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The structure of vascular networks adapts continuously to meet changes in demand of the
surrounding tissue. Most of the known vascular adaptation mechanisms are based on local
reactions to local stimuli such as pressure and flow, which in turn reflects influence from
the surrounding tissue. Here we present a simple two-dimensional model in which, as an
alternative approach, the tissue is modeled as a porous medium with intervening sharply
defined flow channels. Based on simple, physiologically realistic assumptions, flow-channel
structure adapts so as to reach a configuration in which all parts of the tissue are supplied.
A set of model parameters uniquely determine the model dynamics, and we have identi-
fied the region of the best-performing model parameters (a global optimum).This region is
surrounded in parameter space by less optimal model parameter values, and this separa-
tion is characterized by steep gradients in the related fitness landscape. Hence it appears
that the optimal set of parameters tends to localize close to critical transition zones. Con-
sequently, while the optimal solution is stable for modest parameter perturbations, larger
perturbations may cause a profound and permanent shift in systems characteristics. We
suggest that the system is driven toward a critical state as a consequence of the ongoing
parameter optimization, mimicking an evolutionary pressure on the system.
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INTRODUCTION
The arteriolar and venular trees supplying virtually all tissues in the
mammalian body have long been recognized for their apparently
regular, dichotomous branching pattern. Over a range of length
scales these structures display a certain degree of self-similarity
and can hence be characterized as quasi-fractal (Lorthois and Cas-
sot, 2010). This regularity has led to attempts to define universal
properties regarding vascular dimensions and network structure
(West et al., 1997; Kassab, 2006). A famous example are the laws
suggested by C.D. Murray almost a century ago (Murray, 1926a,b).
These laws relate the radius of the mother vessel to those of the
two daughter vessels. They also describe the branching angles
when daughter vessels of equal or unequal size are formed from a
mother vessel. Attempts to formulate in mathematical terms the
laws (including those of Murray) that underlie vascular network
structure, often take offset in considerations regarding energy con-
servation. It is assumed that network structure is optimized in such
a way that the total energy requirement of the individual vessel
(Taber, 1998) and the vascular tree as whole is minimized (Zhou
et al., 1999; Liu and Kassab, 2007). This includes both the meta-
bolic requirement of blood- and vessel wall components and the
viscous energy dissipation of circulating the blood (Taber, 1998;
Huo and Kassab, 2012). Not surprisingly, simulation studies apply-
ing energy optimization to guide network formation indeed lead
to network structures similar to those observed experimentally
(Karch et al., 1999). The principle of energy optimization com-
bined with a few assumptions regarding the basic structure of the
vascular system, has lead to the formulation of a number of scaling
laws of the circulatory system that fit well to available data (West

et al., 1997; Kassab, 2006; Huo and Kassab, 2012). It remains a
central question however, by which mechanisms nature causes the
realization of an energetically optimal structure at all levels from
individual vessel to large networks.

The vascular wall is a highly plastic structure (Martinez-Lemus
et al., 2009) that adapt dynamically to changes in local hemody-
namic conditions e.g., pressure and flow (Unthank et al., 1996;
Pourageaud and De Mey, 1997; Buus et al., 2001; Gruionu et al.,
2012; Jacobsen and Holstein-Rathlou, 2012), which in many cases
reflects a changing need of the surrounding tissue. A number of
models have appeared in the literature taking this primarily“local”
view on vascular adaptation (Hacking et al., 1996; Pries et al., 1998,
2001, 2003; Jacobsen et al., 2003, 2008; Nguyen et al., 2006; for a
brief review please see Jacobsen et al., 2009). This plasticity indi-
cates that the morphology of the individual vessel, and of the
topology of the microvascular network as a whole, might result
primarily from local adaptation to local conditions, rather than
being a result of predetermined genetic patterning (le et al., 2005;
Al-Kilani et al., 2008).

In the present model we aim at elucidating the hypothesis that
changes in microvascular structure can be explained primarily as
a local reaction to local conditions. As a novel approach tissue is
modeled as an isotropic, porous material inside which size and
position of flow channels are free to change. We formulated a set
of generic equations describing vascular adaptation, and imple-
mented them into a time-evolving numerical model applying the
basic Navier–Stokes equation. In comparison to previous mod-
els of larger elastic arteries (Perktold et al., 1994; Formaggia et al.,
2001), the present model is concerned with micro-vessels in which
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the pulse-wave is practically absent due to the damping effect of
the upstream vascular tree. Hence the pressure decline across the
model is considered to be constant. The model adapts morphol-
ogy by defining structures (i.e., tissue regions and flow channels)
on the basis of local cell densities the latter of which can vary
in time. It includes supply and distribution of a general nutritive
substance consumed in the tissue at a rate depending on cell den-
sity. This “general” substance is transported through the system by
convection corresponding to blood flow in the living organism.
On a smaller length scale it is transported by diffusion. We fur-
ther introduced a general signaling substance as a messenger of
local conditions. This signaling substance is created in response to
critically low concentration of the nutritive substance and causes
adaptation of the flow channels so as to regain a more uniform
distribution of the nutritive substance in the tissue. As in vivo,
flow channels are affected by shear (Langille and O’Donnell, 1986;
Unthank et al., 1996; Matlung et al., 2009). This is mimicked in
the model where, in the absence of sufficient shear, cells at the
edge of flow channels expand spontaneously into the channel
lumen.

The set of generic equations representing known adaptation
mechanisms are composed of different terms. While these terms
are fixed, their related control coefficients influence the adaption
process, and initially this set of coefficients are globally optimized
to mimic the presence of a long-term evolutionary pressure on the
organism. Subsequently, with control coefficients remaining fixed
during the short-term processes, the system is allowed to adapt
dynamically to an imposed disturbance.

To test the adaption dynamics, a very simple model, consisting
of only two flow channels through a tissue region, is forced into
a highly un-favorable configuration, where the supply of nutrient
to a large fraction of the cells is insufficient. This is done by delib-
erately closing one of the flow channels. Subsequently the model
should be able to rearrange the structure so as to regain a more
even distribution of nutrient, and suppress the formation of the
signaling substance throughout the tissue.

