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Signal transduction pathways control various events in mammalian cells such as growth,
proliferation, differentiation, apoptosis, or migration in response to environmental stimuli.
Because of their importance, the activity of signaling pathways is controlled by multiple
modes of positive and negative feedback regulation. Although negative feedback regulation
primarily functions to stabilize a system, it also becomes a source of emerging oscillations.
For example, the oscillatory behavior of mitogen-activated protein kinase (MAPK) activity
has been theoretically proposed earlier and experimentally verified recently. However, the
physiological function of such oscillatory behavior in biological systems remains unclear.
To understand the functional aspects of this behavior, one should analyze the oscillation
dynamics from a mathematical point of view. In this study, we applied the phase reduction
method to two simple, structurally similar phosphorylation-dephosphorylation cycle mod-
els with negative feedback loops (Models A and B) and a MAPK cascade model, whose
dynamics all show oscillation. We found that all three models we tested have a Type II
phase response. In addition, we found that when a pair of each models A and B coupled
through a weak diffusion interaction, they could synchronize with a zero phase difference.
A pair of MAPK cascade models also showed synchronous oscillation, however, when a
time delay was introduced into the coupling, it showed an asynchronous response. These
results imply that structurally similar or even identical biological oscillators can produce dif-
ferentiated dynamics in response to external perturbations when the cellular environment
is altered. Synchronous or asynchronous oscillation may add strength to or dampen the
efficiency of signal propagation, depending on subcellular distances and cell density. Phase
response analysis allows prediction of dynamics changes in oscillations in multiple cellular
environments.
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1. INTRODUCTION
Oscillatory dynamics are widely distributed in nature (Strogatz,
2003). In biological systems, circadian rhythm, heart rhythm, loco-
motion, and electrical activity of the brain are well-known oscil-
lation generators (Winfree, 2001; Khalsa et al., 2003). Although
oscillatory behavior is a product of negative feedback regulation,
the question of how the oscillatory information is processed in
biological systems is still unresolved. Mammalian cells respond to
extra-cellular signals and transfer this information to the nucleus
to express/repress genes necessary for adaptation to a new envi-
ronment or differentiation state. Signal transduction pathways
play important roles to control expression of the correct genes
and with the precise timing to satisfy cellular needs. Therefore,
signaling pathways are spatio-temporally controlled by many pos-
itive and negative feedback loops through transcriptional and
post-transcriptional modification. As a result, several types of
oscillatory behaviors in the components of signaling pathways
can be observed when negative feedback regulation is introduced
into a system. For example, Shankaran et al. have shown persis-
tent periodic shuffling of fluorescent-labeled extra-cellular signal-
regulated kinase (ERK, a subset of the family of mitogen-activated

protein kinases, MAPK) between cytosol and nucleus in epider-
mal growth factor (EGF) stimulated cells at the single cell level.
Intriguingly, these periodic cycles among neighboring cells were
asynchronous (Shankaran et al., 2009). ERK is one of the deter-
ministic kinases that control transcription when translocated into
the nucleus, therefore this nuclear shuffling process is highly reg-
ulated. The work of Shankaran et al. was the first experimental
demonstration of the oscillatory behavior of ERK, although this
was predicted earlier on theoretical grounds (Kholodenko, 2006).
Given this asynchronous oscillation, one would think that it would
be difficult to identify ERK dynamics in a population of cells,where
the signal would be averaged. In addition, since periodic activation
of ERK has been difficult to demonstrate experimentally, the cellu-
lar conditions leading to oscillatory ERK activation are likely quite
narrow and restricted. In general, when oscillators interact with
each other through a strong coupling, they tend to synchronize.
Therefore, the asynchronous oscillation observed by Shankaran
et al. suggests that the coupling strength of ERK in neighbor-
ing cells is weak, at least under the experimental conditions used
in these studies. The question then arises, what kind of condi-
tions allows a pair of cells to achieve asynchronous oscillation? Is
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the weak coupling enough to cause asynchronous oscillation? We
have investigated these questions by applying the phase reduction
method to two models of phosphorylation-dephosphorylation
cycles and in a MAPK cascade, all of which exhibit negative
feedback regulation.

