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Genotype-by-environment interaction (GEI) is an important phenomenon in plant breeding.
This paper presents a series of models for describing, exploring, understanding, and
predicting GEI. All models depart from a two-way table of genotype by environment
means. First, a series of descriptive and explorative models/approaches are presented:
Finlay–Wilkinson model, AMMI model, GGE biplot. All of these approaches have in
common that they merely try to group genotypes and environments and do not use other
information than the two-way table of means. Next, factorial regression is introduced as
an approach to explicitly introduce genotypic and environmental covariates for describing
and explaining GEI. Finally, QTL modeling is presented as a natural extension of factorial
regression, where marker information is translated into genetic predictors. Tests for
regression coefficients corresponding to these genetic predictors are tests for main effect
QTL expression and QTL by environment interaction (QEI). QTL models for which QEI
depends on environmental covariables form an interesting model class for predicting GEI
for new genotypes and new environments. For realistic modeling of genotypic differences
across multiple environments, sophisticated mixed models are necessary to allow for
heterogeneity of genetic variances and correlations across environments. The use and
interpretation of all models is illustrated by an example data set from the CIMMYT maize
breeding program, containing environments differing in drought and nitrogen stress. To
help readers to carry out the statistical analyses, GenStat® programs, 15th Edition and
Discovery® version, are presented as “Appendix.”
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INTRODUCTION: PHENOTYPE, GENOTYPE, AND
ENVIRONMENT
The success of a plant breeding program depends on its ability
to provide farmers with genotypes with guaranteed superior per-
formance (phenotype) in terms of yield and/or quality across a
range of environmental conditions. To achieve this aim, it is nec-
essary to have an understanding of the factors leading to a good
phenotype.

Usually the phenotype is the value for a trait at the end of the
growing season. The reason is that we are primarily interested in
phenotypes like yield or grain weight at maturity and not, or less,
in yield or grain weight at earlier stages. The final state of a trait is
the cumulative result of a number of causal interactions between
the genetic make-up of the plant (the genotype) and the condi-
tions in which that plant developed (the environment). Plants
differ in the efficiency and adequacy with which they capture and
convert environmental inputs and stimuli into the biomass and
organs that constitute a final product. The capture and conver-
sion abilities of a plant are determined by its particular ensemble
of genes. Environments differ in the amount and quality of inputs
and stimuli that they convey to plants including, e.g., the amount

of water, nutrients or incoming radiation. A primary objective in
plant breeding is to match genotypes and environments in such
a way that improved phenotypes are obtained. For example, a
breeder might be interested in selecting genotypes that do well
under water stress conditions.

While there can be genotypes that do well across a wide
range of conditions (widely adapted genotypes), there are also
genotypes that do relatively better than others exclusively under
a restricted set of conditions (specifically adapted genotypes).
Specific adaptation of genotypes is closely related to the phe-
nomenon of genotype-by-environment interaction (GEI). GEI
exists whenever the relative phenotypic performance of genotypes
depends on the environment, or in other words, when the dif-
ference in reactions of genotypes varies in dependence on the
environment.

To illustrate the phenomenon of GEI, we can consider two dif-
ferent genotypes that differ in the genetic machinery involved
in tolerance to water-limited conditions, while being equal for
all other characteristics. If these two genotypes are exposed
to a poorly watered environment, their performance will dif-
fer depending on the genetic properties related to tolerance for
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water-limited conditions. However, this genotypic difference will
disappear in an environment that provides the right amount of
water. So, the difference in performance between the two geno-
types depends on the environment, through the amount of water
that it provides.

Some scenarios that can occur when comparing the perfor-
mances of pairs of genotypes across environments are presented
in Figure 1. The function describing the phenotypic performance
of a genotype in relation to an environmental characterization is
called the “norm of reaction” (Griffiths et al., 1996). Figure 1A
shows the case where there is no GEI, the genotype and the envi-
ronment behave additively (this will be developed later) and the
reaction norms are parallel. The remaining plots show different
situations in which GEI occurs: divergence (Figure 1B), conver-
gence (Figure 1C), and the most critical one, crossover interac-
tion (Figure 1D). Crossover interactions are the most important

FIGURE 1 | Genotype-by-environment interaction in terms of changing

mean performances across environments: (A) additive model, (B)

divergence, (C) convergence, (D) cross-over interaction.

for breeders as they imply that the choice of the best genotype is
determined by the environment.

GEI was introduced in terms of the relative difference between
genotypic means. GEI can also be regarded in terms of hetero-
geneity of genetic variance and covariance, or correlation. As a
consequence of GEI, the magnitude of the genetic variance as
observed within individual environments will change from one
environment to the next. Often, the genetic variance tends to
be larger in better environments than in poorer environments,
although the opposite can be observed as well (Przystalski et al.,
2008). Figure 2A illustrates the phenomenon of heterogeneity of
genetic variance across environments, showing box plots for a
series of maize trials, where the range of variation in the poor
environments LN96a and LN96b is smaller than that in the good
environments HN96b and NS92a.

GEI has also consequences for the correlations between geno-
typic performances in different environments. When GEI is large,
the observed performance of a set of genotypes in one environ-
ment may not be very informative for the performance of the
same genotypes in another environment. Environments with sim-
ilar characteristics will induce corresponding responses in plants
and will lead to strong genetic correlations. Figure 2B shows that
the correlation between the similar environments IS92a and IS94a
is larger than the correlation between the dissimilar environments
NS92a and HN96b.

In conclusion, given the complexity of the mechanisms and
processes underlying the phenotypic response across diverse and
changing environmental conditions—frequently in an unpre-
dictable way—it is necessary to develop analytical tools to help
breeders understand GEI. The use of adequate strategies to ana-
lyze GEI is a first and important step toward more informed
breeding decisions. Good analytical methods are a prerequisite
for predicting the performance of genotypes as accurately as

FIGURE 2 | (A) Boxplot for yield of a maize F2 population in eight
environments displaying total range, interquartile range (box) and median
(line). Environment names are coded as: LN, low nitrogen; HN, high Nitrogen;
SS, severe water stress; IS, intermediate water stress; NS, no water stress.

The two digits indicate the year of the trial, and the letters a and b the
cropping season: a, winter; b, summer. (B) Scatter plot matrix for two
stress environments (IS92a, and IS94a) and two non-stress environments
(HN96b and NS92a).
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possible. This paper explores several strategies to model GEI,
starting with simple methods that have been historically popu-
lar within the plant breeding community. It then moves to more
elaborate models in which additional information is used in the
form of explicit environmental characterization to model GEI. A
final section is devoted to the integration of molecular marker
information into GEI models, leading to the detection of quanti-
tative trait loci (QTLs) and more specifically, to the modeling of
QTL by environment interaction (QEI). The statistical methodol-
ogy is illustrated using a maize data set obtained from a series of
drought and nitrogen stress trials from the maize breeding pro-
gram at Centro Internacional de Mejoramiento de Maíz y Trigo
(CIMMYT; the International Maize and Wheat Improvement
Center; Ribaut et al., 1996, 1997). To encourage readers to carry
out these statistical analyses themselves, GenStat® programs for
the 15th Edition (VSN International, 2012) and the Discovery®
version of this statistical package (Payne et al., 2007) are presented
as “Appendix.”

GENERATING DATA TO STUDY
GENOTYPE-BY-ENVIRONMENT INTERACTION
An obvious first step to investigate GEI is to obtain phenotypic
observations on a set of genotypes exposed to a range of envi-
ronmental conditions. The set of genotypes can include advanced
lines of a breeding program, cultivars, and segregating offspring
from a specific cross such as F2, a backcross, or a recombinant
inbred line (RIL) population.

Genotypes can be tested under different management regimes
that represent increasing levels of a particular stress, or a com-
bination of stresses. This type of experiment is called a “managed
stress trial” and is appropriate when the researcher wishes to focus
on a particular type of stress. When performing managed stress
trials, it is important to control the system in such a way that
all other factors influencing the phenotype are as homogenous
as possible.

Managed stress trials are not a default option in plant breed-
ing, because stress type and level can be difficult to implement
and because the relationship between phenotype and stress is
complex, with genes and environmental stress(es) interacting
throughout the various developmental phases. In those situations,
a common way for plant breeders to screen for genotypic reac-
tions to environmental factors is by “multi-environment trials”
(METs). In a MET, a number of genotypes are evaluated at a
number of geographical locations for a number of years in the
hope that the pattern of stresses that the genotypes experience is
representative of future growing environments.

A convenient way to summarize data from managed stress tri-
als and METs is in the form of two-way tables of means, with
genotypes in the rows and environments in the columns. Each
cell of such a table contains an estimate of the performance
(adjusted mean) of a particular genotype in a specific environ-
ment. To identify genotypes and environments unequivocally, we
use indices, the letter i for genotypes (i = 1 . . . I), and the letter j
for environments (j = 1 . . . J).