THE MODEL
A central aim is to formulate the simplest possible two-
dimensional (2D) model while retaining central features charac-
terizing the microcirculation in vivo. Overall, the model consists of
a set of governing equations; in the following each equation will be
described, with emphasis on its relation to the known mechanics
governing vascular adaption.

INTRODUCTION OF THE MODEL VARIABLES
In the following “morphology” is identical to the structure of the
whole model system consisting of tissue regions (i.e., cells) and
flow channels (i.e., vessels).

These elements introduce the following model variables: a
scalar field-variable c, which is related to the distribution of cells,
since it can be imagined as the local mean volume-fraction of cells
at a given position. Consequently the upper value of c is limited by
the value 1. The concept behind c will be discussed further in next
subsection. The blood flow field is characterized by the 2D velocity
x, y-components u, v, and the corresponding pressure p. The local
concentration of nutrient is described by the scalar field-variable

a, which is convected through the channels by the blood flow, and
from here diffuses into the tissue. To further normalize the vari-
ables in the model, the inlet concentration a0 of a is set to the
value 1.

For the model to dynamically optimize its morphology, it needs
the presence of a signaling substance to distribute the information
about local “shortage-of-nutrient” to the surroundings, and this is
implemented as a scalar conc.-field m. By construction, the upper
value of m is limited by the value 1. Similar to a, m is transported
by diffusion within the tissue and primarily by convection inside
the flow channels.

BLOOD FLOW
In order to keep the model simple, non-Newtonian properties of
the blood have been ignored. Consequently blood was assumed to
behave as a simple, incompressible Newtonian fluid with constant
density ρ and viscosity η. Blood is forced through the flow-
channel(s) by a constant pressure gradient mimicking the decline
in pressure along the microvascular bed in vivo. Inside the flow
channels mass-transport is dominated by convection.

To model the damping of the flow as it passes through the
tissue capillary network, we imagine tissue regions (all regions
outside flow channels) as consisting of a porous material with
porosity imitating capillary density. Hence in regions where cap-
illary density is high, porosity is high, and vice versa. Porosity
is therefore inversely related to the volume-fraction of tissue-
cells (i.e., both parenchyma and stroma) in a given region. This
property is implemented in the governing flow equations by
introducing a Darcy damping force, i.e., a volume force, where
each fluid molecule is subjected to a force, proportional to the
flow-velocity, but acting in opposite direction of the flow so as
to damp the motion. The coefficient of this damping force, α,
can be viewed as the inverse of local permeability, i.e., low val-
ues enhance the ability of the flow to penetrate the tissue and
vice versa. In the tissue regions mass-transport is dominated by
diffusion.

Collectively, the governing equations for the flow become the
basic Navier–Stokes equation with the additional Darcy damp-
ing term (Eq. 1) together with the continuity equation for
incompressible fluids (Eq. 2).

ρ

(
∂ Eu

∂t
+ [Eu · ∇Eu]

)
= −∇p + η∇2

Eu − α (Er) Eu, (1)

∇ · Eu = 0, (2)

where ρ and η are fluid density and viscosity, respectively, and

where ρ
(

∂ Eu
∂t + [Eu · ∇Eu]

)
is the inertial term, −5p is the pres-

sure driving term, η∇2
Eu is the viscous dissipation term, and

where −α (Er) Eu is the Darcy damping term. The damping coef-
ficient is α (Er) = −αmax c , with αmax being the maximal damping
coefficient, i.e., in regions where the tissue is maximally dense.

DESCRIPTION OF MODEL LAYOUT
The model region, within which morphology is free to change
during the dynamic adaptation process, is confined within a rec-
tangular area, as illustrated in Figure 1. All exchange of blood
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FIGURE 1 | Schematic illustration of the model layout. The blue frame
marks the model region, where the dynamics takes place. Inlet- and
outlet-areas are marked by arrows. Vertical rectangles show the main and
secondary channel-configuration, used to initiate the dynamic adaptation of
the model. To set the overall size of the model, each initial channel is 4 µm
wide, and the model region measures 29×26 µm.

with the surroundings take place between one or two inlets at
the lower boundary of the model region and one or two out-
lets at the upper boundary. The blood is driven through the
model tissue by a constant pressure difference across the tissue
mimicking a fraction of the pressure gradient generated by the
heart in the mammalian vascular system. As shown in Figure 1
inlet and outlet regions for the flow channels extend beyond
the model area. This is done to ensure that as fluid enters or
leaves the model region, effects relating to the model boundary
itself is minimized. The pressure difference across the system
is only applied at the in- and outlet boundaries; all remain-
ing boundaries in the model are hard walls i.e., non-permeable
to blood or any other substance. To set the overall size of the
model, each initial channel is set to a width of 4 µm, with
an overall dimension of the rectangular model region being
29 µm× 26 µm.

SPECIES TRANSPORT
At any given time, morphology (i.e., tissue density and position of
flow channels) is the sole determinant of how blood flows through
the system. This happens through the action of the Darcy damping
term (Eq. 1) that efficiently damps any flow in the tissue regions.
Furthermore to reduce the complexity of the model, we do not dis-
tinguish between interstitial fluid and blood. Once the blood flow
is known, it affects the general transport equations, as shown in
Eq. 3, which take into account both mass convection and diffusion.

∂s

∂t
+ Eu · ∇s = Ds∇

2s + Rs , (3)

By replacing the general scalar s with one of the three
concentration-fields of the model: nutrient concentration a, the
concentration of signaling substance m, or the local mean cell
density c, the equation describes how the different species spread
through the model.

However, since cells have a fixed position in the tissue, the con-
vection term, Eu · ∇c , vanishes for the local cell density c. Still cells
are able to move slightly, mimicking cellular migration in vivo, as
expressed through the diffusive term, Ds∇

2c .