The mechanism that causes the emergence of oscillations
has been energetically studied (for example, Guckenheimer and
Holmes, 1983; Kuramoto, 2003). Theoretically, oscillators are clas-
sified according to their bifurcation types, such as saddle-node
and Hopf bifurcations. Oscillation by the saddle-node bifurca-
tion emerges when a half-stable cycle splits into a pair of stable
and unstable limit cycles, but oscillation by the Hopf bifurcation
emerges when a stable spiral fixed point changes to a unstable
spiral fixed point surrounded by a stable limit cycle (Hale and
Koçak, 1991; Strogatz, 2001). Although phase space structures can
be partly derived from such bifurcation types, the dynamic prop-
erties of the system have to be evaluated by other methods. To
investigate the underlying oscillatory mechanism, a framework
termed the phase reduction method has been developed in math-
ematics and non-linear physics (Hansel et al., 1995; Hoppensteadt
and Izhikevich, 1997; Kuramoto, 2003). By using this method, an
oscillator in a high dimensional space can be described by only
one variable, phase, and its dynamics are packed into a phase
response (or phase sensitivity) function. The phase response func-
tion has been derived analytically, not only from mathematical
models but also from experimental biological data (Reyes and Fetz,
1993; Khalsa et al., 2003; Lahav et al., 2004; Stricker et al., 2008).
This method facilitates the classification of structurally related
but dynamically differentiated biochemical oscillators. The phase
response functions have been classified into two types, commonly
referred to as Type I and Type II (Hansel et al., 1995; Hoppensteadt
and Izhikevich, 1997; Kuramoto, 2003). A Type I phase response
function generally attains a positive value during an oscillation
period, whereas a Type II phase response function possesses a sig-
nificantly large region of negative values. A small perturbation to
an oscillator advances its phase when it is in a phase that gen-
erates a positive phase response, but retards its phase when in
a negative phase response. It is known that Type I and Type II
phase response functions correspond to saddle-node and Hopf
bifurcations, respectively (Rinzel and Ermentrout, 1998).

In this study we have used three models and the phase reduc-
tion method to investigate the type of phase response function and
phase difference of two weakly coupled oscillators in the steady
state.

2. RESULTS
2.1. SINGLE OSCILLATOR: A PHOSPHORYLATION-

DEPHOSPHORYLATION CYCLE
Several modes of negative feedback regulation have been identified
in signal transduction pathways, and these are potential candidates
for emerging oscillatory phenomena. Many fundamental negative
feedback models that cause the emergence of oscillations have been
proposed (Kholodenko, 2006; Novák and Tyson, 2008). Here, we
adopt the simple phosphorylation-dephosphorylation cycle mod-
els proposed by Kholodenko (2006). While he has considered all
the possible topologies of feedback regulation to phosphorylation
and dephosphorylation steps in the cycle, we use two, Models A

and B (the latter of which corresponds to Model C in the original
paper) in our study (Figures 1A,F, Section 4.2). In these models,
negative feedback is realized by inhibiting kinase (Kin) production
(or its activity) in Model A and enhancing phosphatase (Phos)
production (or its activity) in Model B. First, we explore the para-
meters exhibiting oscillation by varying Phos and Kin for Models
A and B, respectively (Figure 1). The parameter regions that can
induce oscillations, resultant oscillation periods, and frequencies
are shown in Figures 1B,G. The long-dashed lines indicate the
parameter values that we have adopted in the following analyses.
Figures 1C,H show the periodic orbits of the models. The oscilla-
tion periods in the two models are clearly very different from each
other.

