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Endothelial dysfunction is the hallmark of hypertension, which is a multifactorial disorder.
In the cardiovascular system reactive oxygen species play a pivotal role in controlling the
endothelial function and vascular tone. Physiologically, the endothelium-derived relaxing
factors (EDRFs) and endothelium-derived contractile factors (EDCFs) that have functions
on the vascular smooth muscle cells. The relaxation induced by the EDRFs nitric oxide
(NO), prostacyclin, and the endothelium-derived hyperpolarization factor (EDHF) could be
impaired in hypertension. The impaired ability of endothelial cells to release NO along
with enhanced EDCFs production has been described to contribute to the endothelium
dysfunction, which appears to lead to several cardiovascular diseases. The present review
discusses the role of oxidative stress, vascular endothelium, and vascular tone control by
EDRFs, mainly NO, and EDCFs in different models of experimental hypertension.
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Hypertension is a multifactorial disorder that involves many
mechanisms leading to risk factors for cardiovascular diseases.
Endothelial dysfunction is defined as the imbalance between
the production and bioavailability of endothelium-derived relax-
ing factors (EDRFs) and endothelium-derived contractile fac-
tors (EDCFs), associated with increased bioavailability of oxygen
reactive species (ROS) and decreased antioxidant capacity char-
acterized as oxidative stress. In this review we will discuss the
involvement of oxidative stress and vascular endothelium as well
as the importance of vascular tone control, relaxation, and con-
traction in hypertension.

NO is an important mediator released by endothelial cells.
It is produced by NO synthases (NOS), which convert L-
arginine and molecular oxygen to L-citrulline and NO, using
such co-factors as tetrahydrobiopterin (BH4), flavin-adenine-
dinucleotide, flavin-mononucleotide, and nicotinamide-adenine-
dinucleotide-phosphate (Thomas et al., 2008). The activity of
NOS is regulated by substrate, cofactor availability, and electron
transfer rate. The regulating factors such as arginine (Gornik and
Creager, 2004) and BH4 (Bevers et al., 2006) can be affected
by ROS that can lead to dysfunctional eNOS. As summarized
in the Figure 1, in pathological states involving oxidative stress
such as hypertension NOS could be uncoupled (Schulz et al.,
2008). L-arginine is the substrate for both enzymes, NOS and
arginase (Tousoulis et al., 2002). Zhang et al. (2004) showed
that the activity of arginase in the endothelial cells of coronary
arterioles is increased in hypertension, which impairs the NO-
mediated dilation. Similarly, as reported by Chandra et al. (2012)
peroxynitrite (ONOO−) and hydrogen peroxide (H2O2) increase
arginase activity/expression in the endothelial cells. This should
lead to NOS uncoupling with reduced NO production and aug-
mented superoxide anion (O−

2 ) production. As shown by Romero

et al. (2008), increased arginase activity in diabetes contributes
to vascular endothelium dysfunction by decreasing L-arginine
availability to NOS.

Endothelial dysfunction culminates in impaired
endothelium-dependent relaxation due to decreased vascu-
lar NO bioavailability caused by ROS consumption. The result
is ONOO− formation, lower NOS protein expression, or lack of
substrate or co-factor for NOS (Crimi et al., 2007). The eNOS
phosphorylation state can alter its activity; i.e., Akt-dependent
phosphorylation at Ser1177 (human) or Ser1179 (bovine) activates
eNOS (Fulton et al., 1999), while phosphorylation at Thr495

(human) or Thr497 (bovine) decreases its activation (Bouloumié
et al., 1997). H2O2 initially raises eNOS Ser1179 phosphorylation
and activity, in parallel with transient Akt activation (Hu et al.,
2008).

In vivo measurements of NO and H2O2 in the mesenteric
arteries of spontaneously hypertensive rats (SHR) revealed higher
baseline NO and H2O2 concentrations than normotensive rats
(Zhou et al., 2008). It is known that in resistance arteries more
than in conduit vessels, EDHF is an important control of vas-
cular tone. H2O2 has been shown to be a component of EDHF
in several vascular beds (Meurer et al., 2005; Shimokawa, 2010;
Prysyazhna et al., 2012).

Peroxynitrite can also activate eNOS by increasing basal and
agonist-stimulated Ser1179 phosphorylation, although it reduces
NO bioavailability and elevates O−

2 production (Zou et al.,
2002a). eNOS exposure to oxidants like ONOO− causes increased
enzymatic uncoupling and O−

2 generation in diabetes that con-
tributes to endothelial cell oxidant stress (Zou et al., 2002b).
Increased formation of ONOO− can inhibit prostacyclin synthase
(PGIS) (Wu and Liou, 2005) and impairs K+ channel activation
(Gutterman et al., 2005).
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FIGURE 1 | Sources of reactive oxygen species (ROS) and proposed mechanisms for their contribution to EDRFs and EDCFs releasing involved in the

control of vascular tone in isolated vessels from normotensive (A) and hypertensive (B) animals.