DYNAMICS ARISING FROM THE COUPLING TERMS RS

The actual system dynamics arise from the combined source/drain
terms Rs and their mutual couplings:

The nutrient uptake rate: Ra

The uptake rate of nutrients is chosen as simple as possible, that is,
making the uptake proportional to: the local cell density, a nutri-
ent uptake factor, Mf(a), and to an overall uptake rate constant ka,
collectively giving:

Ra = −ka c Mf (a) . (4)

Mf(a) plays an important role, both directly in the uptake rate
of the nutrient and as a critical parameter controlling the release of
the substance signaling insufficient flow. Mf(a) is defined as a nor-
malized version of the well known Hill-type expression (Murray,
1993) for enzyme kinetics:

Mf (a) ≡
an

K + an
, (5)

where K is the Hill constant, and where the Hill exponent n, equals
2 throughout. To better interpret the action of the Eq. 8 in a later
discussion of the model dynamics, we introduce a characteristic
“Hill-concentration” which is aH =

n
√

K , and which divides the
saturation at high concentration (a > > aH) from the power-law
dependence at low concentration (a < < aH).

Temporal change in cell density: Rc

The signaling substance m, is generated by metabolically stressed
cells, that is, cells exposed to insufficient concentration of a. The
overall effect of m is to diffuse out into the surroundings and
cause alteration of tissue morphology so as to ultimately achieve
an appropriate level of perfusion. We can decompose the direct
rate-of-change term Rc of the local cell density into two terms:

A cell growth term, kgrowthc2(1− c), which only depends on
the local cell density in a non-linear fashion, and whose effect is
to let cells grow continuously, both within tissue regions reach-
ing toward c = 1 and into the channel lumen, if cell growth is not
inhibited by the second term:

A shear rate term, kShearc m γ̇, whose primary function is to
open the tissue for transport of nutrients from nearby flow chan-
nels. This is done, as shown in Eq. 6, by incorporating m into the
rate equation controlling cell density and thereby making it active
only in situations where the signaling substance is released nearby.

Second, due to the mean field approach of the model, i.e., that
the micro-structure capillary network is modeled as a homoge-
neous porous material, shear stress arise only on the larger channel
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walls, and we can therefore limit the action of the shear term by
introducing a rough estimate of the shear stress c · γ̇, with the local
2D shear-flow rate γ̇. With appropriate rate coefficients we arrive
at the following expression:

Rc = kgrowthc2 (1− c)− kshear c m γ̇ , (6)

where the shear-flow rate γ̇ only depends on the local flow
characteristics:

γ̇ =

√
2

(
∂ ux

∂ x

)2

+

(
∂ ux

∂ y
+

∂ uy

∂ x

)2

+ 2

(
∂ uy

∂ y

)2

. (7)

Release- and decay-rate of the signaling molecule: Rm

Since the main purpose of the signaling substance is to respond
to insufficient perfusion, in this case signaled by an insufficient
concentration of the nutrient a, we introduce the following Stress
factor, 1− c Mf (a), the main determinant of the local production
of m. This factor is given by the difference between the ideal uptake
rate that is close to unity [as Mf (a0)≈ 1], and the actual uptake
cMf (a).

The next factor, 1−m(2−c)β, is denoted the Scavenger factor,
which acts to remove m as it reaches the channel lumen. Hereby
it dynamically relates m and c in order to obtain sharply defined
channel walls. Here the exponent β, which is larger than 1, sets the
m-c relation.

Combining these factors with an overall rate factor km c,
restricting the effect to tissue regions, the rate-of-change of the
signaling substance is given by:

Rm = km c
[
1− c Mf (a)

] [
1−m (2− c)β

]
. (8)

Figure 2 shows the action of the Scavenger factor,where convec-
tion and diffusion have been neglected i.e., studying the simplified
dynamics d m

d t = Rm , and where we assume m to be active, that is,
non-zero. Keeping c fixed, the arrows show the direction of change
in m that comes from the Scavenger factor alone. In the region A of
Figure 2, the value of m will decrease, while it will increase in the
region B. As a result, m and c will asymptotically be driven toward
the solid black zero-line at a final steady-state. The two other dot-
ted lines correspond to contours of the size of the Scavenger factor
equaling±1/2.

In order for the shear term in Rc to balance the growth term, a
small concentration of m has to be present throughout the mod-
eling region at all times, and this is ensured both by feeding the
model with a small inlet concentration of m (denoted m0) and by
the always non-zero generation of m from the “Stress factor” term
in Rm.

THE NUMERICAL IMPLEMENTATION
Numerical method
We have implemented the model into the commercial soft-
ware package COMSOL, where we solve the full dynamic adap-
tion process by a sequential use of both steady-state and time-
dependent partial-differential-equation solvers. This sequence is
described in more details in the section “Model evaluation”.

FIGURE 2 | Illustration of how the “Scavenger factor” in Eq. 8
dynamically creates a local relation between the variables c and m. As
a function of cell density c and the signaling substance concentration m,
the response from the “Scavenger factor” on the rate-of-change Rm, and
thereby on the dynamics of m, is shown by arrows. m and c will
asymptotically be driven toward the solid black zero-line in the final
steady-state. The two dotted lines correspond to contours of the size of the
Scavenger factor equaling ±1/2.

Consequences of solving the model numerically
It is important to take into consideration the method used for
solving numerically the time-evolution of the model (i.e., the
integration of the model). In general, an exact mathematical solu-
tion can only be found for simple models, whereas solving more
complex systems requires the use of approximate numerical meth-
ods. Numerical integration methods are inevitably associated with
small errors, which may accumulate or in other ways influence
and perturb the resulting solution. Hence, consideration should
be given to the potential consequences of the numerical method
itself.

In the present case when attempting to solve numerically
the system of equations presented earlier in this section, it is
soon realized that under certain conditions the solution may
become un-physical, with e.g., concentrations becoming negative,
which may in turn lead to false reactions-term values etc. in the
model.