We next applied a phase reduction method to these models
and calculated the phase response functions of Models A and B.
The details of phase reduction method are found in Section 4.1,
in which the state vector X(t) is given by (Mp(t ), Kin(t )) and
(Mp(t ), Phos(t )), where Mp represents an activated and phospho-
rylated form of M, for Models A and B, respectively. Figures 1D,I
show the periodic orbits for one oscillation period in Models A
and B, respectively, in which the peaks of the Mp (blue lines)
are located at the origin of the phase. The phase response func-
tions of Mp of both models are similar to each other and have
significantly large regions of both positive and negative values
(Figures 1E,J for Models A and B, respectively), which means that
they can be categorized as Type II oscillators. This result implies
that these regulatory networks have similar phase responses of
Mp to a small perturbation regardless of the difference in their
biological feedback targets.

2.2. COUPLED OSCILLATORS: INTERACTING
PHOSPHORYLATION-DEPHOSPHORYLATION CYCLES

Next, we investigated the behavior of the above models in the
presence of a weak interaction in the steady state by presum-
ing that two cells are located next to each other. The phase
reduction method allows calculation of the fixed phase differ-
ence of a weakly coupled pair of identical oscillators in the
steady state (for details, see Section 4.1). Here, we consider the
case of two identical oscillators interacting through a weak dif-
fusion coupling (see Figures 2A,C). In addition to the model
equations for Models A and B (Section 4.2), we adopt the fol-
lowing diffusion couplings. For Model A, the interaction func-
tion in Equations (7) and (8) is given by C((Mpi(t ), Kini(t )),
(Mpj(t ), Kinj(t )))= (−g Mp(Mpi(t )−Mpj(t )),−g Kin(Kini(t )−
Kinj(t ))). Similarly, for Model B, it is given by C((Mpi(t ),
Phosi(t )), (Mpj(t ), Phosj(t )))= (−g Mp(Mpi(t )−Mpj(t )),
−g Phos(Phosi(t )−Phosj(t ))). We assume that the coefficients of
interactions, g Mp, g Kin, and g Phos, are sufficiently small for each
oscillator to remain in the basin of the periodic orbit. Under weak
coupling conditions, a coupled dynamical system can be reduced
to a system governed only by phase difference. The reduced
dynamical system is given by Equations (17) and (18). Once we
obtain the phase response function, we can calculate the gamma
function (0−(φ), defined by Equations (17) and (18)), thereby
delineating the dynamics of the phase difference. The gamma
functions for Models A and B are shown in Figures 2B,D, respec-
tively. As shown in the figures, φ= 0 and 0.5 satisfy 0−(φ)= 0
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FIGURE 1 | Phosphorylation-dephosphorylation cycle models. (A)
Schematic of Model A, in which the phosphorylated M, Mp, decreases the
production of kinase or inhibits its activity. Here, Phos takes a constant value,
200. (B) Period (blue line) and frequency (green line) of oscillation as a
function of Phos. (C) Oscillatory behavior of the model network. Blue and red
lines correspond to Mp and Kin, respectively. (D) Periodic orbit during one
period of the model. The horizontal axis represents the phase. Colors are the

same as in (C). (E) Phase response functions of the model, which are
obtained by solving the adjoint equation given in Equation 4 (Ermentrout,
1996). Colors are the same as in (C). (F) Schematic of Model B, in which the
phosphorylated M, Mp, increases the production of phosphatase or activates
its activity. Here, Kin takes a constant value, 150. (G–J) Same as in (B–E), but
here they are obtained using model B. Blue and red lines in (H–J) correspond
to Mp and Phos, respectively.

for both models, and only φ= 0 satisfies the stability conditions
(Equations (19) and (20)). Therefore, the oscillators in both cou-
pled dynamical systems are asymptotically synchronized in the
steady state. Next, we evaluated the shape of the gamma function
by varying the ratio g Kin/g Mp (g Phos/g Mp) between 0 and 1 for
Model A (Model B) and find that φ= 0 is the only stable solution
in this parameter region. Therefore, these results suggest that in
a many body system consisting of each model, their oscillation
cycles can synchronize with an almost zero phase difference in a
noisy environment.