The models in the following sections will assume as a start-
ing point a genotype-by-environment table of means. These
models are used in a so-called two-stage strategy for analyzing

MET data. In the first stage, individual trials are analyzed with
models including terms for design features and spatial varia-
tion. From these individual trial analyses, adjusted means and
weights, usually reciprocals of the variances of the means, are
carried forward to the second stage, where a model is fitted to
the genotype by environment means, using either no weights or
weights estimated in the first stage. Various choices can be made
for the weights in a two stage analysis (Mohring and Piepho,
2009; Welham et al., 2010), and a good choice of weights will
lead to a two-stage analysis with results very close to those of
a so-called single stage analysis, in which plot data are analyzed
instead of means. Single stage analyses have certain theoreti-
cal advantages over two-stage analyses, but two-stage analyses
are logistically and computationally easier to handle. This paper
focuses on two-stage analyses, because of the small differences
with single stage analyses and the aforementioned larger handling
ease. Still, good descriptions of single stage analyses are offered
by Cullis et al. (1996a,b), Gilmour et al. (1997), and Smith et al.
(2005). In principle, the QTL mapping approach outlined later
in this paper could also be embedded in a single stage analysis
strategy.

CIMMYT MAIZE DROUGHT STRESS TRIALS: EXAMPLE DATA
The models to be presented here are illustrated using data pro-
duced by the maize drought stress breeding program of CIMMYT.
A brief description of the data is given here, a more detailed
description is available in the original publications (Ribaut et al.,
1996, 1997). A maize F2 population was generated by crossing
a drought tolerant parent (P1) with a drought susceptible one
(P2). Seeds harvested from each of 211 F2 plants formed F3 fam-
ilies, which were stored for further evaluation. The F3 families
were evaluated in managed stress trials in 1992, 1994, and 1996.
In the winter of 1992, a managed water stress trial was con-
ducted in Mexico, including no stress (NS), intermediate stress
(IS), and severe stress (SS). In the winter of 1994, a similar trial
was conducted, but it only included the IS and SS treatments.
In the summer of 1996, the families were tested in a nitrogen
stress trial with two levels: low (LN) and high nitrogen (HN). An
extra LN trial was conducted in the winter of the same year. In
total, the families were evaluated in eight different environments,
each environment characterized by year, stress type and inten-
sity, and management factors. DNA was extracted from each of
the 211 F2 plants to produce a total of 132 restriction fragment
length polymorphism (RFLP) markers covering the 10 maize
chromosomes.

MODELS FOR GENOTYPE-BY-ENVIRONMENT INTERACTION:
MODELING THE MEAN
THE ADDITIVE MODEL AS A BENCHMARK
The phenomenon of GEI is of primary interest in plant breed-
ing, and has resulted in a large body of literature on models
and strategies for analysis of GEI [see, for example, the reviews
in Cooper and Hammer (1996), Kang and Gauch (1996), van
Eeuwijk et al. (1996), van Eeuwijk (2006)]. A dominant feature of
strategies used to describe and understand GEI is a heavy reliance
on parameters that are statistical rather than biological. This is
no coincidence, since historically, a large part of quantitative
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genetics has relied on simple, yet very useful, statistical models. A
notorious example is the well-known model: P = G + E, where
P stands for phenotype, G for genotype and E for environment
(Falconer and Mackay, 1996; Lynch and Walsh, 1998). A statisti-
cal formulation of this model for a two-way table of means can be
written as:

μ
ij

= μ + Gi + Ej + εij. (1)

From here onwards, in the model formulations, random terms are
underlined to emphasize the fact that their effects are assumed to
follow a normal distribution. Model 1 describes the response vari-
able, that is, the mean of genotype i in environment j, μ

ij
, as the

result of the common fixed intercept term μ, a fixed genotypic
main effect corresponding to genotype i, Gi, plus a fixed envi-
ronmental main effect corresponding to environment j, Ej, and
finally the random term, εij, representing the error term, typically
assumed normally distributed, with a mean of zero and constant
variance, σ2; εij ∼ N(0, σ2).

Model 1 predicts that for any genotype the difference means
between any two environments j and j∗ will be equal to the dif-
ference in the environmental main effects: Ej–Ej∗ . Consequently,
the norms of reaction of genotypes will be parallel (Figure 1A).
Another important aspect is that, although the parameters in the
model suggest that something intrinsically genetic and something
intrinsically environmental is determining the trait, the genotypic
and environmental effects purely follow from a convenient way of
partitioning phenotypic variation from a statistical point of view.
In a balanced data set, the genotypic main effects can be estimated
from the average performance of the genotypes across environ-
ments. Rather than being something inherently genotypic, this
is dependent on the set of environments used in the experi-
ment. If a few environments are dropped, the genotypic effects
will change. The same argument applies to the environmental
main effects, which depend on the set of genotypes used in the
experiment.

The results of the fit of an additive model to the maize data set
are presented in Table 1. The results show that, according to the
F-test, there is a significant environmental and genotypic main
effect (the F statistic for environments equals 1466.5, and for
genotypes 5.3, both of which are highly significant: P < 0.001).
As just mentioned, environments are characterized by the aver-
age performance of the genotypes in the particular environment,
and the results indicate that the environments differ significantly
in their quality. In general, differences between environmental
main effects are significant, and from the breeder’s point of view,

Table 1 | ANOVA table for the additive model (model 1), as applied to

CIMMYT maize stress trials.

Term Degrees of

freedom

Sum of

squares

Mean

squares

F Probability

E 7 5679 811.2 1466.5 <0.001

G 210 614 2.9 5.3 <0.001

ε 1470 813 0.6

Total 1687 7106 4.2

this is not a major concern. Breeders want to concentrate on dif-
ferences between genotypes. A significant genotypic main effect
indicates that genotypes differ in their average performance across
environments, something certainly more interesting to breeders.
Finally, it should be mentioned that the residual ε in Table 1
corresponds to the discrepancy between the predicted genotype-
by-environment means from an additive model and the observed
means.

There are two reasons for the disagreement between the pre-
dicted values from an additive model and the observed means
for environment-specific genotypic performances: (1) an effect
proper to the particular combination of genotype and environ-
ment; and (2) experimental error. Model 1 can be extended with
an effect that is specific for genotype-by-environment combina-
tions, GEI, or a double-indexed term GEIij:

μ
ij

= μ + Gi + Ej + GEIij + εij (2)

When we are working on a two-way table of means, we cannot
straightforwardly separate GEI from error. For that, we would
need to develop a model based on plot observations. Use of model
2 implies estimation of as many parameters as there are genotype-
by-environment combinations, something that is not desirable in
the interest of parsimony. Another limitation of the model is that
it is not possible to estimate the genotypic performance in envi-
ronments that are not included in the trial. Accordingly, fitting
model 2 could tell us something about the amount of variation
due to genotypic main effects in relation to GEI, by comparing
sums of squares or mean squares, but it does not bring much
progress toward understanding GEI.

THE REGRESSION ON THE MEAN MODEL
A more attractive alternative is to extend the additive model
(model 1) by incorporating terms that explain as much as
possible of the GEI. A popular strategy in plant breeding is that
proposed by Finlay and Wilkinson (1963), which describes GEI
as a regression line on the environmental quality. In the absence
of explicit environmental information, the biological quality of
an environment can be reflected in the average performance of
all genotypes in that environment. Good environments will have
a high average genotypic performance, and bad environments
will have a low average genotypic performance. The GEI part
is then described by genotype-specific regression slopes on the
environmental quality, and the model can be written in the
following equivalent ways:

μ
ij

= μ + Gi + Ej + biEj + εij (3a)

μ
ij

= G′
i + b′

iEj + εij (3b)

Model 3b follows from model 3a by taking μ + Gi = G′
i and Ej +

biEj = (1 + bi)Ej = b′
iEj. Model 3b is easier to interpret because

it looks as a set of regression lines; each genotype has a linear
reaction norm with intercept G′

i and slope b′
i. The explanatory

environmental variable in these reaction norms is simply the envi-
ronmental main effect Ej. Model 3a shows more clearly how GEI
is captured by a regression on the environmental main effect,
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with the hope that as much as possible of the GEI signal will be
retained by the term biEj.

In the regression on the mean model, GEI is explained in terms
of differential sensitivities to the improvement of the environ-
ment, with some genotypes (the ones with larger values of bi)
benefiting more than others from an increase in environmen-
tal quality. Note that in model 3a, �bi = 0, so that the average
slope value is zero, while in model 3b the average value of b′ is
1, meaning that b′ > 1 for genotypes with a higher than average
sensitivity, and b′ < 1 for genotypes that are less sensitive than
average.

Table 2 gives the fit of model 3a to the maize example data.
The first two rows of the table, corresponding to the genotypic
and environmental main effects, are identical to Table 1. The third
row corresponds to the GEI effect in terms of the regression on
environmental quality, where quality is represented by the envi-
ronmental mean. This regression is highly significant, according
to the F-tests (F = 2.4, P < 0.001). The residual sum of squares
in Table 1 (SSε = 813) has been divided into a part explained by
genotypic sensitivities to environmental quality (SSb = 230), and
a residual (SSε = 583).