A simple mathematical analysis of the dynamical model system
reveals that such flaws should not be possible, however, since the
numerical method introduces small errors to the field-variables,
a very low value of e.g., the concentration of a given species,
can result in a “jump” into a negative region. If the reaction by
the model to such un-physical values is to further enhance an
incorrect tendency, the model finally produces overall un-physical
behaviors1 (Strogatz, 1994).

1Actually, for the numerical method, at a given point in time, to further solve the
dynamics of the model, it has to evaluate the response from the model in the close
vicinity around the current solution, and it is this evaluation, which can reach into
un-physical regions of the model, and cause it to fail.
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In the following we show which measures are taken to prevent
such flaws.

The nutrient uptake factor: Mf(a)
The nutrient uptake factor, Mf(a), should in principle never be
evaluated for negative nutrient concentrations, but should this
happen, the original expression would result in a positive valued
Mf(a) that would drive a further downward. To prevent this, in
the actual implementation Mf(a) is split up, as shown below, such
that for negative values of a, it returns the value of a itself, thus
stabilizing the dynamics:

Mf (a) ≡
an

K + an
, a ≥ 0

Mf (a) ≡ a , a < 0.
(9)

Temporal change in cell density: Rc

Similarly for the nutrient uptake factor, the temporal change in
cell density Rc may be caught by negative values of the cell den-
sity c. As for Mf(a), in the actual implementation Rc is therefore
split up, depending on the sign of the cell density c, thus altering
the response from the “cell growth” term, while keeping the “shear
response” term fixed:

Rc = kgrowthc2 (1− c)− kshear c m γ̇, c ≥ 0,

Rc = −c − kshear c m γ̇, c < 0,
(10)

EVALUATION OF THE DYNAMICS
The dynamics of the model is constructed to be transient, such
that the temporal evolution of the model variables comes to rest
in a steady-state within a limited timeframe. This makes it pos-
sible to define a final state of the dynamics, characterized by a
specific channel morphology. This final channel morphology is
highly dependent on the given choice of model parameters (i.e., ka,
m0, β, K growth, K shear, and K ), which controls the influence of the
different coupling terms on the model dynamics. In that way, each
specific set of model parameters (fixed while solving the model
dynamics) uniquely controls the morphology of the final state,
since the model is always initiated from the same un-favorable
channel morphology.

As already mentioned, the best choice of model parameters are
found through an optimization procedure, mimicking a long-term
evolutionary pressure to maximize the fitness of the whole biolog-
ical entity in question. This optimization method is not linked to
the actual model dynamics, since it is based only on an evaluation
of the final steady-state performance.

The general way of determining performance within optimiza-
tion theory is to define an objective function Φ(u, γ), which
evaluates all the variables of the model, denoted by u, for a given
set of model parameters, denoted by γ, and returns a single scalar
number,which by convention has to be minimized during the opti-
mization procedure. To ensure that the model has sufficient time
to reach a final state, regardless of the configuration of the model
parameters, we terminate the temporal solution of the model at
t∞= 1331/3, which has been chosen two orders of magnitude
larger than the average transition time of the model dynamics,

and we can therefore specify the objective function further as
Φ[u(t∞),γ].

Based on the overall aim of the model to evenly distribute nutri-
tion in the tissue, a natural choice of objective function would be
to measure the average metabolic uptake rate Ra within the model
region, Ω, and thus use the objective function:

ΦRa [u (t∞) , γ] =
1

ka
〈Ra (t∞)〉Ω =

1

ka |Ω|

∫
Ω

Ra (t∞) dEr , (11)

where the brackets 〈. . .〉Ω denote an averaging over Ω.
As described in the following, the objective function ΦRa

alone does not guide the optimization procedure toward the best-
performing state. Therefore we introduce an additional objec-
tive function based on the presence of the signaling substance,
where we aim at minimizing the average squared concentration of
signaling substance:

Φm [u (t∞) , γ] =
〈
m2 (t∞)

〉
Ω
=

1

|Ω|

∫
Ω

m2 (t∞) dEr . (12)

It should be stressed that these objective functions only
evaluate the performance of the final state of the whole model
i.e., how well the model, at t = t∞, did recover from the initial un-
favorable channel morphology. This is reflected in the objective
functions, which measure mean properties throughout the whole
model region. In vivo, all tissues, both developing and mature,
have the potential to optimize vascular structure. Hence, although
the use of the objective functions evaluating this ability are here
limited to a small model region, they in principle apply to the
complete organism. This should not be confused by the fact that
the vascular adaptation during model dynamics is only based
on local stimuli, i.e., the short-range transport of the signaling
substance m.

The overall optimization procedure, i.e., finding model para-
meters that results in the best-performing final channel mor-
phology, consists of first using ΦRa until the global opti-
mum in the model parameter space is found2. At this con-
figuration the related model dynamics show signs of vas-
cular adaption, but as ΦRa favors large tissue regions at
the expense of sufficiently supplying these regions, we con-
sider this choice of model parameters as an intermediate step
toward the best performance of the model. Therefore, we
then continue the optimization using Φm toward a final opti-
mized set of model parameters, which are presented in the
Result section. Now that the optimization is guided by Φm it
ensures that the tissue becomes adequately supplied by nutri-
tion. The reason why Φm cannot be used exclusively through-
out the optimization procedure is that Φm has the trivial but
global optimum when all tissue is removed from the model
region.

2When optimizing such complex systems, it is in practice impossible to guarantee
the finding of a global optimum due to the existence of many false optima in the
parameter space, and therefore we will consider all such optima as good candidates
instead of claiming their global superiority.
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Table 1 | Model parameters for the best-performing model state, with

an identification of whether the parameters are fixed or allowed to

vary during the optimization procedure.