2.3. MAPK CASCADE MODEL
Next, we considered the asynchronous oscillations experimentally
observed by Shankaran et al. (2009). They reported that EGF
induces oscillations in the nuclear localization (an indication of
activation) of ERK in living cells and that the oscillations are asyn-
chronous between neighboring cells (Figure 1 in Shankaran et al.,
2009). Here, we adopt the MAPK cascade model that was origi-
nally developed by Huang and Ferrell (1996) and later modified
by Qiao et al. (2007). The Huang-Ferrell model has been widely
used for analyzing the dynamic behavior of the MAPK system
(for example, Ferrell and Machleder, 1998). The original model
and parameters produce an ultrasensitive MAPK activity with a
Hill coefficient of 4-5, but later, Qiao et al. found that the model
can also produce oscillations with other parameter sets in a wide

range of the parameter space. Here, we used the Huang-Ferrell
model modified by Qiao et al. to analyze the oscillatory behavior
of MAPK activity (Figure 3A, Section 4.3).

The time evolutions of MAPKKPP and MAPKPP in an oscilla-
tory state are shown in Figure 3B. Here, we assume that MAPKPP
is an activated ERK as observed by Shankaran et al. We applied the
phase reduction method to this model and evaluated the stable
fixed phase difference by calculating the phase response function
of the model. The phase response functions of MAPKKPP and
MAPKPP are shown in Figures 3C,D, respectively, in which the
origin of the phase corresponds to the peak of MAPKPP. As shown
in the Figure 3D, MAPKPP showed a Type II phase response, the
same as those of Models A and B described in the previous section.

Next, we considered the phase difference of a pair of iden-
tical MAPK oscillators. Because the entire signal transduction
network in the cells used by Shankaran et al. remains unknown, we
substituted a MAPK cascade as an EGF-induced signaling path-
way in the observed neighboring cells. In addition, we assumed
that the interaction between a pair of cells can be effectively
modeled as a function of the difference between the MAPKPPs.
Then we adopted a simple diffusion type interaction function: –
g MAPKPP(MAPKPPi(t ) – MAPKPPj(t )). Using this function, we
calculated the gamma function as shown in Figure 3E (black line).
The value φ= 0 is the only stable solution and the two MAPK
oscillators are synchronized asymptotically. Thus, employment of
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FIGURE 2 | (A) Schematic of a pair of the identical oscillators of Model A.
Here, we assume weak interactions between each Mp and Kin. (B) Gamma
function of the coupled system shown in (A), in which we adopt gMp=1 and

gKin=1. (C) Same as (A), but Model B was used by assuming weak
interactions between each Mp and Kin. (D) Gamma function of the coupled
system shown in (C), in which we adopted gMp=1 and gPhos=1.
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FIGURE 3 | (A) Schematic of the Huang-Ferrell model. Here,
MAPKKK* indicates the activation form of MAPKKK. (B) Oscillatory
behaviors of MAPKPP and MAPKPP in the steady state of the
model. (C,D) Phase response functions of MAPKPP (C) and

MAPKPP (D), respectively. (E) Gamma function without a time
delay (black line) and one with a time delay τ =0.25 (red line). (F)
Stable (blue) and unstable (red) fixed phase differences as a function
of time delay τ .
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only a diffusion interaction between the two MAPK models (or
cells) was insufficient to reproduce the asynchronous oscillation
of MAPKPP that has been detected in living cells.