By way of example, the fitted reaction norms of five geno-
types (out of the full set of 211 genotypes) are given in Figure 3,
together with the parameters estimated according to the param-
eterization in model 3b (G′ and b′). Figure 3 shows that, in the
average environment, genotypes G025 and G045 are better than
G008, G012, and G016. The estimates for the parameters G′ can
be read-off from the plot as the fitted values at the null value of
the x-axis, i.e., the average environment indicated by the dashed
vertical line. Although G045 does slightly better than G025 in
the average environment, G025 is superior to G045 in the high-
quality environments. This is because G025 has a better ability to
exploit improved environmental conditions, which is reflected in
its higher genotypic sensitivity (b′

G025 = 1.27 > b′
G045 = 0.99). A

similar observation can be made for G008 vs. G012 and G016.
While G008 does relatively better in low quality environments, it
is clearly surpassed by G012 and G016 in the best environments,
since it is not capable of profiting from the better environmental
conditions (b′

G008 = 0.65, which is the lowest sensitivity among
the five genotypes).

In summary, the regression on the mean model describes GEI
in terms of parameters that can be given some biological mean-
ing. In addition, and in contrast with the full interaction model

Table 2 | ANOVA table for the regression on the mean model

(model 3), as applied to CIMMYT maize stress trials.

Term Degrees of

freedom

Sum of

squares

Mean

squares

F Probability

E 7 5679 811.2 1752.3 <0.001

G 210 614 2.9 6.3 <0.001

Heterogeneity
of slopes

210 230 1.1 2.4 <0.001

ε 1260 583 0.5

Total 1687 7106 4.2

(model 2), model 3 can be used to predict the performance of
genotypes in environments that were not present in the MET, as
long as the environment for which predictions are required can
reasonably be placed within the range of environments used in
the original MET. Nevertheless, the regression on the mean model
suffers from the fact that the environmental characterization is
based on a single dimension. Environmental quality can be hard
to summarize within a single explanatory variable. Therefore, a
substantial amount of GEI can remain unexplained. In the next
section, the regression on the mean model will be extended by
including multidimensional environmental characterizations in
the statistical model for the genotype-by-environment data.

THE ADDITIVE MAIN EFFECTS AND MULTIPLICATIVE INTERACTIONS
MODEL
The limitation of a single dimension in environmental character-
ization can be removed by employing a more flexible model, in
which more than one environmental quality variable is allowed.
A popular model of this type is the additive main effects
and multiplicative interaction (AMMI) model (Gollob, 1968;
Mandel, 1969; Gabriel, 1978; Gauch, 1988; van Eeuwijk, 1995).
To emphasize the similarities with model 3a, we write the AMMI
model as:

μ
ij

= μ + Gi + Ej +
K∑

k = 1

bikzjk + εij (4)

where the GEI is now explained by K multiplicative terms (k =
1 . . . K), each multiplicative term formed by the product of
a genotypic sensitivity bik (genotypic score) and a hypothet-
ical environmental characterization zjk (environmental score).
Although genotypic and environmental scores are deemed to rep-
resent genetic and environmental qualities, they come from a

FIGURE 3 | Finlay–Wilkinson regression curves of five maize

genotypes. The vertical line indicates the average environment. Next to
genotype labels, the corresponding Finlay-Wilkinson regression equation is
given.
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mathematical procedure, a principal components analysis on the
GEI (Gabriel, 1978; Gauch, 1988) that maximizes the variation
explained by the products of the genotypic and environmental
scores. The first product term is the one that explains most of
the variation, followed by the second one, and so on. This is
reflected in Table 3, which shows the results from the AMMI
model to the maize example data. In the AMMI model, GEI is
explained by two axes (principal component 1, PCA1, and princi-
pal component 2, PCA2) that are highly significant (F = 2.8 and
2.0 respectively, both with an associated P < 0.001). The first axis
(PCA1) explains the largest part (SSPCA1 = 242), the second one
explains a little less (SSPCA2 = 173), with a total explained sum
of squares for GEI of 242 + 173 = 415, an improvement over the
explained sum of squares in the regression on the mean model
(SSb = 230).

Table 3 | ANOVA table corresponding to application of AMMI2 model

(model 4) to CIMMYT maize stress trials.

Term Degrees of

freedom

Sum of

squares

Mean

squares

F Probability

E 7 5679 811.2 1752.3 <0.001

G 210 614 2.9 6.3 <0.001

PCA1 216 242 1.1 2.8 <0.001

PCA2 214 173 0.8 2.0 <0.001

ε 1040 398 0.4

Total 1687 7106 4.2

PCA1 and PCA2 are the principal component axes 1 and 2, respectively.

A desirable property of the AMMI model is that the geno-
typic and environmental scores can be used to construct powerful
graphical representations called biplots (Gabriel, 1978) that help
to interpret the GEI. Figure 4A presents a biplot for the maize
data. A first thing to recognize is that both genotypes and envi-
ronments are present in the same plot; genotypes are represented
by gray circles and environments by filled triangles (red, blue,
and black). The environments are typically represented as axes
intersecting at their origins. The origins represent the averages
for the trait in the corresponding environments. The triangles
point in the direction of increasing trait values. By projecting
genotypes on environmental axes, GEI for individual genotypes
is approximated. To help interpretation, environmental axes can
be enriched by including a scale (Graffelman and van Eeuwijk,
2005).

Biplots facilitate the exploration of relationships between
genotypes and/or environments. Genotypes that are more similar
to each other are closer to each other in the plot than geno-
types that are less similar. The same is true for environments.
Genotypes/environments that are alike tend to cluster together.
The angle between environmental axes is related to the correlation
between the environments. An acute angle indicates positive cor-
relation (e.g., between LN96a and LN96b), a right angle indicates
no correlation (e.g., between HN96b and NS92a), and an obtuse
angle indicates negative correlation (e.g., NS92a and LN96a). The
projection of a genotype onto an environmental axis reflects the
performance of that genotype in that environment (for GEI). For
example, genotype G091 projects on the NS92a axis above the ori-
gin, indicating a positive interaction with that environment i.e.,
the relative performance (GEI part) of G091 in NS92a is above the

FIGURE 4 | (A) Biplot from the AMMI model used to describe GEI in the
maize example data. Gray circles represent genotypes, and filled triangles
environments, with triangles pointing in the direction of increasing GEI
(at origin GEI = 0). The projection of two genotypes (G041 and G091) on
the NS92a axis is shown by a dashed line. (B) GGE biplot for the maize

data set, with same characteristics as of the AMMI biplot, except that
triangles point in the direction of increasing overall performance (G + GEI),
so the origin corresponds to the average performance of all genotypes in
the particular environment. Projections for genotypes G041 and G091 are
given.
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average of all genotypes in NS92a. Conversely, genotype G041 (on
the right hand side of the plot) projects below the origin on the
same axis, which points to a negative interaction with environ-
ment NS92a (i.e., G041 performs worse than average). Following
a similar procedure it is possible to conclude that while geno-
type G091 showed positive adaptation to environment NS92a, it
is not well adapted to environments LN96a and LN96b (the pro-
jection of G091 on the LN96a and LN96b axes falls below the
origin). Biplots are useful tools to investigate patterns in GEI,
because they can help to identify interesting genotypes that are
adapted to particular environments, and to classify environments
in groups.

Plant breeders are interested in the total genetic variation and
not exclusively in the GEI part. For that reason, it is useful to
have a modification of model 4 that considers the joint effects of
the genotypic main effect and the GEI as a sum of multiplicative
terms. Effectively, the two-way table of genotype-by-environment
means is exposed to a standard principal components analysis,
with genotypes as objects and environments as variables (Yan
et al., 2000). For this model, closely the same estimation and
interpretation procedures hold as for model 4. Because genotypic
scores now describe genotypic main effects G and GEI together,
this type of model is also known as the “Genotype main effects
and GEI model,” or “GGE model” and the biplots are called “GGE
biplots” (Yan et al., 2000). The model reads:

μ
ij

= μ + Ej +
K∑

k = 1

bikzjk + εij (5)

The results of model 5 fitted to the maize data are presented in
the form of a biplot in Figure 4B. GGE biplots approximate over-
all performance (G + GEI). This is in contrast to AMMI biplots,
Figure 4A, that approximate only the GEI part of the phenotype.
Figure 4B shows the high yielding genotypes concentrated on the
right hand side of the biplot, with their projections on environ-
mental axes covering the above average range (for example, G091
projects above the origin in NS92a, whereas G041 is found below
the origin). In contrast, low yielding genotypes (as G041) are con-
centrated on the left hand side of the biplot (projects below origin
in most of the environments).

