analyzed
by MS. This strategy offers potential access to the complete pro-
tein sequence and the ability to locate and characterize PTMs.
This approach has not been achieved on a proteome scale owing
to the lack of intact protein fractionation methods that are well
integrated with tandem MS. Recently (Tran et al., 2011), an
overall four-dimensional separation of whole protein molecules
before ion fragmentation by tandem MS and protein identifica-
tion, led to the definition of the human proteome with extremely
high molecular detail. A similar strategy may be appropriate for
precise and sensitive quantitative studies of the mitochondrial
proteome.

Reverse phase protein microarrays (RPMA)—a high-
throughput proteomic technique that allows the quantification
of a given marker in minute amounts of protein from biological
specimens (Mueller et al., 2010)—has been applied to quantifi-
cation of proteins of energy metabolism in normal and tumor
biopsies of colorectal cancer patients (Aldea et al., 2011). As the
knowledge of the mitochondrial proteome increases it will be
possible to extend this technique to include a wider coverage of
mitochondrial proteins.

The mitochondrial proteome and cancer
As outlined above, defining the mitochondrial proteome could be
essential to shed light on the connection between mitochondrial
dysfunction and tumorigenesis, ultimately leading to discovery
of new oncologic biomarkers and/or therapeutic targets (Bottoni
et al., 2012). Without any attempt to be exhaustive, in this sec-
tion we will report findings in cancer tissues and cell lines where
either the mitochondrial proteome has been directly analyzed
or information relevant for mitochondrial function has been
obtained. Hu and collaborators (Hu et al., 2011) have recently
presented an overview of cancer-related changes in mitochon-
drial proteomics to which the reader is referred for further
information.

Mazzanti et al. (Mazzanti and Giulivi, 2006; Mazzanti et al.,
2006) analyzed by differential proteomics the energy metabolism
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pathway of matched samples of normal and cancer tissues
and found an unbalanced coordination between nuclear- and
mitochondria-encoded mitochondrial proteins. This shift corre-
lated with altered oxidative phosphorylation in cancer cells. An
up-regulation of the mitochondrial apoptotic pathway was also
observed.

Xu et al. (2010) conducted quantitative proteomic analy-
ses on breast cell lines, including normal, primary tumor and
metastatic tumor lines isolated from a single patient and found
that proteins involved in metabolic processes were the most
deregulated in both tumorigenesis and metastasis. Among the
novel identified markers is the mitochondrial import inner
membrane translocase subunit, TIMM17A that may play an
oncogenic role in breast cancer. Eleven mitochondrial proteins
whose abundance was increased at least two-fold in adriamycin-
resistent MCF-7 human breast cancer cells as compared to
the sensitive counterpart have been identified (Strong et al.,
2006). Mitochondrial proteins differentially expressed in various
stages of breast cancer progression have recently been reported
(Chen et al., 2011).

A significant shift in the relative concentrations of nuclear-
vs mitochondrial encoded cytocrome C Oxidase (COX) subunits
has been reported during prostate cancer progression (Herrmann
et al., 2003). A correlation has been found between the level of
subunits of the COX complex in different stages of prostate cancer
and prostate cancer-derived cell lines, two of which are matched
normal and tumor lines derived form the same prostate gland
(Krieg et al., 2004).

A recent study conducted on colorectal cancer using shot-
gun proteomics with stable isotope labeling and MS confirmed
mitochondrial dysfunction (Kang et al., 2012). 2D-gel elec-
trophoresis profiles of isolated mitochondria from neuroblastoma
cells treated with sub-cytotoxic concentrations of a Complex I
inhibitor, allowed to identify a variety of modulated mitochon-
drial proteins (Burte et al., 2011). Notably, changes in chaperones
suggest a regulated link between Complex 1 inhibition and pro-
tein folding, while alterations in the levels of the multifunctional
protein VDAC1 (see “Post-translational Modifications”) may be a
signaling link between mitochondria and the rest of the cell prior
to cell death.