To achieve an asynchronous oscillation, the sign of the coef-
ficient can be changed. When doing so, we obtained a gamma
function whose shape is the reflection of the one shown as a
black line in Figure 3E and φ= 0.5 results in a stable solution.
Because we considered an effective interaction in our model, a
negative diffusion coefficient can be considered. Another possible
scenario is to incorporate a time delay within the interaction, –
g MAPKPP(MAPKPPi(t ) – MAPKPPj(t − τ )), where τ > 0. This
scenario is reasonable because spatially isolated cells need to com-
municate with each other, but the signal from one cell will be
delivered with a time delay to another cell when the two cells
remain apart. In agreement with this theoretical assumption, oscil-
latory ERK activity was only observed in cells grown at low density
but not in cells at confluency (Shankaran et al., 2009). When we
incorporated a time delay into the interaction, the gamma func-
tion could be very simply calculated (Equations (30) and (31)).
Considering τ = 0.25 as a delay time, we calculated the gamma
function in Equation (31), as illustrated in Figure 3E (red line). As
a result, φ= 0.5 transforms into a stable solution. Therefore, ERK
signals potentially asynchronously oscillate in the delayed system.
In Figure 3F, we show how stable and unstable fixed phase solu-
tions alter by varying the time delay, τ , between 0 and 1. A time
delay 0.24≤ τ ≤ 0.63 results in φ= 0.5, which is the only stable
fixed phase difference. Interestingly, a wide range of time delays
could induce asynchronous oscillations of MAPK.

3. DISCUSSION
In this study, we first evaluated the phase response function,
a characteristic property related to oscillation, for two simple
phosphorylation-dephosphorylation cycle models A and B, in
which negative feedback regulation either inhibits the kinase
activity or enhances the phosphatase activity. The two models
have relatively different oscillatory periods. However, their phase
response functions corresponding to the reaction product Mp are
very similar and both have a Type II phase response, i.e., their
phase can be retarded or advanced depending on the timing of
an external stimulus. This result suggests that even if cells use
different negative feedback regulatory mechanisms (e.g., kinase
inhibition or phosphatase activation), they can produce simi-
lar, although not exactly the same, oscillatory dynamics. It also
indicates that similar oscillatory signals can be generated using dif-
ferent biological components and resources, such as kinases and
phosphatases, produced by regulated transcription or activated by
post-transcriptional modification in a cell context manner. Fur-
thermore, we investigated the fixed phase differences of a pair
of identical oscillators interacting through weak diffusion cou-
pling. Here we found that the oscillations originating from each
model can synchronize even if their interaction is weak. This result
implies that when two almost identical oscillations (i.e., the bio-
chemical reaction dynamics generated from Model A or B) can
interact in spatially separated subcellular locations (such as the
cytoplasm and nucleus), their oscillatory signals can still be syn-
chronized. These results suggest that oscillation dynamics can be
robustly maintained within the cell.

We next analyzed the MAPK cascade and found that the phase
response function corresponding to MAPKPP is also Type II.
When two identical MAPK oscillators are coupled through dif-
fusion, these signals are synchronized. Again, in addition to the
above two models, this result confirmed that oscillatory signals can
be robust within the cell. However, the presumed interaction of
MAPKs mediated by diffusion in our analysis did not satisfactorily
reproduce the asynchronous ERK oscillation dynamics reported by
Shankaran et al. (2009). We reasoned that this inconsistency could
be the result of a time delay in the coupling and, under this condi-
tion, asynchronous oscillation was observed with a wide range of
parameters in time delays. Our results suggest that whether a pair
of cells oscillates synchronously or asynchronously may depend
on the distance between the cells. In the experimental setting of
Shankaran et al., oscillatory ERK activity was only observed in
cells grown at low density but not in confluent cells. Therefore, we
presume that compensatory mechanisms would mask the oscilla-
tory dynamics of ERK in cells at high density. In reality, thousands
of MAPK molecules exist in a cell, therefore molecular regula-
tion of MAPK in a cell in a tightly packed cell population may be
quite different from that in a sparse cell population, and there-
fore the former circumstance would interfere with experimental
visualization of oscillatory dynamics of MAPK.

In this study, we only dealt with identical pathways under weak
interaction to examine the effect of two units coupling for an oscil-
latory response. However, our current study suggests that a pair
of slightly different oscillators under weak interaction conditions
can result in similar synchronous behavior: therefore the method
should be applicable for an evaluation of non-identical oscillatory
units as well. The phase reduction method thus can be applied
to pairs of widely different oscillator modules, as are frequently
observed in biological networks.