FACTORIAL REGRESSION MODELS
The models discussed so far assumed that we do not have explicit
information about the environments. While such models can be
useful to explain GEI, the biological interpretation of their results
is not always obvious. What do hypothetical environmental
variables, as in AMMI, mean in terms of quantifiable environ-
mental characteristics such as temperature, water, nutrients
etc? A straightforward approach is to correlate environmental
scores with environmental covariables. However, if we do have
explicit information about the environment, the information
can be used directly in the model by including it in the form
of explanatory variables. GEI is then described as differential
genotypic sensitivity to explicit environmental factors such as
temperature, precipitation, water availability etc. Such models are
known as factorial regression models (Denis, 1988; van Eeuwijk
et al., 1996). Two examples of factorial regression models are

given here. Model 6a includes a single environmental covariable,
while model 6b includes multiple environmental covariables:

μ
ij

= μ + Gi + Ej + biZj + εij (6a)

μ
ij

= μ + Gi + Ej +
K∑

k = 1

bikZjk + εij (6b)

Models 6a and 6b look very similar to models 3a and 4, but there
is a substantial difference between them. In models 6a and 6b, Zj

represents an explicit environmental covariable and not a hypo-
thetical environmental covariable as in models 3a and 4 (note that
Z is capitalized to highlight this difference). This distinction is
critical since the interpretation of the GEI in models 6a and 6b is
automatically placed into a biological context. Instead of describ-
ing GEI as differential reactions to hypothetical environmental
covariables, factorial regression models help to identify genotypes
that are differentially sensitive to changes in identified environ-
mental quality components, for example, in a particular nutrient,
or in water availability.

Table 4 shows the results of a factorial regression model fitted
to the maize example data, in which GEI is explained by differen-
tial genotypic sensitivities to the minimum temperature during
flowering (minTF, F = 1.7, P < 0.001) and to the amount of
radiation during grain filling (radiationGF, F = 1.2, P ≤ 0.038).
In many cases, different combinations of explanatory variables
could produce closely similar models in terms of the amount
of explained GEI. Therefore, to arrive at biologically meaningful
models, it is crucial to combine statistical criteria for model selec-
tion with physiological knowledge about the trait that is involved
(Voltas et al., 1999a,b, 2002).

MIXED MODELS FOR GENOTYPE-BY-ENVIRONMENT
INTERACTION: MODELING GENETIC VARIANCES AND
COVARIANCES
In the introduction, it was mentioned that GEI can be regarded
both in terms of differential mean responses across environments
and in terms of heterogeneity of genetic variation and covaria-
tion between environments. While the models considered so far
focus on modeling the mean response, the models in this section
focus on the modeling of GEI in terms of heterogeneity of vari-
ances and covariances. This section switches to the framework of
so-called mixed models. We concentrate on the main character-
istics of a few, relatively simple yet powerful, mixed models that

Table 4 | ANOVA table corresponding to application of a factorial

regression model (model 6) to CIMMYT maize stress trials.

Term Degrees of

freedom

Sum of

squares

Mean

squares

F Probability

E 7 5679 811.2 1752.3 <0.001
G 210 614 2.9 6.3 <0.001
G.minTF 210 172 0.8 1.7 <0.001
G.radiationGF 210 124 0.6 1.2 ≤0.038
ε 1050 517 0.5

Total 1687 7106 4.2
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can be used to model GEI in terms of heterogeneity of variance
and covariance. A more detailed description of mixed models can
be found in the literature elsewhere (Verbeke and Molenberghs,
2000; Galwey, 2006).

The models discussed in the previous sections were all exam-
ples of fixed effects models, with all terms except the residual term
fixed. However, genotypes can be regarded as a random sample
from a larger population (especially easy when the number of
genotypes is large, say more than 10), in which case genotypes
are an extra source of random variation. This situation calls for
a mixed model, with genotypes taken as random term. A review
of the use of mixed models to analyse complex data sets in plant
breeding can be found in Smith et al. (2005). For the maize exam-
ple data set, there are 211 genotypes. When the genotypic main
effects are taken as random, the following mixed model equivalent
of the additive model can be defined as:

μ
ij

= μ + Gi + Ej + εij (7)

Gi ∼ N(0, σ2
G) εij ∼ N(0, σ2

ε )

The term Gi is underlined to indicate that it is a random term;
its distribution needs to be specified, and usually is taken to
be normal, with zero mean and a variance specific to the term.
Model 7 contains two variance components, one corresponds
to the random genotypic main effects, σ2

G, and a second one,
σ2

ε , corresponds to the residual (which includes true GEI and
error). An important consequence of including genotypes as ran-
dom is that automatically genetic covariances and correlations
between performances in different environments are imposed.
The total variance for individual genotypic observations in a par-
ticular environment j, σ2

j , is the sum of two sources of variation:

σ2
j = σ2

G + σ2
ε . The covariance between observations for a par-

ticular genotype in environments j and j∗, σjj∗ , following from

model 7 is: σjj∗ = σ2
G. For observations on different genotypes

σjj∗ = 0. In model 7, similarities (or covariation, and therefore
correlation) between observations made on the same genotype
in different environments are assumed to be positive, but covari-
ation between observations on different genotypes (regardless
whether the observation is done in the same or in different envi-
ronments) is assumed to be zero. Model 7 is referred as the
compound symmetry model (Verbeke and Molenberghs, 2000).

The general definition for a correlation between two traits, or
two environments, x and y is:

r(x; y) = covariance(x; y)√
var(x)

√
var(y)

Model 7 imposes a constant correlation between environments,
with the correlation between any pair of environments j and j∗
(for clarity, we write Envj and Envj∗ when referring to those
environments), being equal to:

r(Envj; Envj∗ ) = σjj∗√
σ2

j

√
σ2

j∗
= σ2

G√
σ2

G + σ2
ε

√
σ2

G + σ2
ε

= σ2
G

σ2
G + σ2

ε

Although mixed models can be fitted by standard least squares
procedures in the case of balanced data, a more general method of

inference to fit mixed models is by residual maximum likelihood,
or REML (Patterson and Thompson, 1971). Results of analyses
based on REML are presented in another way than the famil-
iar ANOVA tables. Table 5 shows the results obtained by fitting
mixed models to the maize example data.

Table 5 does not contain sums of squares, nor mean squares.
Instead, there is a table with three main sections. For model 7, the
compound symmetry model, one section contains the results for
testing fixed model terms (header Fixed terms). A second section
shows the estimates for the variances of the random terms (header
Random terms), and a third section a goodness-of-fit statistic, the
deviance, that can be used to compare mixed models with equal
fixed terms and differing random terms (header Deviance). For
the fixed effects (environments in this case), Table 5 shows a Wald
test statistic, the corresponding degrees of freedom (DF), and a
P value. The Wald test statistic is used to assess the significance
of fixed effects in the REML mixed model framework. Under the
null hypothesis of no fixed effects, the Wald test has a distribution
that is approximately a Chi-square with DF equal to the num-
ber of independent effects for the particular fixed term. In the
maize example, the Wald test statistic for environments is 10,265.3
and it has 8 − 1 = 7 degrees of freedom. This Wald statistic has a
very low tail probability in the Chi-square distribution under the
null hypothesis of no environmental effects (P < 0.001). So, it is
concluded that there is a significant difference between environ-
ments. Some statistical packages, including GenStat®, can provide
an F-distributed approximation to the Wald statistic.

The estimates of the two parameters associated to the ran-
dom terms in the model: σ2

G = 0.297 and σ2
ε = 0.553 are given in

the second part of Table 5. The magnitude of the variance com-
ponents can be compared to have an impression of the relative
importance of genotypic main effects (σ2

G) in relation to the sum
of GEI and error (σ2

ε ). The genetic correlation between any two
environments is estimated as:

r(Envj; Envj∗ ) = 0.297

0.297 + 0.553
= 0.349

The last row in Table 5 presents the deviance (equal to −2 times
the restricted loglikelihood), which is a measure of how well the
model fitted to the data. The better the model, the lower the
deviance is. As will be seen later, the deviance can be used to
compare different models to select the best model for the data,
provided that the fixed part of the model remains unchanged.

Model 7 assumes a constant genetic variance and correlation
between pairs of environments. For METs, the assumption of
constant genetic variance and genetic correlation across environ-
ments is unrealistic (Figure 2A). In the presence of GEI, a more
realistic model would allow the total genetic variance to change
from environment to environment, which will in turn, cause
heterogeneous genetic correlations between environments:

μ
ij

= μ + Gi + Ej + εij (8)

Gi ∼ N(0, σ2
G) εij ∼ N(0, σ2

εj
)

In model 8, there is still a single genetic variance component for
genotypes, and therefore, a constant genetic covariance between
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Table 5 | REML output of the fit of different mixed models to the CIMMYT maize stress trials.