∆p 75 Fixed

ρ 103 Fixed

η 10−3 Fixed

αmax 2.5×1010 Fixed

ka 37.5 Fixed

m0 1.2×10−3 Fixed

km 71.14 Optimized

β 5.2 Optimized

Kgrowth 322.7 Optimized

Kshear 3.3 Optimized

K 10−2 Fixed

Da 1.5×10−9 Fixed

Dc 3×10−11 Fixed

Dm 6×10−10 Fixed

RESULTS
MODEL PARAMETERS
Even though the present model is best described as a concep-
tual model of dynamic vascular adaption, some of the phys-
ical model parameters, which are presented in Table 1, have
values that correspond to realistic values when given in SI-
units, e.g., the density and viscosity of water. Furthermore, the
following realistic model parameter values have been chosen:
Inlet/outlet channel widths (4 µm), the diffusion coefficient of the
nutrient (1.5× 10−9 m2/s)3, and the average blood flow-velocity
(∼1.5 mm/s (Zweifach and Lipowsky, 1977) resulting from the
choice of a fixed pressure drop across the model.

In order to keep the computational load manageable the model
region spans only 29 µm× 26 µm. For the imposed feedback
mechanisms that causes adaption to be realizable in such a lim-
ited region, the different reaction rates in the model is scaled up,
i.e., all adaptive responses in the model occurs within 10 time
units. Since we are investigating a conceptual model of dynamic
vascular adaption, the time-scale of the model has no real mean-
ing, and it therefore only serves to identify the chronology of the
dynamics.

Special attention has been paid to the three parameters ka,
m0, and K, which are fixed during optimization, as seen in
Table 1, but which could equally well be seen as parameters
free to change during optimization. They are fixed because
their impact on the model dynamics has been unambiguously
resolved during the analysis of the model response. Fixing these
parameters at well-chosen values decrease the dimensionality
of the optimization parameter space, and thereby dramatically
reduce the computational time needed in searching for the final
model parameters. To carry out most of the parameter opti-
mization, we use a direct bounded Nelder–Mead simplex method
(Nelder and Mead, 1965) implemented in Matlab (Lagarias et al.,
1998).

3This value is close to the measured diffusion coefficient of oxygen in tissue: 1.6 x
10-9 m2/s (Klitzman et al., 1983).

MODEL EVALUATION
As mentioned earlier, the way the model-generated adaption is
evaluated, is to change the state of the model from a favorable
state into a highly un-favorable state, and subsequently evaluate
how the model “recovers.”

Initial steady-state with two channels
To set the pre-initial state, where both channels are active, and
before the onset of dynamical changes, we fix the cell morphology
of the model to consist of dense tissue, except from the two free
channels, denoted the main and secondary channel (see Figure 1).
Keeping this configuration, and finding the flow-field for this con-
figuration, we further initiate this pre-initial state by obtaining the
steady-state distribution of the nutrition and signaling substance
field-variables a and m, i.e., solving the model system without
the presence of the temporal derivatives: ∂ a

∂ t ≡ 0 and ∂ m
∂ t ≡ 0.

The resulting model variables are presented in Figure 3, where
the three sub-figures shows the distribution of c, a, and m, respec-
tively, in gray-scale coded contour surfaces, ranging from white
(0) to dark gray (1)4, with black lines showing the stream-lines of
the flow-field5.

Two important properties are visible in the pre-initial state, as
shown in Figure 3. First there is a steady “consumption” of nutri-
ent by the tissue, as seen by the decrease in gray tone when going
downstream along the channels from the inlets and transversally
into the tissue (Figure 3B). Second, the signaling substance con-
centration is generally low, except from a small build-up in the
upper right corner of the model region, caused by slightly poorer
nutrition supply in that area (Figure 3C).

Dynamics from one channel
The actual dynamics begins by first closing the secondary channel
to the right, and then allow all model variables: u,v,p,c,a, and m to
vary in time according the dynamical equation-system. The gen-
eral adaption dynamics consists of three phases, with the related
time-scales t A, t B, and t C, as described in the following. Very early,
corresponding to model time t A≈ 2.5× 10−4, the only major
change is the blocking of the secondary channel,as seen in Figure 4,
as the nutrient, supplied by the secondary channel, has not yet been
consumed.

Once the nutrient in the right part of the model region has
been consumed, the tissue reacts by releasing the signaling sub-
stance, and at model time t B≈ 0.075, where the concentration of
the signaling substance reaches a maximum, the morphology is
already reacting to the presence of the signaling substance, grad-
ually changing such as to divert the transport of nutrient into the
“stressed”right part of the model region. This is shown in Figure 5.

This morphological adaption continues until all regions are
again sufficiently supplied. In turn, this brings the concentration of
signaling substance below the critical value, such that the dynamics
comes to rest in a final steady-state, as shown in Figure 6.

4It should be noted, that the saturated values in the contour plots are not shown in
pure black, but rather in dark gray, in order for the black solid streamlines to remain
visible even for saturated values.
5The following contour figures of model variables will not have scale-bars since the
variables by construction are normalized, and further, to emphasize that the model
is purely qualitative.
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FIGURE 3 | Model variables at the pre-initial state, where both channels are active as seen by the arrows. The three sub-figures (A–C), show the
distribution of c, a, and m, respectively, in gray-scale coded contour surfaces ranging from white (0) to dark gray (1), with black lines showing the stream-lines of
the flow-field.

FIGURE 4 | Model variables, now at the onset of the dynamics (model
time tA=2.5×10−4), where only one channel is active as seen by the
arrows. The three sub-figures (A–C), show the distribution of c, a, and m,
respectively, in gray-scale coded contour surfaces ranging from white (0) to

dark gray (1), with black lines showing the stream-lines of the flow-field. The
only major change compared to Figure 3 is the blocking of the secondary
channel, as the nutrient, supplied by the secondary channel, not yet has been
completely consumed.

FIGURE 5 | Model variables, now at the incident of maximum
signaling substance concentration (model time tB =0.075). The
three sub-figures (A–C), show the distribution of c, a, and m,
respectively, in gray-scale coded contour surfaces ranging from white

(0) to dark gray (1), with black lines showing the stream-lines of the
flow-field. The morphology is already reacting to the presence of m by
diverting the transport of nutrient into the “stressed” right part of the
model region.