4. MATERIALS AND METHODS
4.1. PHASE REDUCTION METHOD
The phase reduction method has been widely applied to coupled
oscillator systems. Here, we briefly describe the derivation of the
phase model. First, we define the phase. We consider a system
whose dynamics is described in the vector form as follows:

dX (t )

dt
= F (X (t )), (1)

where X(t ) represents the dynamical variable, and F(X(t )) is a
vector function that determines the dynamics of the system. Here-
after, we restrict the phase space of the system to a region in its
basin of attraction in which a stable limit cycle, χ(t ), exists. We
assume that the period of the solution is T, i.e., χ(t+T )=χ(t ).
According to the phase reduction method, such a system can be
reduced to a system consisting of the phase degree of freedom only.
We can define a phase φ(t )∈ [0, 1) along the periodic orbit χ(t )
with constant time derivative as follows:

dφ(t )

dt
= 1, (2)

in which we can define the origin arbitrarily. Because the periodic
orbit can be parameterized by φ(t ), we describe it by χ(φ(t )).
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Although the phase is defined along the periodic orbit, it can be
extended into the neighborhood of the periodic orbit, which is
known as the asymptotic phase. Because the asymptotic phase
can be described as a function of the state X(t ), we can derive its
dynamical equation as follows:

dφ(X (t ))

dt
=
∂φ(X )

∂X
·

dX (t )

dt

=
∂φ(X )

∂X
· F (X (t )),

(3)

where · denotes the inner product. From Equations (2) and (3),
φ(X(t )) must satisfy the following expression

∂φ(X )

∂X
· F (X ) = 1. (4)

Next, we derive the phase response of the system. We assume
that the system Equation (1) receives a weak perturbation:

dX (t )

dt
= F (X (t ))+ p(t ). (5)

Similar to Equation (3), the asymptotic phase obeys the
following dynamical equation:

dφ(X (t ))

dt
=
∂φ(X )

∂X
·

dX (t )

dt

=
∂φ(X )

∂X
·
(
F (X (t ))+ p(t )

)
= 1+

∂φ(X )

∂X
· p(t )

= 1+ Z (φ) · p(t ),

(6)

in which Z(φ) is called as the “phase response function” or “phase
sensitivity.” The phase response function describes the phase
response (phase shift) of the system to small perturbations.

Now, we consider a coupled oscillator system consisting of two
identical oscillatory units,

dX 1(t )

dt
= F (X 1(t ))+ C(X 1(t ), X 2(t )), (7)

dX 2(t )

dt
= F (X 2(t ))+ C(X 2(t ), X 1(t )). (8)

Here, Xi(t ) represents the dynamical variables corresponding
to the i-th unit, and C is the interaction function. When the inter-
action is weak (“weak” means that the units do not leave the basin
of attraction of the periodic orbit), the coupled system can be
described by the asymptotic phase as follows:

dφ1(t )

dt
= 1+ Z (φ1(t )) · C(φ1(t ),φ2(t )), (9)

dφ2(t )

dt
= 1+ Z (φ2(t )) · C(φ2(t ),φ1(t )). (10)

By replacing the phase φ1,2(t ) with the phase ψ1,2(t ) defined
by φ1,2(t )= t+ψ1,2(t ), Equations (9) and (10) are transformed
into the following equations:

dψ1(t )

dt
= 0(ψ1(t )− ψ2(t )), (11)

dψ2(t )

dt
= 0(ψ2(t )− ψ1(t )), (12)

where

0(ψi(t )−ψj(t )) =

∫ 1

0
dθZ (θ+ψi(t )) ·C(θ+ψi(t ), θ+ψj(t )),

(13)
in which we used the fact that ψ1,2(t ) vary slowly, the weak
interaction assumption, and the average during one period. By
substituting ψ1,2(t )=−t+φ1,2(t ) into Equations (11–13), we
obtain the phase description of the coupled oscillator system as
follows:

dφ1(t )

dt
= 1+ 0(φ1(t ),φ2(t )), (14)

dφ2(t )

dt
= 1+ 0(φ2(t ),φ1(t )), (15)

0(φi(t ),φj(t )) =

∫ 1

0
dθZ (θ + φi(t )) · C(θ + φi(t ), θ + φj(t )).