Model 7 Model 8 Model 9

Fixed Wald (DF ) P Fixed Wald (DF ) P Fixed Wald (DF ) P

E 10265.3 (7) <0.001 E 9759.4 (7) <0.001 E 6268.8 (7) <0.001

Random Estimate SE Random Estimate SE Random Estimate SE

σ2
G 0.297 0.036 σ2

G 0.125 0.017 σ2
C1 0.439 0.053

σ2
ε 0.553 0.020 σ2

ε1 0.551 0.057 σ2
C2 1 –

σ2
ε2 0.692 0.071 σ2

C3 0.042 0.013

σ2
ε3 1.399 0.140 σC1C2 0.551 0.077

σ2
ε4 0.672 0.069 σC1C3 0.109 0.019

σ2
ε5 0.704 0.072 σC2C3 0.115 0.032

σ2
ε6 0.135 0.018 σ2

ε1 0.446 0.051

σ2
ε7 0.152 0.019 σ2

ε2 0.445 0.052

σ2
ε8 0.761 0.078 σ2

ε3 0.736 0.169

σ2
ε4 0.428 0.050

σ2
ε5 0.508 0.057

σ2
ε6 0.145 0.018

σ2
ε7 0.138 0.017

σ2
ε8 0.740 0.080

Deviance (DF ) 1077.9 (1678) Deviance (DF ) 838.4 (1671) Deviance (DF ) 619.9 (1667)

Model 7 assumes compound symmetry, model 8: assumes heterogeneity of genetic variance across environments, and model 9 assumes heterogeneity of genetic

covariance between groups of environments and heterogeneity of genetic variance across individual environments. Environments are indexed as: 1 = SS92a, 2 =
IS92a, 3 = NS92a, 4 = IS94a, 5 = SS94a, 6 = LN96a, 7 = LN96b, 8 = HN96b. Groups of environments are indexed as: C1 = SS92a, IS92a, IS94a, SS94a, HN96b;

C2 = NS92a; C3 = LN96a, LN96b.

environments. However, the variance for the term εij that includes
GEI and error, is assumed to depend on the environment (i.e.,
the variance component σ2

εj is indexed by j). Table 5 presents the

results of fitting model 8 to the maize data. Instead of two vari-
ance components, there are now nine, one corresponding to the
variance component for genotypes (σ2

G = 0.125), and eight cor-
responding to a form of GEI for each of the eight environments
(for convenience, we assume constant errors). The heterogene-
ity of variance for εij reflects that in some environments there is a
larger variation (e.g., in environment 3, which is the high-yielding
NS92a) than in other environments (e.g., in environments 6
and 7, which are low-yielding, LN96a and LN96b). The hetero-
geneity of variance leads to heterogeneous genetic correlations
between environments. For example, the correlation between
environments 6 and 7 is:

r(Env6; Env7) = 0.125√
0.125 + 0.135

√
0.125 + 0.152

= 0.466

and between environments 3 and 6 is:

r(Env3; Env6) = 0.125√
0.125 + 1.399

√
0.125 + 0.135

= 0.199

In conclusion, model 8 accommodates heterogeneity of variance
between environments and, with it, allows for heterogeneous
correlations between environments, which can be desirable when

analyzing environments that strongly differ (e.g., with strong
stress and without stress).

The deviance for model 8 is 838.4 with 1671 DF, which
is much lower than the one for model 7 (deviance 1077.9
with 1678 DF). The deviance has dropped, but at the expense
of having to estimate more parameters (nine instead of two
parameters). Is the decrease in deviance large enough to con-
sider model 8 a significant improvement over model 7? Because
model 7 and 8 are nested models (model 7 is a special case
of model 8 when the σ2

εj are equal for all j), a deviance test

can be used to answer this question. Under the null hypoth-
esis of no difference in quality of the fits, the difference in
deviance between the two models is Chi-square distributed with
the number of DF equal to the difference in the number of
parameters between the models. In the example, the difference
in deviance is 1077.9 − 838.4 = 239.5, and the models differ by
seven parameters. The P value associated to 239.5 in a Chi-square
distribution with 7 DF is very small (P < 0.001), so it is con-
cluded that model 8 provides a significant improvement over
model 7.

In cases where the models are not nested, the comparison
can be done by the Akaike Information Criterion (AIC) (Akaike,
1974). For model 7, AIC = 4170, and for model 8 AIC = 3944.
The model that has the lowest AIC value is the one that is cho-
sen. Model 8 has the lowest AIC value, which agrees with the
conclusion based on the deviance test.
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Model 8 assumes heterogeneous variances across environ-
ments, in combination with a constant covariance between envi-
ronments. This latter assumption can be relaxed by also allowing
the genetic covariance between environments to be heteroge-
neous. A possibility is to estimate a covariance parameter for each
pair of environments, producing a variance-covariance model
that is referred to as the “unstructured model” (Verbeke and
Molenberghs, 2000). A somewhat simpler strategy consists of esti-
mating covariances between groups of environments instead of
between individual environments, in which the environments are
first grouped in a number of clusters and then fitting the following
model:

μ
i(c)j

= μ + Gi(c) + Ej + εi(c)j (9)

Gi(c) ∼ N(0,�c) εi(c)j ∼ N(0, σ2
εj
)

In model 9 a random genetic main effect is fitted that changes
between groups of environments and that has a covariance matrix
�c that consists of group specific genetic variances, with σ2

cj for

group j, on the diagonals, and pairwise-specific genetic covari-
ances, with σcjj∗between groups j and j∗, on the off-diagonals.
Model 9 retains the residual heterogeneity of model 8, which
means that environment specific genotypic effects are added to
group specific genotypic effects. To illustrate model 9, using the
maize example, and based on Figure 4, the environments were
clustered in three groups: group 1 = (SS92a, SS94a, IS92a, IS94a,
HN96b), group 2 = (NS92a), and group 3 = (LN96a, LN96b).
Therefore, the covariance matrix �C will contain on the diago-
nal the genetic variances for groups 1, 2, and 3 (σ2

c1, σ2
c2, and σ2

c3
respectively), and on the off-diagonals the covariances between
the groups (σc12, σc13, and σc23). The full covariance matrix can
be written as:

�C =
⎛
⎝

σ2
c1

σc12 σ2
c2

σc13 σc23 σ2
c3

⎞
⎠

The results of fitting model 9 to the maize data are presented in
Table 5, where the estimates of the parameters in the covariance
matrix �C can be found.

The diagonals of �C show that, on average, the genetic vari-
ation is lower in group 1 (the group of nitrogen stress environ-
ments) than in group 2. It should be noted that because group 3
is composed of a single environment, the genetic variation can-
not be partitioned into a component due to the group and a
residual, so σ2

c3 is not estimated but arbitrarily fixed to 1. The
total variance in each of the environments is equal to the sum
of the group’s variance plus the environment-specific variance.
For example, the variance in environment 1 is equal to 0.885,
which is the sum of the variance of group 1, i.e., σ2

c1 = 0.439, and
σ2

ε1 = 0.446. Recalling that the covariance between environments
within the same group is given by σ2

c1, σ2
c2 and σ2

c3, and the covari-
ance between environments in different groups by σc1c2, σc1c3,
and σc2c3, the correlation between any pair of environments can
be estimated. For example, the correlation between environments
1 and 2 is:

r(Env1; Env2) = 0.439√
0.439 + 0.446

√
0.439 + 0.445

= 0.496

and between environments 1 and 7 is:

r(Env1; Env7) = 0.109√
0.439 + 0.446

√
0.042 + 0.138

= 0.273

Finally, the deviance can be used to evaluate whether the
allowance for heterogeneity of covariance between environments
improved the quality of the model or not.

The deviance for model 9 is 619.9 with 1667 DF, and the
difference in deviance with model 8 is 218.5, with four extra
parameters. The associated P value for 218.5 in a Chi-square
distribution with 4 DF is very low (P < 0.001), so it can be con-
cluded that model 9 is a significant improvement over model 8.
For model 9 AIC = 3736, which is smaller than for model 8
(AIC = 3944), and confirms this conclusion.

We have presented different mixed model formulations to
model GEI in terms of heterogeneity of variance and covariance
between environments. The compound symmetry model, which
is the commonly used default model when fitting a mixed model
to a two–way table of means, forces variances and covariances to
be constant across environments. Two alternative models accom-
modated either heterogeneity of genetic variances across envi-
ronments, or heterogeneity of genetic variances and covariances
across environments. There are other useful variance-covariance
models such as the factor analytic (Malosetti et al., 2004; Boer
et al., 2007) that combines flexibility with parsimony (reduced
number of parameters), but their discussion is outside the scope
of this paper.

The analysis of a data set is an iterative process consisting
of fitting and comparing alternative models to identify a good
model for the data under study. That process has been illustrated
with a maize data set. The next section goes one step further in
the modeling process by including molecular marker informa-
tion, with the ultimate objective of identifying genomic regions,
QTLs, that underlie genetic variation of quantitative traits. Within
the context of METs, the use of such models is a powerful
tool to identify and understand the genetic basis of GEI, that
is, QEI.

QTL MAPPING IN THE CONTEXT OF MULTI-ENVIRONMENT
TRIALS: MODELING MAIN EFFECT QTLs AND
QTL-BY-ENVIRONMENT INTERACTION
So far, we discussed models that use either implicit or explicit
environmental characterizations to understand GEI. We switch
in this section to the use of explicit genotypic information in
the models describing GEI. Use of such information in sta-
tistical models for GEI can help understand the basis of GEI
in terms of the action of genome regions, QTLs, in their
dependence on the environment, i.e., QEI. Molecular marker
systems (RFLP, AFLP, DArT, SSR, SNP) provide information
about variation at the DNA level that can be employed in
statistical models. For example, within the framework of fac-
torial regression models, markers can serve as explanatory
variables, which is at the core of regression–based approaches for
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QTL mapping (Haley and Knott, 1992; Martínez and Curnow,
1992).