Post-translational modifications
Another issue is presented by the identification of PTMs
which play an essential role in cell signaling. Phosphorylation,
S-nitrosylation (SNO), O-linked-β-N-acetylglucosamine glycosy-
lation (O-GlcNAc), glutathiolation, sumoylation, ubiquitination
are the most relevant PTMs of mitochondrial proteins. PTM
MS-based proteomics is in most cases sensitive enough to identify
low abundant proteins only after extensive upstream fractiona-
tion. Comparative techniques have been developed to cope with
the differential abundance and the high sensitivity.

Lam et al., recently reported an adaptable, sensitive, specific
and robust workflow for quantification of endogenous phospho-
peptides from outer and inner mitochondrial membrane proteins
(Lam et al., 2012). The development of a similar quantitative
workflow for normal and cancer tissues of different histologi-
cal origin could be instrumental in advancing knowledge and

understanding of the regulatory effects of mitochondrial protein
phosphorylation in cancer pathophysiology.

Binding of proteins to—and internalization into—
mitochondria and post-translational modification of both
mitochondrial and extramitochondrial proteins plays a key role
in mitochondrial signaling. Voltage-dependent anion channels
(VDAC1-3) are abundant β-barrel, channel-forming proteins
located in the outer mitochondrial membrane, but also present
in the plasma membrane (De Pinto et al., 2010). VDAC proteins
are involved in ion and ADP/ATP exchange between the cytosol
and the mitochondrion, as well as in the control of apoptosis—by
acting as specific docking sites for a variety of proteins, includ-
ing hexokinase and proapoptotic proteins (Shoshan-Barmatz
and Golan, 2012). VDAC proteins are subjected to extensive
PTMs, notably phosphorylation and acetylation, although
little is known so far on the impact of these PTMs on VDAC
pathophysiology.

Several reports have identified eleven, four and three phos-
phorylation sites in VDAC1, 2, and 3, respectively, as reviewed
in Kerner et al. (2011), but only in a few cases a direct correlation
between specific phosphorylations and VDAC activity has been
reported. Phosphorylation of VDAC1 Ser12,136 sensitizes cells to
apoptosis by extending the half-life of the phosphorylated VDAC1
form as compared to the non-phosphorylated one (Baines et al.,
2007). A role for VDAC1 phosphorylation in prevention of cell
death has been reported. Phosphorylation by Nek1 of VDAC1S193

protects cells against apoptosis, while ectopic expression of the
non-phosphorylatable VDAC1S193A and of the phosphomimetic
VDAC1S193E mutants resulted in cell death and apoptosis escape,
respectively (Chen et al., 2009).

Two types of protein acetylations are known: N-terminal
and lysine epsilon acetylation. A large fraction of proteins have
been reported to be N-terminal acetylated (Arnesen et al., 2009;
Zhang et al., 2011). The process is considered irreversible, but N-
acetylation of some proteins is only partial (Goetze et al., 2009).
N-acetylation may affect protein activity, stability, assembly, and
intracellular location. Recently a biochemical assay that allows to
correlate N-terminal acetylation with the availability of acetyl-
CoA and the sensitivity to apoptotic stimuli has been developed
(Yi et al., 2011). VDAC1, but not VDAC2, is N-terminal acetylated
(Distler et al., 2007). The physiological role of this modification
on VDAC function is presently unknown.

Increasing evidence suggests that reversible acetylation of
mitochondrial proteins on lysine residues represents a key mech-
anism by which mitochondrial functions are adjusted to meet
environmental demands (Lombard et al., 2011). The level of
lysine acetylation of a given protein depends on the balance
between the activity of protein acetyltransferases and deacety-
lating enzymes, i.e., histone deacetylases (HDAC) and sirtuins
(NAD+-dependent deacetylases) (Zhao et al., 2010). No quan-
titative differences in acetylation for VDAC1 and VDAC2 were
reported in fed vs calorie-restricted mice. While VDAC3K28,63,109

are acetylated constitutively, VDAC3K20,61,226 are differentially
acetylated in livers of starved vs. those of fed mice (Kim et al.,
2006). No direct correlation between specific acetylation events
and VDAC activity has yet been reported. Combined pro-
teomics/bioinformatics approaches that are being developed to
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study the mouse acetylome (Fritz et al., 2012) may prove valuable
in understanding the role of this PTM in cancer biology.