MORPHOLOGICAL CHANGES
To investigate the coupling between release of the signaling sub-
stance, and the morphological changes, we sampled the temporal
variations of how the model field-variables changes along a hori-
zontally positioned cut centrally in the model region. In that way

we can let the vertical axis represent time, while the horizon-
tal axis is the x-coordinate along the model region and thereby
visualize the continuous change in model variables during the
evolution of the system, as shown in Figure 7. Here the varia-
tions of m is given by gray-scale coded contour surfaces in the
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FIGURE 6 | Model variables, now at the final steady-state of the model
dynamics

(
tc ≈ t∞ = 1331

3

)
. The three sub-figures (A–C), show the distribution

of c, a, and m, respectively, in gray-scale coded contour surfaces ranging from

white (0) to dark gray (1), with black lines showing the stream-lines of the
flow-field. The final stage of adaption, where the different regions are now
more evenly supplied.

FIGURE 7 | (A–C) Inserts of the cell distributions at different
model times, related to (D) A spatio-temporal plot of the
concentration of m given by gray-scale coded contour surfaces,
and showing the continuous dynamical adaption of the model,

sampled from the horizontal cut identified by the dashed line in
the inserts. In (D) the morphological change of the cell density is
illustrated by the solid black contour lines of cell density equaling
the value 1/2.

spatio-temporal plot (D), where the morphological change of
the cell density is illustrated by the solid black contour lines of
cell density equaling the value 1/2, and thereby representing how
the channel boundaries change with time. The three instances,
described earlier, are shown by the three dashed lines A–C in plot
(D), with the sampling cut position shown by dashed lines in insets

(A–C). To cover the large span in the different time-scales of the
model dynamics, we let the vertical axis be the logarithm of the
model time.

Going through the chronology of events shown in Figure 7 we
first see the closing of the secondary channel to the right, followed
by a build-up of the signaling molecule concentration. From then
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on, the figure illustrates the coupling between the critical presence
of signaling molecule m and the resulting dynamic adaption of
morphology, based on the following responses: the right side of
the main channel wall broadens into the surrounding tissue since
the high local concentration of m makes the shear rate term domi-
nate over the cell growth term in the Rc expression (Eq. 6). On the
other hand, the weak concentration of m let the cell growth term
take over such that the left channel wall expand into the chan-
nel lumen, and thereby keep the channel width fixed. During the
channel adaption, there is a weaker build-up of m on the left side,
but these concentrations never become critical, i.e., the two terms
retain their ratio, and therefore do not prohibit the expansion into
the channel lumen.

ROBUSTNESS OF THE MODEL
To ensure that the efficient adaptation dynamics is a robust fea-
ture of the model, and not just a fortunate coincidence for a single
model realization, we have tested the model response to the fol-
lowing perturbations: All the optimized parameters (km,β, kgrowth,
kshear) have been varied, and the best-performing state, as seen in
Figure 6, remained as final configuration within perturbations of
±5% from the values given in Table 1. Furthermore a ±5% vari-
ation of the parameter K and the Hill exponent n in Eq. 6 did not
change the final configuration. To test the numerical convergence
of the model at the best-performing state, we refined the mesh-size
of the triangular meshing from the original 7× 10−7 µm down to
2× 10−7 µm without any spatio-temporal change of the model
dynamics or in the final state.

CRITICALITY IN THE MODEL
An underlying premise in this work is that the evolutionary
pressure constantly adjusts the model parameters over long time-
scales, such as to optimize the adaption dynamics. With this
conceptual model, we are able to scan the model parameter space
around the final set of parameters, and it turns out that the
best-performing parameter-values lie close to abrupt transitions
in adaption performance. Passing through such transitions, the
corresponding final states of the adaption dynamics end up at
poorly performing channel configurations. Figure 8 shows the
parameter-plane spanned by kgrowth and kshear in the vicinity
of the best-performing parameter-value (bold black circle). All
evaluated parameters are represented by black dots, and colored
contour lines show the values of the objective function Φm, span-
ning from blue as the best-performing, lowest values up to the
red, poorest performing, highest values. Clear sharp transitions
are seen between the middle region of best performance and the
two “failure”-regions on both sides. To illustrate the types of fail-
ure, four inserts, showing the corresponding final cell density in
gray-scale, have been placed at each of the three regions plus at a
small area to the right of Figure 8 (indicated by an arrow), corre-
sponding to a local minimum of the objective function. Such local
minima exist throughout the parameter space, which complicates
the search for a global minimum.

To further visualize these transitions, Figure 9 shows the three-
dimensional (3D) objective “landscape”, which presents the same
data as in Figure 8, but now with Φm on the vertical axis. A
sharp transition is evident between the central “valley”, containing

FIGURE 8 | A contour plot of the objective function Φm as a function of
the model parameters kgrowth and kshear, in the vicinity of the
best-performing parameter-value (bold black circle). All evaluated
parameters are represented by black dots, and color-coding of the contour
lines span from best performance in dark blue to poorest performance in
dark red. Four inserts have been placed at each of the three regions, plus
one related to a local optimum. All inserts show the corresponding final cell
density in gray-scale.

FIGURE 9 |Three-dimensional surface of the objective function Φm as a
function of the model parameters kgrowth and kshear, which is another
visualization of the same data as presented in Figure 8. A sharp
transition is clearly seen between the central “valley”, containing the
best-performing state, in the objective landscape, and the surrounding
“cliffs”, marking the transitions to poorer performing states.

the best-performing state in the objective landscape, and the
surrounding “cliffs”, marking the transitions to more poorly per-
forming states. One should also note that the best-performing
region tilts slightly toward the right in Figure 9. This means
that the actual optimal parameter-value lies on the transition,
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and therefore that a pure optimization process of inconsiderately
moving toward better performance in parameters space would lead
to spontaneous failures. Although it remains speculative whether
it also applies to real-world systems, a consequence emerging from
the present conceptual model is that criticality may arise naturally
from the action of an evolutionary pressure.