Elaborating upon factorial regression ideas, the following sec-
tion presents mixed models that can accommodate explicit geno-
typic information to describe GEI in terms of QTL and QEI
effects (Malosetti et al., 2004; Boer et al., 2007; van Eeuwijk et al.,
2007, 2010). The genotypic information stemming from mark-
ers is introduced in the statistical models in the form of so-called
genetic predictors. Applications of mixed model QTL by envi-
ronment detection as the one described here, can be found in
wheat (Mathews et al., 2008), sugar cane (Pastina et al., 2012),
and sorghum (Sabadin et al., 2012). We should emphasize, that
although we focus on QTL models applied to standard biparental
populations, these models can be adapted rather easily to multi-
parental populations (van Eeuwijk et al., 2010; Huang et al.,
2011), or association mapping panels (Malosetti et al., 2007; van
Eeuwijk et al., 2010).

While here we focus in this paper on mixed model QTL detec-
tion, this is certainly not the only method for multi-environment
QTL mapping. A well known and common alternative is to use
mixture model approaches (Jiang and Zeng, 1995), for which
various user-friendly QTL software packages exist (e.g., QTL
Cartographer, Basten et al., 2002). However, such QTL software
packages typically provide little or no opportunity to intervene
with the statistical model, nor do they allow for applying differ-
ent model building strategies. For example, in the mixture model
context, it is hard to switch between different models for repre-
senting the dependencies between environments or add explicit
information on the environments, something that is relatively
easy in the mixed model context.

EXPLANATORY VARIABLES FOR DIFFERENCES BETWEEN
GENOTYPES: GENETIC PREDICTORS
Most populations in QTL mapping originate from crosses
between pairs of inbred lines. A segregating offspring popula-
tion can be produced from an F1 hybrid after one generation of
selfing (F2), after several generations of self-pollination (recom-
binant inbred lines or RIL), or after crossing the F1 with one of
the parental lines (backcross). In addition, by chromosome dou-
bling of F1 gametes, a population of doubled haploid lines can be
generated. In all of these cases, two alleles at most will segregate
at each locus. For a locus M1, individuals can have the genotypes
M1M1, M1m1, or m1m1, with M1 the allele that comes from the
paternal line, and m1 the allele that comes from the maternal line.
By convention the locus names are given in italics (so for exam-
ple M1 refers to locus 1, and M1 and m1 refer to the paternal and
maternal alleles at locus 1, respectively). The relative frequency of
the genotypes in the offspring population depend on the type of
population; for example, in an F2 the expected frequencies are ¼,
½, and ¼ for M1M1, M1m1, and m1m1, respectively.

With the help of molecular markers, it can be revealed whether
a particular individual is of the M1M1, M1m1, or m1m1 type. To
detect QTLs and estimate their effects, it is necessary to translate
the marker information into explanatory variables or genetic pre-
dictors. A straightforward way of constructing genetic predictors
is to create an explanatory variable that contains the number of
copies of one of the alleles, for example, the M1 allele. The genetic

predictor will then take the value 2 whenever an individual has
two paternal alleles (M1M1), the value 1 when the offspring indi-
vidual is M1m1, and 0 when it is m1m1. Using a simple regression
model, the slope for the regression of the genotypic means on a
genetic predictor defined by the number of M1 alleles corresponds
to the effect of a substitution of an m1 allele by an M1 allele at the
given locus (Lynch and Walsh, 1998; Bernardo, 2002). This effect
is also known as the additive genetic substitution effect of the
QTL allele. By analogy, a dominance genetic predictor can be con-
structed by creating an explanatory variable with values 0, when
the offspring individual is M1M1 or m1m1, and value 1 whenever
it is M1m1.

With complete information on the marker genotypes, i.e.,
codominant markers without missing values, the construction
of genetic predictors at marker positions consists of simply
counting the number of alleles coming from a particular parent.
For genomic positions in between marker loci (putative QTL
positions), for dominant markers, and for markers with missing
values, the construction of genetic predictors requires more
effort. In a general formulation, the value for the additive genetic
predictor, Xadd, for an offspring individual can be defined as the
expected number of alleles coming from the paternal line, the
number of M1 alleles:

Xadd = Pr(M1M1|all markers) × 2 + Pr(M1m1|all markers)

× 1 + Pr(m1m1|all markers) × 0, (10a)

with Pr(M1M1|all markers), Pr(M1m1|all markers), and
Pr(m1m1|all markers) the conditional probabilities of the
individual being of the M1M1, M1m1, or m1m1 type, respec-
tively given the observed marker information. Note that in
the case of complete information, the individual’s genotype is
known, so one of Pr(M1M1|markers), Pr(M1m1|markers) and
Pr(m1m1|markers) will be equal to 1, while the others will be 0.

In the case of incomplete information, although the genotype
for a locus of an individual may not be known with certainty,
information can be obtained from nearby markers to estimate
the probability of the offspring individual being of a partic-
ular genotype. This probability is a function of the observed
genotypes at neighboring markers and the expected recombina-
tion occurring between those marker loci and the locus under
evaluation (Lynch and Walsh, 1998). Efficient methods to cal-
culate conditional genetic probabilities for the different types
of population commonly used for plants have been proposed
in the literature; see Jiang and Zeng (1997) for an exhaustive
overview. The calculation of genotypic probabilities conditional
on marker information provides the basis for all QTL mapping
strategies; QTL mapping packages calculate these probabilities
behind the scenes. In GenStat® (see “Appendix”), a very general
Hidden Markov Model algorithm has been programmed to calcu-
late those condtional probabilities. Other packages that calculate
those probabilities and that are free are Grafgen (Servin et al.,
2002) and r/qtl (Broman et al., 2003).

With the estimated conditional probabilities, the genetic
predictors at positions where no or partial marker information is
available can be calculated by using the conditional probabilities
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in expression 10a. An analogous reasoning holds for the estima-
tion of dominance genetic predictors:

Xdom = Pr(M1M1|all markers) × 0 + Pr(M1m1|all markers)

× 1 + Pr(m1m1|all markers) × 0. (10b)

MODELING GENOTYPE-BY-ENVIRONMENT INTERACTION IN
TERMS OF QTL EFFECTS
The inclusion of genetic predictors in a GEI model allows testing
the hypothesis that the DNA at a particular genome position has
an effect on a phenotypic trait, and whether that effect is envi-
ronment dependent or not. A basic GEI phenotypic model, as the
one discussed in the previous sections, can be extended to accom-
modate two new terms, one for the additive genetic effect of a
possible QTL (Xadd

i αj), and a second for the dominance effect of

the same locus (Xdom
i δj):

μ
ij

= μ + Ej + Xadd
i αj + Xdom

i δj + Gi + εij, (11)

where Xadd
i , and Xdom

i stand for the values of the additive and
dominance genetic predictors of individual i at the position
at which a QTL is postulated and tested for. The parameters
αj and δj represent the additive and dominance effects of this
QTL. In model 11, both types of QTL effects are indexed by j,
because environment-specific effects are allowed. Residual genetic
main effects (i.e., genetic effects not explained by the QTL)
contribute to the random genetic effect, Gi, and residual GEI
(residual QEI) contributes to εij. The conclusion about the pres-
ence of a QTL at a particular position is based on a Wald test
(Verbeke and Molenberghs, 2000) that assess the null hypothe-
sis of the environment-specific additive and dominance genetic
effects being zero across all environments: Ho: αj = 0, and Ho:
δj = 0, j = 1 . . . J. Note that as by definition, dominance effects
are deviations from additivity, so dominance effects should be
tested conditional on the additive effects present in the model. In
practice, and to assure that the proper test is used, it is adviced
to include the term for additive genetic effects in the model
before the term for the dominance effects, and use the sequen-
tial Wald test (e.g., in GenStat® output, the test under the heading
“Sequentially adding terms to fixed model”).

For the maize data, Table 6 shows an example of the appli-
cation of model 11 to a particular genomic position. The table
indicates that the dominance effect at this genome position was
not significant (Wald statistic = 13.5 on 8 DF, P ≤ 0.097), and,
therefore, the null hypothesis of no dominance effects is not
rejected. However, the Wald statistic for the additive genetic
effects was highly significant (Wald = 100.9, on 8 DF, P < 0.001),
indicating the existence of additive QTL effects. It is still necessary
to find out whether they are environment specific, i.e., whether
a QEI term is needed, or whether a model with just main effect
QTL expression would suffice. To this purpose, the environment–
specific QTL effects (αj) are partitioned into an additive main

effect (αQ) and QEI effects (αQEI
j ), leading to the following model:

μ
ij

= μ + Ej + Xadd
i αQ + Xadd

i α
QEI
j + Xdom

i δj + Gi + εij (12)

Table 6 | Results of the test for fixed effects in a mixed model

including a fixed environment–specific additive (αj ) and dominance

(δj ) QTL effect.