MITOCHONDRIAL BIOENERGETICS
The Chemiosmotic Theory of oxidative phosphorylation states
that the connection of electron transfer to ATP synthesis is
indirect, via a H+ electrochemical gradient that is established
by coupling electron flow through the four Complexes (I–IV)
of the electron transport chain to proton extrusion from the
mitochondrial matrix, 10 protons being ejected for each 2 elec-
trons transferred from NADH to oxygen. Following the con-
centration gradient, protons return to the matrix via the Fo
subunit of the FoF1 ATP synthase (Complex V). The proton
flux induces conformational changes of ATP synthase, so to
allow endoergonic ATP synthesis (Mitchell, 2011). Impairment
of complexes I–IV disrupts electron flow and may cause mito-
chondrial respiratory dysfunction. Since, as outlined above, mito-
chondria may be central in the development of cancer, the
study of the physio-pathological bioenergetic properties of mito-
chondria should prove instrumental in understanding cellular
transformation.

Technologies are now available to monitor on a large scale sev-
eral bionergetic-related activities: from oxygen consumption to
ATP production, from fermentative activity to maximal respira-
tory capacity (Wu, 2009; Horan et al., 2012) and different papers
describing their use in the study of cancer cell metabolism have
been published (Wu et al., 2007b; de Groof et al., 2009; Chen and
Shtivelman, 2010; Oliva et al., 2010; Pike et al., 2010; Guo et al.,
2011; Vlashi et al., 2011; Fabian et al., 2012; Garcia-Cao et al.,
2012; Sassi et al., 2012).

Hyperpolarization of the mitochondrial inner membrane has
been detected in cancer cells. Since the rate of pyruvate oxida-
tion in mitochondria in cancer cells is lower than in normal
cells (Bonnet et al., 2007), such hyperpolarization is unlikely
to be due to respiration. Consistently, increasing respiration of
glycolytic cancer cells through inhibition of lactate dehydroge-
nase (Fantin et al., 2006; Le et al., 2010) or activation of PDH
(Bonnet et al., 2007), relieves hyperpolarization. In a second
redox process, molecular oxygen is converted to ROS, namely
the superoxide anion radical (O−

2 ) and H2O2. Mitochondria
are selectively vulnerable to oxidative damage (Wallace, 1999).
Mammalian Complex I (NADH:ubiquinone oxidoreductase) cat-
alyzes the oxidation of NADH in the matrix and plays a
major—and possibly unique—role in mitochondrial H2O2 pro-
duction.

Much interest is currently given to the connection between
ROS levels, mitochondrial function and autophagy that has been
proposed as a major sensor of redox signaling (Lee et al., 2010).
The relationship of autophagy with cancer is double-sided. Since
autophagy-deficient mice are more likely to develop tumors
(Marino et al., 2007; Mathew et al., 2009), autophagy apparently
promotes survival of tumor cells and may contribute to resis-
tance to chemotherapy. Down-regulating expression of essential
autophagy proteins impairs growth of ras-dependent cancer cells
(Guo et al., 2011). On the other hand, autophagic clearance of
damaged proteins, organelles and DNA protects from tumori-
genesis (Chen et al., 2009). Autophagy has also been shown to

induce cell senescence, which is able to stop cancer progression
(Young et al., 2009).