Increased ROS bioavailability, decreased antioxidant capacity,
or both occur in many models of hypertension such as SHR
(Suzuki et al., 1995), Dahl salt-sensitive (Swei et al., 1997), AngII-
infused rats (Laursen et al., 1997), renal hypertensive 2K-1C
(Rodrigues et al., 2008), and human hypertension (Vaziri, 2004).
In endothelial cells, the ROS producers are NADPH oxidase
(Rajagopalan et al., 1996), xanthine oxidase (Phan et al., 1989),
uncoupled NOS (Satoh et al., 2005), cyclooxygenase (COX) (Tang

et al., 2007), and mitochondria (Callera et al., 2006). The DOCA-
salt model present augmented oxidative stress caused by increased
NADPH oxidase activity, which accounts for enhanced O−

2 pro-
duction (Beswick et al., 2001). In 2K-1C rats, the increased
vascular O−

2 is secondary to a protein kinase C (PKC)-mediated
activation of NADPH oxidase (Heitzer et al., 1999). However,
eNOS activity is reduced by phosphorylation of the Thr495 residue
in the Ca2+/CaM binding domain by PKC (Mount et al., 2007).
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Mimicking of Thr495 dephosphorylation results in eNOS uncou-
pling and O−

2 production rather than NO generation (Lin et al.,
2003). However, whether the Thr495 eNOS phosphorylation site
is more phosphorylated in hypertension or contains uncoupled
eNOS remains unknown.

We have investigated the vascular mechanisms involved in
the vasorelaxation induced by NO donors that present potential
capacity to replenish vascular NO upon reduced NO bioavail-
ability. Most of the studies using NO donors are performed on
endothelium-denuded arteries to avoid interference of endoge-
nously produced NO (Bonaventura et al., 2004; Pereira et al.,
2011). Impaired 2K-1C rat aorta relaxation is endothelium-
dependent (Callera et al., 2004) or endothelium-independent
(Bonaventura et al., 2005). Vitamin-C normalized the impaired
relaxation induced by a NO donor in 2K-1C rat aorta that shows
the increased ROS production in the vascular smooth muscle
cells (Rodrigues et al., 2008). Interestingly, the endothelium can
contribute to the vasorelaxation induced by sodium nitroprus-
side (SNP) via NOS activation (Bonaventura et al., 2008). The
endothelium negatively modulates the vasorelaxation induced
by the complex (TERPY) in the rat aorta. BH4 supplementa-
tion reverses the effect of uncoupled NOS induced by TERPY
(Bonaventura et al., 2009).

The altered function of endothelial cells leads to enhanced con-
traction (Endemann and Schiffrin, 2004). The EDCFs released
under different stimuli include ET-1 (Taddei et al., 2003), some
prostanoids, and ROS (Tang and Vanhoutte, 2009). ET-1 acti-
vates ETA and ETB receptors. ETA receptors are expressed on
smooth muscle cells and promote contraction. ETB receptors
are located on endothelial and smooth muscle cells, with oppo-
site effects. Smooth muscle ETB activation evokes contraction,
whereas endothelial ETB activation induces relaxation (Taddei
et al., 2003). The imbalance in the expression of receptors
or increased ET-1 production can contribute to hypertension.
Hypertension associated with elevated levels of AngII leads to
high vascular ET-1 production (Dohi et al., 1992) as well as ROS
originated from NADPH oxidase (Touyz et al., 2002). Both fac-
tors are related to larger contractility in hypertensive rat resistance
arteries.

The SHR aorta exhibits a characteristic endothelial dysfunc-
tion that is not due to decreased EDRF release, but it is the result
of simultaneous EDCF release. Indomethacin, a non-selective
COX inhibitor, restores the blunted relaxation in SHR aorta
to the level of normotensive (Lüscher and Vanhoutte, 1986),
which suggests that this EDCF must be a product of the COX.
Endothelium-dependent contraction is reported in the rat aorta,
mesenteric and femoral arteries, and cerebral arterioles. It occurs
in healthy animals, but EDCF release is exacerbated by hyperten-
sion. Selective COX-1 inhibitors abolish endothelium-dependent
contraction in SHR aorta, while selective COX-2 inhibitors only
display modest responses (Tang and Vanhoutte, 2009).

Endoperoxides, PGI2, TXA2, and ROS are proposed as COX-
derived EDCFs. Increased endothelial [Ca2+]i is required to
evoke EDCF-mediated responses. Dysfunction in Ca2+ handling
within the endothelium is important for the exacerbation of
endothelium-dependent contractions in SHR aorta (Tang et al.,
2007).

Independent of the genesis of hypertension, specific ROS
such as H2O2 modify the vascular activity of NOS and COX
in concentration-dependent way (Cai et al., 2003; Gil-Longo
and González-Vásquez, 2005). In hypertension, ROS are involved
in augmented EDCFs and diminished EDRFs release. In the
L-NAME (Qu et al., 2010) and SHR (Félétou et al., 2009) mod-
els there is increased COX-derived production of contractile
prostanoids. Physiologically, PGI2 evokes vasorelaxation, whereas
in aging animals or SHR it induces contraction (Vanhoutte,
2011).

Inhibitors of COX (Taddei et al., 1997), NADPH oxidase
(Costa et al., 2009), and xanthine oxidase (Ellis et al., 1998) or
antioxidant agents such as Vitamin-C (Nishi et al., 2010) seem to
diminish ROS production and EDCFs generation.

In conclusion, the data presented in this work suggest that
decreased NO availability along with enhanced EDCFs produc-
tion contribute to the endothelium dysfunction and impaired
vascular relaxation in hypertension (Figure 1). Considering the
enormous progress in the area in the last years, this work
addresses the function of oxidative stress on the pathogenesis of
hypertension.
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