Fixed terms Wald DF P

E 10875.5 7 <0.001

Additive effect (αj ) 100.9 8 <0.001

αQ 12.8 1 <0.001

αQEI
j 88 7 <0.001

Dominance effect (δj ) 13.5 8 ≤0.097

The additive QTL effect is partitioned into a QTL main effect (αQ), and a QEI

effect (αQEI
j ).

If required, a similar partitioning of the QTL effects may be
carried out for the dominance effects. As a result of the parti-
tioning of the environment-specific QTL effects, there is a Wald
test for QTL main effect and a Wald test for QEI (Table 6). The
QEI effects should be tested, conditional on the main effect being
fitted into the model, i.e., the QTL main effect should always pre-
cede the term for QEI. In the example, it is observed that the
QEI interaction effect is highly significant (Wald = 88.0 on 7 DF,
P < 0.001), so it is concluded that QTL effects are dependent on
the environment. Since there is significant QEI, no attempt will
be made to interpret the QTL main effect. When QEI is not sig-
nificant, the model can be simplified by omitting the QEI term, as
the QTL main effect will suffice to describe the QTL effect.

A QTL MAPPING STRATEGY FOR MULTI-ENVIRONMENT
TRIALS BASED ON MIXED MODELS
The preceding section presented a number of models that can
be useful in the detection of QTLs for MET data. The present
section discusses a strategy for a genome-wide scan for QTLs.
QTL mapping can be regarded as a model selection process aim-
ing to identify a model that describes the phenotypic response
in terms of QTL effects. Since a priori neither the number of
QTLs nor their effects are known, we need a strategy that allows
to explore the vast range of possible models. There is no unique
way of performing this search, but an effective strategy is pre-
sented here consisting of the following steps: (1) find a good
model for the phenotypic data; (2) perform a genome–wide scan
for QTLs by simple interval mapping (SIM); (3) perform one or
more rounds of composite interval mapping (CIM) starting with
cofactors selected from the SIM step; and (4) fit a final multi–QTL
model to estimate QTL effects. Each step is illustrated using the
maize example data. An example code that performs the differ-
ent steps in GenStat® (VSN International, 2012) and in GenStat
Discovery® (Payne et al., 2007) is given in the “Appendix.”

STEP 1: IDENTIFY THE BEST VARIANCE-COVARIANCE MODEL FOR THE
PHENOTYPIC DATA
A number of models can be fitted (for example models 7 to 9
plus the unstructured model), and compared based on the AIC
values. The selected mixed model will be the starting point from
which to develop a QTL model. Table 7 gives the AIC for four
candidate models for the maize example data, and shows that
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Table 7 | Comparison of the goodness of fit for four different mixed

models (models 7 to 9 and the unstructured model), as fitted to

CIMMYT maize stress trials.

Model Deviance DF � Deviance � DF P AIC

Model 7 1077.9 1678 – – – 4170

Model 8 838.4 1671 239.5 7 <0.001 3944

Model 9 619.9 1667 218.5 4 <0.001 3736

Unstructured 548.7 1644 71.2 23 <0.001 3708

The columns “� deviance” and “� DF” indicate the differences in deviance and

number of degrees of freedom between the current and the preceding model

in the list. The associated P values correspond to a Chi-square distribution with

� DF degrees of freedom.

the unstructured model is the best (lowest AIC) and is, therefore,
chosen as the basic phenotypic model.

STEP 2: GENOME-WIDE QTL SCAN, SIMPLE INTERVAL MAPPING
After choosing the phenotypic model, a genome-wide scan is per-
formed by fitting single QTL models across the genome at marker
and in between marker positions, i.e., SIM. To perform SIM, we
need to estimate genetic predictors that cover the genome. For
most population types and population sizes of a few hundred
individuals, calculating the genetic predictors every 5–10 cM is
sufficient. The genetic predictors are used to test for QTL effect
at the predictor location. The unstructured model was selected
for the maize data set, so the SIM scan can be done by fitting the
following model at every genetic predictor position (only additive
effects are tested as a previous analysis showed little dominance):

μ
ij

= μ + Ej + Xadd
i αj + Gi + εij (13)

The results of a genome-wide SIM scan are plotted in Figure 5.
The upper plot displays the P value of the Wald test (on a –log10

scale) for the effect of a QTL along the chromosomes. The hor-
izontal line indicates a threshold value, above which the null
hypothesis of no QTL is rejected. The profile shows evidence of
QTLs on chromosomes 1, 3, 4, 6, and 10. The two largest QTLs
are the ones on chromosome 1 and on chromosome 10. The lower
panel shows an indication of the magnitude of the QTL effects in
each of the environments at a particular chromosome position.
The type of color points to the parent that contributes the high
value allele (blue = maternal line, red = paternal line), and the
color intensity to the magnitude of the effect. QEI is reflected in
this plot by changes in color at a particular chromosome position
(cross-over interaction) or by changes in intensity of the color
(convergence-divergence). For example, the large QTL on chro-
mosome 1 not only shows changes in magnitude of the effects
between environments (different color intensities), but also shows
change of colors. For example, while in HN96b the allele increas-
ing yield comes from the mother (blue), in IS92a, IS94a, NS92a,
SS92a, and SS94a the allele increasing yield comes from the father
(red). This is an example of cross-over interaction. The large QTL
on chromosome 10 shows only differences in magnitude of the
QTL effect (from largest in HN96b to no effect in LN96a, LN96b,

FIGURE 5 | Plot produced by a SIM QTL scan in a maize F2 population.

The upper panel shows the P value of the Wald test (on a –log10 scale) for
the effect of a QTL along the chromosomes (solid line). The horizontal line
indicates a threshold value for significance. The lower panel gives an
indication of magnitude of QTL effects (higher intensity, larger effect),
and parental line contributing the superior allele (blue, maternal; red,
parental line).

and SS92a), but always with the allele from the father contributing
to higher yield.

Scanning the results across the full set of chromosomes pro-
duces a list of putative QTL positions that can be used as cofactors
at the following stage of the QTL mapping.

SIM implies performing multiple tests along the genome, one
test at each putative QTL position. For example, for the maize
data genetic predictors were calculated at 246 chromosome posi-
tions, which means that model 13 was fitted 246 times. When
performing multiple tests, the probability of at least one false pos-
itive (i.e., falsely rejecting the null hypothesis) increases according
to the expression 1 − (1 − α)n,with α the test level for a single
test and n the number of tests. A simple correction method is the
Bonferroni correction that uses α/n instead of α to test individual
null hypotheses, assuring that the proportion of false rejections
among n tests will be at most equal to α. For example, to accept a
maximum of 5% of false rejections in the whole of the experiment
(genome–wide), one should use a threshold equal to 0.05/n. A
disadvantage of the Bonferroni correction is that it is very conser-
vative risking that some QTLs may go undetected, especially when
not all tests are independent, which is the case in QTL mapping
where nearby positions are correlated.

Modifications to the Bonferroni correction in the context of
QTL mapping have been proposed by Cheverud (2001), and fur-
ther modifications proposed by Li and Ji (2005). Both approaches
essentially compensate for the fact that, in QTL mapping, tests
are correlated by using an estimated effective number of tests
(n∗) instead of the actual number of tests (n) to set the signifi-
cance threshold. For the maize data, the Li and Ji (2005) approach
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produced a value of n∗ = 81, which gives a larger threshold
P value than the Bonferroni correction (divide 0.05 by 81, instead
of dividing by 246). By default, GenStat estimates n∗ and uses it
to set the corresponding significance threshold.

STEP 3: COMPOSITE INTERVAL MAPPING
The power of QTL detection can be improved by reducing the
background noise caused by QTLs outside the region under test.
This is the principle of the CIM approach, simultaneously pro-
posed by Jansen and Stam (1994) and Zeng (1994). What makes
the difference between SIM and CIM, is that when performing
CIM the model includes a number of cofactors that corrects for
the effects of the genetic background:

μ
ij

= μ + Ej +
∑

Xif cjf + Xadd
i αj + Gi + εij (14)

In model 14 the term
∑

Xif cjf accounts for the effects of QTLs

outside the region that is being tested (Xadd
i ), reducing the error

variation and thereby improving the power for QTL detection.
Various strategies exist for the selection of a set of cofactors, but
a pragmatic approach is to use the results from the SIM scan,
including the positions indicative of QTLs by SIM as cofactors.

Another issue that needs to be addressed is that when testing
in a region close to a cofactor, it is necessary to exclude the partic-
ular cofactor from the model to avoid colinearity with the tested
position. A popular solution is to choose a window around an
evaluation position such that if a cofactor falls inside that window,
then the cofactor is excluded from the model. Window size affects
the results of a CIM scan, and there are no clear–cut recommen-
dations about which window size to use. For the present example,
all cofactors that are on the chromosome being evaluated are
excluded, a strategy known as restricted CIM.