STUDYING THE DYNAMICS OF METABOLIC NETWORK: METABOLIC
FLUX ANALYSIS WITH STABLE ISOTOPE TRACERS
Metabolomics generates detailed “snapshots” of biological pro-
cesses (Hiller et al., 2009) by measuring metabolite concentra-
tions, just as transcriptomics and proteomics generate snapshots
of the level of transcripts and proteins. In order to dynamically
study metabolic networks the fluxes of metabolites (i.e., in vivo
reaction rates) need to be analyzed. Because cells and organisms
fine tune their metabolism according to genetic, developmental
and environmental clues, changes in flux result from interac-
tions among proteins and metabolites, as well as from regulatory
genetic and biochemical interactions, structural and allosteric
enzyme regulation, etc., as reviewed in Sauer (2006).

The simplest way to measure a flux is to determine usage of a
precursor and accumulation of the end-product. So for instance
by assaying glucose consumption and lactate production, a rough
estimate of the glycolytic flux can be obtained (Stephanopoulos,
1999). However such an analysis cannot give detailed information
on intracellular fluxes and additional intracellular information
must be obtained by isotope tracer experiments (Sauer, 2006; Le
et al., 2012; Walther et al., 2012).

13C- (or 15N-) labeled substrates are fed to a growing cell pop-
ulation until the isotope label is distributed throughout the net-
work, originating specific metabolite labeling patterns—detected
through either MS or nuclear magnetic resonance (NMR)—
according to flux distribution in the studied experimental sit-
uation. Obtaining fluxes from labeling data is not straightfor-
ward and requires computer model interpretation that rely on
either parameter fitting procedures (Wiechert, 2001) or direct
and local interpretation of selected labeling patterns, for exam-
ple, the mass distribution of pyruvate (Fischer and Sauer, 2003).
Computational evaluation of the use of 13C labeled glucose and
glutamine and indications to direct choice of isotope tracer for
tracking different pathways have been described (Metallo et al.,
2009). Methodologies for non-targeted analysis of stable-isotope
labeled metabolomics data are also available (Hiller et al., 2011).

Combining the use of isotopic tracers and computational
algorithms, MFA enables quantitative estimation of intracellu-
lar fluxes allowing to describe the actual functionality of a given
enzyme or pathway. The investigation of a metabolic pathway by
MFA is the more direct way to derive the metabolic circuit (see
section “From “Omics” Data to Networks and Beyond”) in any
given condition allowing to detect non-canonical pathways. For
instance in microorganisms it allowed to detect the unexpected
activity of the Entner–Doudoroff pathway (Fuhrer et al., 2005)
in Actinomycetes. In mammalian cells the non-canonical label-
ing of TCA cycle-associated metabolites has been demonstrated
in transformed cell lines by MFA, that highlighted K-ras-induced
decoupling of glucose and glutamine utilization (Gaglio et al.,
2011).

MFA provides important data to extend understanding of flux
regulation, for instance through techniques such as metabolic
control analysis (MCA) (Fell and Black, 1997), and its exten-
sion aiming to quantitatively dissect purely metabolic from
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hierarchical (i.e., dominated by regulation of gene expression)
regulation (ter Kuile and Westerhoff, 2001). MFA also provides
reference data sets that can be used to check predictions of
mathematical models or as input data for constraining param-
eter estimation, the ultimate goal being to integrate all relevant
experimental data in order to quantitatively explain and predict
metabolic regulation and cellular phenotypes.

BIOIMAGING: PET AND MR TECHNIQUES FOR THE STUDY
OF CANCER METABOLISM In vivo
Application to cancer of in vivo imaging procedures like Positron
Emission Tomography (PET) and Magnetic Resonance (MR) is
increasing. Since PET allows to visualize modifications in cell
metabolism or tissue microenvironment, it represents a unique
tool for a better understanding of cancer biology, the set up
of novel diagnostic procedures and for early assessment of the
efficacy of target-directed therapies.

In recent years a growing number of radiopharmaceuticals
have been developed and validated at both preclinical and clin-
ical levels for the management of patients with different cancers.
Different tracers allow to visualize and measure hallmark can-
cer phenotypes including glucose and fatty acid metabolism, cell
proliferation or regional hypoxia.