(16)

By subtracting Equation (15) from Equation (14), the ordinary
differential equation (ODE) is obtained that governs the evolution
of the phase difference φ(t )=φ1(t )−φ2(t ),

dφ(t )

dt
= 0−(φ(t )) ≡ 0(φ(t ))− 0(−φ(t )), (17)

0(φ(t )) =

∫ 1

0
dθZ (θ + φ(t )) · C(θ + φ(t ), θ). (18)

The fixed phase difference φ is stable if it satisfies the following
conditions:

0−(φ) = 0, (19)

d0−(φ)

dφ
< 0, (20)

and it is unstable if it satisfies the following conditions:

0−(φ) = 0, (21)

d0−(φ)

dφ
> 0. (22)

Finally, we derive a phase model corresponding to a coupled
oscillator system with a delayed interaction. In this case, the system
is expressed as follows:

dX 1(t )

dt
= F (X 1(t ))+ C(X 1(t ), X 2(t − τ)), (23)

dX 2(t )

dt
= F (X 2(t ))+ C(X 2(t ), X 1(t − τ)). (24)
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Then, Equations (9) and (10) are changed into the following
equations:

dφ1(t )

dt
= 1+ Z (φ1(t )) · C(φ1(t ),φ2(t − τ)), (25)

dφ2(t )

dt
= 1+ Z (φ2(t )) · C(φ2(t ),φ1(t − τ)). (26)

In a first order approximation, we can assume that
φ1,2(t − τ )=φ1,2(t )− τ . Then, the phase description of the
system is given by the following equations:

dφ1(t )

dt
= 1+ 0(φ1(t ),φ2(t )), (27)

dφ2(t )

dt
= 1+ 0(φ2(t ),φ1(t )), (28)

0(φi(t ),φj(t )) =

∫ 1

0
dθZ (θ + φi(t )) · C(θ + φi(t ), θ

+ φj(t )− τ). (29)

Therefore, the ODE of the phase difference attains the following
form:

dφ(t )

dt
= 0−(φ(t )) ≡ 0(φ(t ))− 0(−φ(t )), (30)

0(φ(t )) =

∫ 1

0
dθZ (θ + φ(t )) · C(θ + φ(t ), θ − τ), (31)

in which the delay is no longer explicitly included in the equation.

4.2. SIMPLE PHOSPHORYLATION MODEL
Model A

dMp

dt
= vkin − vphos (32)

=
kcat

kin KinM

Km1 +M
·

1+ AMp/Ka

1+Mp/Ka
−

kcat
phosPhosMp

Km2 +Mp
, (33)

dKin

dt
= v

synth
kin − v

deg
kin (34)

= V 0
kin

1+Mp/KI

1+ I ·Mp/KI
− k

deg
kin Kin, (35)

M = M tot
−Mp. (36)

Model B

dMp

dt
= vkin − vphos (37)

=
kcat

kin KinM

Km1 +M
·

1+ AMp/Ka

1+Mp/Ka
−

kcat
phosPhosMp

Km2 +Mp
, (38)

dPhos

dt
= v

synth
phos − v

deg
phos (39)

= V 0
phos

1+ AdpMp/Kd

1+Mp/Kd
− k

deg
phosPhos, (40)

M = M tot
−Mp. (41)

The parameters of Models A and B are given below.