Due to the relative simplicity of the dynamic model, it is possi-
ble not only to explain the existence of these profound transitions,
but also to argue for their position in the parameter-plane of
Figure 8. This can be done directly from comparing the mutual
action of the different terms of the model.

First we note that the two parameters spanning Figure 8, kgrowth

and kshear, each control one of the two terms that makes up Rc,
and that the morphological changes during the adaption dynamics
arise through a competition between the growth term, whose func-
tion is to increase the number of cells lining the channel lumen,
and the shear term, the function of which is to effectively sup-
press or reverse the same process in the presence of a sufficient
concentration of the signaling substance, m.

As the right balance between these two terms is crucial for the
specific sequence of events leading to the best-performing solu-
tion, a proportional shift of both parameters will maintain the
terms in balance, i.e., keep the solution and the final morphology
inside the central valley. In contrast, “off-diagonal” changes of the
parameters will favor one term at the expense of the other, and
ultimately either suppress the needed action of the weaker terms
and/or enhance the action of the dominating term, such that the
adaption dynamics ends up in a less favorable state. This unbalance
is illustrated in Figure 10, which is similar to Figure 7 except that
the model parameters now correspond to the poorly performing
state in the upper left region of Figure 8. By comparing the spatio-
temporal adaption dynamics of the two states, it is seen that the
poorer state is reached because the cells at the left channel wall fail

to spread into the channel lumen when needed, and thereby fail to
contribute to the overall channel translation. This defect is antic-
ipated for states in the upper left parameter space region, as this
shift both strengthen the shear term and weakens the growth term.
Similarly, the opposite shift in parameters leads to another type of
failure as seen in Figure 8, which can be explained by a similar
failure process, but now originating from a reverse unbalance of
the two terms.

DISCUSSION
The present model is not intended to represent any specific tis-
sue; rather it is aimed describing generic properties present in
most tissues in the mammalian body. We consider, as an approx-
imation, structures at two different length scales. On the smallest
length scale the tissue behaves like a porous medium. Structures at
this length scale are small compared to the rest of the system, (i.e.,
smaller than the flow channels mimicking larger vessels), hence we
consider the tissue with its constituents including capillary sized
vessels, as isotropic. Fluid percolates the tissue with a resistance
that depends on tissue density. In the model this flow does not take
place through well-defined channels but rather as a highly damped
flow through the medium. The physiological equivalent of this
description is blood flow through a fine capillary meshwork; with
tissue density reflecting capillary density. These latter vessels are
traditionally considered to be the primary site of exchange between
blood and tissue, although exchange does take place in other ves-
sels too (Pittman, 2005). During the adaptation process, tissue
density changes dynamically. Eventually though, due to the action
of Eq. 6, tissue density outside the large flow channels will increase
toward the value 1, as the system settles to a new steady-state.

The larger length scale represents the scale-order of regular
flow channels, i.e., vessels larger than capillaries. As the adapta-
tion proceeds, the porous medium is essentially “opened up” by

FIGURE 10 | (A) Final state and (B) center-cut-dynamics, similarly to
Figure 7, of the left, poorly performing state of Figure 8. A comparison
with the best-performing dynamics in Figure 7 shows that the poor

performance arises as the left channel wall does not regenerate, and
thereby does not give rise to the overall shift in the position of the
channel.
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such channels in places that were initially insufficiently perfused.
As a consequence, for a given pressure difference across the model
region, flow is delivered with increasing efficiency to all parts of
the tissue. At some point a balance is reached between the tissue
needs and the delivery of the nutritive substance. This causes the
production of the substance that signals insufficient flow, to be
reduced. In turn, further changes in flow channel topology are
suppressed. Eventually as steady-state is reached, the flow-channel
is meandering through of tissue. Tissue regions continue to behave
like a porous medium but as compared to the situation in Figure 5,
the flow-channel now come into sufficiently close contact with all
tissue region so as for diffusion to become an efficient mode of
mass-transport. As a consequence a and m become more (though
not completely) uniformly distributed (Figure 6).

In the present model we have assumed a certain demand from
the tissue (the “tissue need”) for a general nutritive substance,
without further specification of which substance(s) the tissue is
actually in need of. In vivo the tissue must be supplied with a large
number of substances including oxygen, food constituents, and
hormones, to mention a few. Although we chose to let the nutri-
tive substance represent something that is supplied to the tissue,
the removal of waste products such as, e.g., carbon dioxide or lactic
acid, is equally important, and could in principle have been used
in a similar manner to model a “tissue need”.

The consequence of a certain“tissue need”is that the supply sys-
tem must adapt dynamically until this need is met. The metabolic
turn-over in the tissue utilize the nutritive substance as it is trans-
ported through the tissue. Hence its concentration will in general
decline with dept inside the tissue, i.e., roughly exponentially with
distance from the supplying channels (please also see “Critique
of the model” below). We assume that for a wide range of flows
the cellular metabolism is independent of the flow rate, i.e., the
flow is sufficiently large to satisfy the tissue needs, both as regards
the supply of nutrients and as regards the removal of waste prod-
ucts. Below a certain local concentration of nutrient however, the
requirements of the tissue cannot be met. In that case different cel-
lular responses are elicited in vivo including a switch to anaerobic
metabolism, cellular hibernation, and ultimately tissue infarction.
Hence, cellular metabolism is in itself a function of a, but since the
abovementioned conditions represent more or less pathological
states in the tissue, it seems as if the supply system under normal
conditions will adapt so as to reach a capacity where metabo-
lism per se does not depend on the flow, i.e., flow is sufficient the
majority of time. These properties are expressed in the term for
the nutrient uptake rate (Eq. 4). The sigmoid shape of the nutrient
uptake rate (Eq. 4) induced by Mf(a; Eq. 5) reflects the dependence
of metabolism on the local availability of nutrients. This shape was
chosen arbitrarily though, and is not necessarily superior to other
similar functions that rise from zero to approach asymptotically a
certain maximum value [normalized to the interval (Lorthois and
Cassot, 2010)].