Uptake of the glucose analog 2-deoxy-2-(18F)-D-glucose
(FDG) is widely used in clinical practice for staging, restaging and
early prediction and assessment of response to pharmacological
treatment. The lack of the hydroxyl group in position 2 blocks
FDG metabolism past GLUT-mediated glucose transport and
phosphorylation by hexokinases (HK): hence FDG uptake specifi-
cally reflects the levels of GLUT and HK activity (Haberkorn et al.,
2011). The interest in FDG as marker of drug efficacy rises from
the observation that glucose metabolism and in particular GLUT
and HK levels are controlled by the same pathways where most of
the novel targeted therapy act (Honer et al., 2010) and modifica-
tions in FDG uptake represents an early event in case of response
to treatment with tyrosine kinase receptors agents like Imatinib or
Erlotinib, or mTOR inhibitors like Everolimus (Cullinane et al.,
2005; Shankar et al., 2006; Sunaga et al., 2008; Aukema et al.,
2010).

Many efforts have been recently dedicated to developing
PET radiopharmaceuticals for in vivo imaging of glutamine
metabolism that is now recognized to play a central role in
the metabolism of proliferating cells (see section “Mitochondrial
Metabolism Remodeling in Cancer Cells”). The potential use of
3′-deoxy-3′-[18F]fluorothymidine (FLT)—whose uptake reflects
the activity of cytosolic thymidine kinase-1 (TK-1) which is the
first enzyme in the salvage pathway of DNA synthesis activated
during the S-phase of the cell cycle (Soloviev et al., 2012)—as a
biomarker for therapy efficacy is under evaluation at both clinical
and preclinical levels. FLT allows indirect monitoring of modifi-
cations in metabolic pathways including glutaminolysis, affecting
cancer cell phenotype by evaluating its effects on tumor growth.

More recently, two tracers of potential interest for in vivo imag-
ing of glutamine metabolism have been described and validated
in preclinical models of cancer: 18F-(2S, 4R)4-fluoroglutamine
and l-[5-11C]-glutamine (Lieberman et al., 2011; Qu et al., 2012).
These tracers are taken up and specifically retained by cancer cells

giving adequate signal to noise ratios. However further preclini-
cal studies are needed to better demonstrate if their accumulation
fully reflects glutaminolysis (Lieberman et al., 2011; Qu et al.,
2012). In vivo imaging of glutamine metabolism is of great rel-
evance, since it could be used alone for low glycolitic tumors
which might use glutamine as an alternative nutrient, or—in
combination with FDG—to identify tumors in which persistent
glutamine metabolism will support cell survival and negatively
affect the outcome as well as to explore possible links with specific
mutations (Rajagopalan and DeBerardinis, 2011).

Another emerging technique for the in vivo measurement
of cancer metabolism and glutamine utilization is Magnetic
Resonance Spectroscopy (MRS) that allows quantification of dif-
ferent tissue metabolites including glutamine and glutamate.
However, MRS indicates only the global levels of metabolites
inside tissue and not their relative fluxes between intracellular and
extracellular spaces. This measurement is possible and tradition-
ally performed in vitro using isotopically labeled compounds. In
the field of MR, hyperpolarized 13C MR represents an emerg-
ing tool for the real-time monitoring of single step reactions
along metabolic pathways. In hyperpolarized MR, a molecule is
labeled with an NMR-active nucleus and then hyperpolarized
using dynamic nuclear polarization. Nuclear spin hyperpolar-
ization can dramatically increase the sensitivity of 13C MRS,
allowing dynamic measurements of the metabolism of hyperpo-
larized 13C-labeled substrates in vivo. To date, [5-13C]-glutamine,
[1-13C]-glutamate, and [5-13C-4-2H2]-glutamine have been suc-
cessfully used in cells, but their implementation in vivo at preclin-
ical stage remains limited. Polarization tends to decay relatively
rapidly following injection into living tissues minimizing the time
frame during which the signal can be detected. Strategies allowing
improvements in polarization levels of these agents might pave
the way for wider in vivo implementation (Sibson et al., 1997;
Gallagher et al., 2008, 2011; Qu et al., 2011).