The results of the restricted CIM scan for the maize data are
presented in Figure 6. The profiles point to QTLs on chromo-
somes 1, 2, 3, 4, 6, 9, and 10. In comparison with the results
from SIM, the CIM profile reveals the same QTLs (the two major
QTLs on chromosome 1 and 10, and the ones on chromosome
3, 4, and 6), but in addition it shows indications of QTLs on
chromosomes 2 and 9.

STEP 4: ESTABLISHING A FINAL QTL MODEL
In a subsequent modeling step, the QTLs for all positions that
were found significant in the restricted CIM scan are included
simultaneously in the mixed model:

μ
ij

= μ + Ej +
∑

Xadd
iq αjq + Gi + εij (15)

Model 15 is a multi–QTL model constructed by inclusion of the
full set of QTLs identified in the previous CIM scan. QTLs with
non-significant effects will be removed using Wald tests (condi-
tional on all other QTLs) to arrive at a final model. The final
model for our example data showed that nine out of the ten QTLs
from the CIM scan were significant in the multi-QTL model.
Further, by breaking down the QTL effects into QTL main effects

(αQ
q ) and QEI effects (αQEI

q ), it was possible to investigate whether
QTL effects were consistent across environments or not. All QTLs

FIGURE 6 | Plot produced by a CIM QTL scan in a maize F2 population.

The upper panel shows the P value of the Wald test (on a –log10 scale) for
the effect of a QTL along the chromosomes (solid line). The horizontal line
indicates a threshold value for significance. The lower panel gives an
indication of magnitude of QTL effects (higher intensity, larger effect), and
parental line contributing the superior allele (blue, maternal; red,
parental line).

but the one at the end of chromosome 3, had significant QEI
(P < 0.01).

The estimated QTL effects are given in Table 8. The effect of
a QTL in a particular environment is declared significant when
zero is outside the confidence interval of the estimated effect
(CI = estimate ± 2∗s.e., with s.e. the average standard error
obtained from the REML analysis). Results for the large QTL on
chromosome 1 (QTL1,141) showed that the QTL had a significant
effect of 0.469 ton·ha−1 in environment SS92a, which means that
for each replacement of the maternal allele by a paternal allele,
a yield increase of about half a ton is expected. The effect of the
same QTL in environment HN96b had a negative sign (−0.232
ton·ha−1), which means that rather than an increase, a decrease
in yield is expected for the same allele substitution. The effects of
QTL1,141 are inconsistent across environments not only in terms
of the size of the effects, but also in terms of the sign of the effect.
Inconsistency in size and sign of QTL effects underlies crossover
interactions, the most important case of GEI (recall Figure 1D).
From the breeder’s point of view, the crossover QEI means that,
while the maternal allele has to be selected when breeding for
environment HN96b, the paternal allele will be the choice when
selecting for all the other environments. The other large QTL,
which is on chromosome 10 (QTL10,67) showed changes of the
sizes of the effects but not of their signs, indicating that the favor-
able allele came always from the paternal line. The size of the
QTL effect was largest in HN96b (0.564 ton·ha−1), around 0.300
ton·ha−1 in IS92a, IS94a, NS92a, and SS94a, and not significant
in LN96a, LN96b, and SS92a. Despite changes in effect sizes,
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Table 8 | QTL effect estimates (ton·ha−1) for individual environments.

SS92a IS92a NS92a IS94a SS94a LN96a LN96b HN96b

QTL1,141 0.469* 0.351* 0.370* 0.370* 0.214* −0.005 −0.002 −0.232*

QTL1,252 −0.026 −0.078 −0.292* −0.061 0.182 −0.05 −0.106* 0.093

QTL2,36 −0.123 −0.304* −0.329* −0.026 −0.091 −0.003 0.131* 0.106

QTL3,38 0.224* 0.236* 0.035 0.323* 0.241* −0.007 0.152* 0.480*

QTL3,217 −0.129* −0.129* −0.129* −0.129* −0.129* −0.129* −0.129* −0.129*

QTL4,136 −0.272* −0.344* −0.456* −0.147 −0.293* −0.093* −0.107* −0.262*

QTL6,125 −0.006 0.015 −0.332* 0.061 0.004 −0.096* 0.116* −0.155

QTL9,97 0.187* 0.251* 0.386* 0.016 0.023 0.026 −0.018 0.021

QTL10,67 0.056 0.324* 0.258* 0.251* 0.322* 0.072 0.054 0.564*

A positive sign indicates that the superior allele comes from the parental line, and a negative sign indicates the superior allele comes from the maternal line. QTL

effects significantly different from zero are indicated with an asterisk.

in this case, selection will always be for the paternal allele. In
contrast to these two QTLs, the QTL at 217 cM on chromosome
3 (QTL3,217) showed a consistent effect across all environments
(−0.129 ton·ha−1) with the maternal allele as the yield increas-
ing allele. The other QTLs showed different degrees of interac-
tion with the environment, involving crossovers (QTL2,36 and
QTL6,125) or only differences in magnitude of effects (QTL1,252,
QTL3,38, QTL4,136, and QTL9,97). The QTL effect information
is useful at the moment of selecting complementary lines that
combine in future crosses the favorable alleles coming from the
maternal and paternal line.

MODELING QTL EFFECTS IN RELATION TO ENVIRONMENTAL
INFORMATION
An interesting possibility with the QTL models presented here
is that they allow the inclusion of environmental information
to explain QTL effects in terms of sensitivities to environmental
factors. Similarly to GEI models in which environmental infor-
mation can be integrated to describe GEI effects, QEI models
can integrate environmental information to describe QEI effects.
Expressing QTL effects in terms of sensitivities to a particular
environmental factor allows prediction of the effect of the QTL
under any condition within the range of the original experiments.
In addition, the inclusion of environmental information can help
unravel the physiological mechanisms that are behind the action
of a particular QTL.

The final QTL model for the maize example data consisted of
nine QTLs. It can now be investigated as to whether the varia-
tion in effects of those QTLs is related to changes in one or more
external environmental variables (There exists a strong analogy
with the factorial regression models discussed for GEI, models
6a and 6b). Figure 7 presents a scatter plot of the QTL1,141 effects
across environments vs. the minimum temperature during flow-
ering time. The plot shows a negative relationship between the
QTL effect and temperature.

Assuming a simple linear relationship between the effect of a
QTL and a given environmental covariable, it is possible to test
for that relationship using the following model:

μ
ij

= μ + Ej +
∑

Xadd
iq αjq + Xi(αq∗ + βq∗Zj + ajq∗) + Gi + εij

(16)

FIGURE 7 | Effect on yield (ton ha-1) of the QTL on chromosome 1 at

141 cM in relation to the minimum temperature (◦C) during flowering

time.

For simplicity, in model 16, the regression of environment-
specific QTL effects on environmental covariables is developed for
one QTL (q∗). However, the procedure can be applied equally well
to other QTLs with environment–specific effects. In model 16,
the effect of the QTL is expressed in relation to an environmen-
tal covariable (Z), where the effect of the QTL is equal to: αjq∗ =
αq∗ + βq∗Zj + ajq∗ . Zj represents the value of the covariable Z for
environment j. When Zj is centered around zero, the parameters
of the QTL effects can be interpreted as follows: αq∗ corresponds
to the effect of QTL in the average environment (that is, when Z
= 0); βq∗ corresponds to the change of the QTL effect per unit of
change of the covariable’s value; and the random term ajq∗ cor-
responds to the residual (unexplained) QTL effect, with ajq∗ ∼
N(0, σ2

aq∗ ). For example applying model 16 to QTL1,141, and
with minimum temperature during flowering time as covariable,
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showed a significant reaction of QTL1,141 to changes in the min-
imum temperature during flowering, with β estimate equal to
−0.040 ton ha−1 ◦C−1. We can interpret this result saying that
when the maternal allele is replaced by the paternal allele, we
expect a yield decrease of 0.040 ton ha−1 for each degree Celsius
of increase in the minimum temperature during flowering.

The example assumed a simple linear relationship between
the QTL effect and a single environmental covariable, but more
complex explanatory models can be constructed. For example, it
is possible to include higher order terms to model the response
curve (e.g., a quadratic term), to use spline formulations, or to
include more than one environmental covariable in the model. It
is important to mention that a close interaction with physiologists
is crucial to explore and select biologically sound models.

CONCLUSION
We have discussed a suite of statistical models that are useful
to plant breeding practitioners who are dealing with GEI. What
all models have in common is that they make an attempt to
replace the ANOVA GEIij term by product terms of genotypic

parameters/covariates and environmental parameters/covariates,
with as examples bizj (FW, AMMI, and GGE), biZj (factorial
regression), and Xiαj (QTL mapping). For some models no other
information than the two-way table of means is required (FW,
AMMI, and GGE), others require explicit environmental (facto-
rial regression) and/or genotypic information (QTL models). For
exploring patterns of GEI, FW, AMMI, and GGE are very useful.
For prediction and understanding, factorial regression and QTL
models are more appropriate.
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