Production of the substance signaling insufficient flow follows
a similar pattern; as evident from Eq. 8 it is a function of the cellu-
lar metabolism, hence its production will essentially cease toward
zero as the tissue need is met. On the other hand will Rm increase
steeply when metabolism is low due to insufficient concentration
of a, i.e., at insufficient flow rates. In vivo insufficient perfusion

elicits a vast array of reactions in the tissue; however as was the
case for the lumped description of nutrients (Eq. 4), these reactions
was lumped into a single generic signaling function.

A central problem in the mammalian circulation is the regu-
lation of blood vessel diameter. For a physiologically reasonable
decline in pressure along a given vessel, it must be able to accom-
modate the flow needed by the downstream tissues. Similarly on
the venous side, a physiologically reasonable decline in pressure
must enable adequate drainage of the flow from a given tissue
region. Adaptation of vessel size to luminal flow is a well known
physiologic mechanism caused by sensitivity to walls-shear stress.
In the short run an increase in wall shear stress causes acute,
but fully reversible, vasodilatation (Pyke and Tschakovsky, 2005).
Sustained changes in wall shear stress on the other hand elicit
structural changes (Tulis et al., 1998), which could, at least in part,
be due to a persistent influence on the contractile state of the
smooth muscle cells of the vascular wall, leading to a “remold-
ing” of the extracellular matrix in the vessel wall (Pistea et al.,
2005; VanBavel et al., 2006). Increasing shear stress leads to lumi-
nal expansion of the vessel and vice versa (Tulis et al., 1998). These
changes are evident already after few days but the changes pro-
ceeds dynamically until a new equilibrium is established. As a
consequence vessels adapt structurally to accommodate the flow
needed by the tissue. A similar mechanism operates in the present
set equations (Eq. 6). The vessel wall is eroded in response to
increased shear, i.e., tissue porosity increases at the edge of the
flow channel. Similarly, a reduction in shear causes the surround-
ing tissue to expand into the channel lumen. Eventually, cell density
increases to its equilibrium value (i.e., close to 1) in tissue areas,
but is reduced to zero inside the channel lumen, giving rise to the
relatively sharp transition between tissue and flow channel seen in
Figure 6. Consequently in a given simulation, as shown in Figure 6,
flow channels will change position in the tissue and will expand
or shrink according to the amount of flow they carry in a given
direction which is in turn a function of the amount of tissue being
supplied.

CRITIQUE OF THE MODEL
As all other models the present has its limitations. Some of these
will be addressed in the following.

In the present model, flow is diverted to insufficiently perfused
regions by a morphological change of the flow channel. The flow
channel will change position and meander increasingly until it
is sufficiently close to all regions in the tissue. This behavior is
mimicking, but is probably not similar to, the same process taking
place in the in vivo system. In the latter case a change in the main
direction of a vessel is likely to take place rather by changing the
dimensions of vessels (i.e., by a luminal expansion in all direc-
tions) in the vascular segments connected in the direction where
more flow is needed. Similarly for vessel segments connected in the
direction where less flow is needed the individual vessel will expe-
rience luminal shrinkage from all directions. In the end though,
the results of the two different processes, simulated or in vivo, are
comparable, in that the new structure results in a better supply
to the tissue. Also the local processes acting on the vascular wall
(channel wall) are comparable, but the 2D formulation applied
here prevents the formation of branch point since cells can only
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grow from existing cells and the central part of the flow channel is
devoid of cells.

The discussion above points to a central limitation of the model,
namely that if the model area is to be extended to cover larger areas
it must be able to develop regularly branching vascular network
structures. This is not possible in the present 2D formulation; it
requires a shift to 3D in which case cells can grow into the channel
from the perpendicular direction without obstructing the flow.
The latter situation bear a resemblance to intussusceptive angio-
genesis in vivo (Burri et al., 2004). At present the huge increase
in computational load associated with a shift to a full 3D model
prevents this approach. Alternatively another initial state could be
applied in which for instance the model regions harbors an initial
dense network of flow channels which is subsequently pruned, or
in which vessel sprouting in some form can take place.

As visualized in Figure 6B, which shows the system in the final
configuration, the nutrient concentration, although much more
uniformly distributed than in the initial situation just after channel
closure, does not become high throughout the system. Ideally, as
the system reaches this final state, the general nutrient, a, should be
present in sufficiently high concentrations throughout the model
area to take the nutrient uptake rate into the saturating part of
Ra, i.e., resulting from a > > aH. This would result in a more or
less complete suppression of the production of m. It is however
clear from Figure 6B that this is not unequivocally the case in
the present model. Looking at the figure there are, in particular
in the downstream parts of the model region, areas where the
nutrient concentrations is low. This is mainly due to the unrealis-
tically fast reaction kinetics in the model, which are needed for the
adaption dynamics to function within the constrained dimensions
of the model region. In such a situation of insufficient nutrition

concentrations in the downstream parts of the flow channel, one
would expect a high concentration of signaling substance, and
indeed there exists a high production of m close to the outlet
channel, but the local concentration of m remains low due to its
diffusion into the channel lumen and subsequent scavenging and
removal by convection. In this way a steady-state can be reached
at simultaneously too low concentration of both a and m.

Finally an unrealistic situation may arise if the concentration of
nutrient comes very close to zero. If persisting for a certain period
this would in vivo correspond to tissue infarction, in which case
the tissue would be incapable of producing signaling substances.
Clearly, in this case the situation becomes more complex with cell
lysis, liberation of cellular constituents etc. Consequently, in the
present case we only consider situations where the concentration
of a is not close to zero.

CONCLUSION
In the present work, we have aimed at modeling adaption in
a small system to present the working principles of the model.
These principles can, with appropriate modifications, be extended
to operate on larger structures, and hence potentially be applied
to analyze the emergence and adaption of more complex net-
works. Two main conclusions emerge from the simulations: (1)
a simple model of local adaptation to local stimuli can lead to a
better tissue supply and (2) the optimal model structure tends
to end up close to critical transition zones in the parameter
space.
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