MODELING MITOCHONDRIAL ACTIVITIES
Models describing mitochondrial bioenergetics vary in scope,
complexity and in their applicability to different systems.
Thermodynamic models were the first to be utilized, but more
recently, kinetic or mixed thermodynamic-kinetic models were
introduced, as reviewed in Cortassa and Aon (2012). In the
simplest approach, the respiration flux through the whole mito-
chondria is described by a single empirical oxygen consump-
tion equation. Recently, a modular kinetic rate equation—the
chemiosmotic rate law—expressing the mitochondrial flux has
been proposed (Chang et al., 2011). It describes mitochondrial
flux through three configurable modulating factors. By allowing
selective configuration of the system and selection of its kinetic
properties, such an approach may allow comparative analysis of
mitochondria in different physio-pathological states.

Different models in which respiration is analyzed with refer-
ence to the molecular component involved, have been proposed
(Korzeniewski and Zoladz, 2001; Yugi and Tomita, 2004; Wu
et al., 2007a). In particular, the Beard group described a compu-
tational model of mitochondrial metabolism of human muscle
cells including the Tricarboxylic Acid Cycle, oxidative phospho-
rylation, metabolite transport and electrophysiology (Wu et al.,
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2007a). The model, constructed on the basis of detailed kinet-
ics and thermodynamically balanced reaction mechanisms has
been validated by its application to diverse conditions, including
in vitro data on isolated mitochondria and in vivo experimen-
tal measurements. The same group has developed a database
of thermodynamic properties that includes glycolysis, tricar-
boxylic acid cycle and reactions of the pentose phosphate pathway
(Li et al., 2011).

Mitochondrial metabolism has also been studied according
to the Flux Balance Analysis (FBA) paradigm. In a first study,
FBA has been used to characterize the optimal flux distribu-
tions for maximal ATP production in mitochondria with the aim
to offer a systemic perspective regarding the effect of stoichio-
metric constraints and specific metabolic fluxes on mitochon-
drial function (Ramakrishna et al., 2001). A refined, manually
curated FBA metabolic model of the mitochondrion has been
recently published (Smith and Robinson, 2011) that builds exten-
sively on the MitoMiner mitochondrial protein database (Smith
et al., 2012) and has been used to calculate metabolite fluxes
under normal and pathological conditions, including deficien-
cies in fumarase, succinate dehydrogenase and AKG dehydroge-
nase.

None of the mentioned reports explicitly connects mitochon-
drial metabolism to signaling pathways that may impinge on
mitochondria functionality, nor to signaling pathways that take
place within the mitochondria. A first step in this direction is
found in a recent paper (Huber et al., 2011) describing a com-
putational systems biology study that integrates mitochondrial
bioenergetics and apoptotic signaling. Simulation results suggest
that enhanced glucose utilization of cancer cells may counteract
the lethal bioenergetic crisis that would stimulate apoptosis. Since
the metabolic and signaling role of mitochondria are strongly
interconnected, it is expected that in a near future modeling
efforts aiming to connect oncogenic signaling and metabolism
should appear and contribute to understanding of the function
of the mitochondria in cancer.

Most modeling efforts aim to describe mitochondrial bioen-
ergetics properties with a given level of granularity, as deemed
appropriate for intended purpose of the model. Sometimes even
the same authors present models of the same system with different
resolution (Klipp et al., 2005; Gennemark et al., 2006). Multiscale
modeling is indeed more a necessity than a nuisance (Noble,
2002; Kitano, 2010). To be effective, modeling efforts need to
be put in place within a general framework that allows to high-
light input/output and regulatory connections among different
modules.

A recent study (Cloutier and Wellstead, 2010) presented
a generic energy metabolism model which describes energy
metabolism in terms of engineering control mechanisms and
structures. Following their interest in Parkinson’s disease, the
same authors proposed (Wellstead and Cloutier, 2011) to use
a mathematical model of brain energy metabolism (Cloutier
et al., 2009) as the core module to which connect other modules
describing processes associated with the disease. Such a modu-
lar model can act as a scaffold for modules of different molecular
granularity and may also allow easy reshaping of structural and
regulatory connections as new data become available.

In the next section we discuss our roadmap for the develop-
ment of a structured, system-level model of the enhanced growth
property of cancer cells, in which remodeling of mitochondrial
metabolism is going to have a major role. Full understanding of
this property is going to be crucial for biological understanding
and in perspective, for personalized treatment of cancer.

CONCLUSIONS AND PERSPECTIVES
Taking together the findings previously discussed, it is possible to
state that two properties of the phenotype of K-ras transformed
cells, i.e., “enhanced proliferation” and “LG-induced cell death,”
are closely linked. They are shown to depend upon a metabolic
remodeling given by enhancement of glycolysis and by rewiring
of mitochondrial metabolism, with down-regulation of TCA cycle
activity, increase of reductive carboxylation of AKG, derived from
glutamine, followed by sustained production of building blocks
and glutathione.

This substantial change in cellular metabolism can be con-
nected, in a causal relationship, to other molecular events char-
acteristic of K-ras transformed cells (Figure 1). In fact, the
activation of signaling pathway by oncogenic K-ras is able to
strongly activate the uptake of glucose and of glutamine (Levine
and Puzio-Kuter, 2010; Gaglio et al., 2011). The increased flux
of glucose and the concomitant activation by the PI3K and
PKB/AKT pathways—downstream of K-ras—of several key gly-
colytic enzymes are able to increase the glycolytic flux (Gaglio
et al., 2009, 2011). It is interesting to recall that systemic ele-
vation of PTEN, the main negative regulator of PI3K signaling,
is able to reduce glucose and glutamine uptake, increase mito-
chondrial oxidative phosphorylation, reduce glutaminolysis and
lactate production, making cells resistant to oncogenic transfor-
mation (Garcia-Cao et al., 2012). In the meantime the activation
of K-ras down-regulates the cAMP/PKA pathway and this event
impacts on mitochondrial Complex I assembly/function, strongly
reducing its activity (Palorini et al., 2012). Thus, pyruvate gen-
erated by the stimulated glycolysis may find obstructed the way
to the TCA cycle. This condition may be enhanced by both
MYC activation and hypoxia, that are able to activate pyruvate
dehydrogenase kinase-1 (PDK1), which inactivates PDH convert-
ing pyruvate to Acetyl-CoA (Bonnet et al., 2007), the resulting
overflow of pyruvate being directed towards the production of
lactate.

The stimulated uptake of glutamine and the concomitant
activation of glutaminase and glutamine dehydrogenase lead to
AKG production. Mitochondrial IDH2 converts AKG to citrate
by reductive carboxylation, that can be stimulated by NADH,
likely building up due to Complex I inactivation. The high level
of NADH, through nicotinamide nucleotide transhydrogenase
(NNT) will produce NADPH at the expenses of NADP+ to stim-
ulate reductive carboxylation of AKG to citrate. Citrate, exported
into the cytoplasm, is able to sustain “de novo” synthesis of fatty
acids, a typical cancer growth feature (Metallo et al., 2011; Wise
et al., 2011; Icard et al., 2012). Production of aspartate from
oxalocetate, catalyzed by aspartate amino transferase, opens the
way to the production of building blocks, such as amino acids,
nucleotides, glutathione. Contrary to the behavior observed in
normal cells, that utilize glutamine mostly as a nitrogen source,
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exporting glutamate into the medium, in cancer cells glutamine
serves as source of both carbon and nitrogen (Gaglio et al.,
2011) and plays a role in quenching ROS produced by defective
Complex I (Gaglio et al., 2011).

From this simple and so far still incomplete analysis, it is pos-
sible to justify many aspects of the “enhanced growth” phenotype
and show that this function/system-level property is sustained by
a large number of biochemical pathways that interact often in
ways that are not coincident with canonical indications. At first
glance this behavior recalls that of a “Rube Goldberg machine,”
which performs a given task in a very complex fashion, inter-
locking in an unexpected way elementary sequences of events
that realize a chain reaction to perform the required task. The
interest of the chain reaction is given by the fact that the first
reaction generates a product that determines the behavior of the
second reaction and so on. For instance, when glucose uptake
and glycolytic flux are low, pyruvate is utilized by the TCA cycle
and sustains OXPHOS-dependent ATP synthesis. Instead when
the glycolytic flux strongly increases, pyruvate is mostly diverted

to lactate production. Therefore the energy released at the var-
ious reaction steps allows the system to reach one or the other
end point, as a function of the conditions generated during the
chain.

Of course Figure 3 represents only a first attempt to con-
struct, as indicated previously in section “From “Omics” Data
to Networks and Beyond,” a concept map of molecular events
that underlay the “enhanced growth” function of K-ras trans-
formed cells. The first step to be undertaken afterwards is to verify
its completeness and eventually to add other relevant pathways,
not yet considered. Then, efforts of constructing mathematical
models, at the appropriate level of detail, may be undertaken.

As discussed in section “Modeling Mitochondrial Activities,”
models of mitochondrial functions are quite complex and their
granularity depends upon the problems one would like to address.
A first interesting question to investigate could be the role of the
altered NADH/NAD+ ratio, due to Complex I partial inactiva-
tion, on the insurgence and maintenance of the mitochondrial
remodeling of the glutamine utilization in cancer cells.

FIGURE 3 | Low resolution concept map of the “enhanced growth” property in cancer cells. The major events—and their interconnections—leading to
the enhanced growth phenotype are presented. See the text for details.
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A neat definition, at molecular level, of the structure of
the complex molecular machine underlying “enhanced growth,”
compared to those of both growing and resting normal cells could
allow to identify the step(s) to be inhibited, if one wants to specif-
ically arrest growth of cancer cells, leaving unaffected normal
ones.

Following the same line of thought, Figure 3 could be the basis
for a concept map that aims to identify the relevant molecular
pathways involved in the “LG-induced cell death.” Of course this
second concept map needs to be largely implemented: first of
all one should know which are the metabolic reactions that take
place, at limiting glucose, in K-ras transformed cells as compared
with myc-dependent Burkitt lymphoma cell lines which instead
are able to survive using only glutamine metabolism (Le et al.,
2012). Besides, a careful analysis and unambiguous molecular
definition (Galluzzi et al., 2012) of the pathway(s) that brings to
cell death K-ras transformed cells in low glucose will be required.

Putting together this information, one should be able to
construct first a concept map, then a mathematical model of
“LG-induced cell death.” Based on this model, extensive in silico
simulations can be carried on, and their predictions compared

and validated with experimental results and data sets. As noted
above, multiscale modeling and simulation tools play an essen-
tial role. The identification of the molecular steps that, inhibited
by a new drug, may be able to selectively kill K-ras dependent
cancer cells, offers hope to become able to eradicate this type of
K-ras-addicted cancers.

In conclusion, as discussed in this paper, post-genomic analy-
sis of cancer cells becomes able to yield understanding and predic-
tive ability for understanding of multifactorial diseases and hence
develop efficient new therapeutic treatments, only by integration
of network analysis with dynamic modeling of physiologically
relevant system-level properties, thus modifying the initial, too
optimistic, expectation (Henney and Superti-Furga, 2008) which
proposed that network analysis alone could be sufficient.
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