Parameter Model A Model B

Mtot 300.0 300.0

kcat
kin 1.0 1.0

A 100.0 100.0

Ka 500.0 500.0

K m1 500.0 500.0

kcat
phos 1.0 1.0

K m2 10.0 10.0

Phos(A), Kin(B) 200.0 150.0

v 0
kin(A), V 0

phos(B) 150.0 200.0

KI(A), Kd(B) 100.0 100.0

I(A), Adp(B) 7.5 7.5

kdeg
kin (A), kdeg

phos(B) 1.0 1.0

4.3. HUANG-FERRELL MODEL
The ODEs of the model are as follows:

dv0

dt
= a0c0c1 − (d0 + k0)v0, (42)

dv1

dt
= k0v0 − a1v1c2 + d1v2 − a2v1c3 + (k2 + d2)v3

− a4v4v1 + (k4 + d4)v6, (43)

dv2

dt
= a1v1c2 − (d1 + k1)v2, (44)

dv3

dt
= a2c3v1 − (d2 + k2)v3, (45)

dv4

dt
= k2v3 − a3v4c4 + d3v5 − a4v4v1 + d4v6 + k5v8, (46)

dv5

dt
= a3v4c4 − (d3 + k3)v5, (47)

dv6

dt
= a4v4v1 − (d4 + k4)v6, (48)

dv7

dt
= k4v6 − a5v7c4 + d5v8 − a6v7c5 + (d6 + k6)v9

− a8v10v7 + (d8 + k8)v12, (49)

dv8

dt
= a5v7c4 − (d5 + k5)v8, (50)

dv9

dt
= a6c5v7 − (d6 + k6)v9, (51)

dv10

dt
= k6v9 − a7v10c6 + d7v11 − a8v10v7 + d8v12 + k9v14,

(52)

dv11

dt
= a7v10c6 − (d7 + k7)v11, (53)

dv12

dt
= a8v10v7 − (d8 + k8)v12, (54)

dv13

dt
= k8v12 − a9v13c6 + d9v14, (55)

dv14

dt
= a9v13c6 − (d9 + k9)v14. (56)
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The algebraic equations and total quantities of the molecules
are as follows:

c0 = KKKtot − (v0 + v1 + v2 + v3 + v6), (57)

c1 = E1tot − v0, (58)

c2 = E2tot − v5, (59)

c3 = KKtot − (v3 + v4 + v5 + v6 + v7

+ v8 + v9 + v12), (60)

c4 = KKP′asetot − (v5 + v8), (61)

c5 = Ktot − (v9 + v10 + v11 + v12 + v13 + v14), (62)

c6 = KP′asetot − (v11 + v14), (63)

KKKtot = 3.7112E − 003, (64)

E1tot = 1.0000E − 007, (65)

E2tot = 1.2115E − 004, (66)

KKtot = 4.0658, (67)

KKP′asetot = 9.4579E − 005, (68)

Ktot = 2.0, (69)

KP′asetot = 7.5372E − 002. (70)

The kinetic parameters are given below:

a0=1.0962E+003 d0=4.3207E+001 k0=6.9525E+001

a1=1.5576E+003 d1=9.4394E+001 k1=2.8874E+002

a2=1.9179E+003 d2=7.5216E+001 k2=4.3432E+001

a3=3.6894E+002 d3=4.1710E+002 k3=7.1505E+002

a4=4.5836E+003 d4=3.3742E+002 k4=1.6957E+002

a5=2.0219E+003 d5=4.3905E+002 k5=3.4842E+002

a6=2.6634E+003 d6=5.9598E+001 k6=4.1954E+001

a7=1.4435E+003 d7=4.0101E+001 k7=6.3433E+001

a8=5.4366E+002 d8=2.2211E+002 k8=1.1716E+002

a9=4.3990E+002 d9=1.7642E+002 k9=4.6705E+001

Molecular names, variables, and initial conditions.

Molecular name Variable Initial condition

KKK ·E1 v 0 3.3875E −009

KKK* v 1 1.6561E −006

KKK*
·E2 v 2 8.1569E −010

KK ·KKK* v 3 1.0056E −004

KKP v 4 2.1568E −001

KKP ·KKP′ase v 5 6.1078E −006

KKP ·KKK* v 6 3.2293E −006

KKPP v 7 7.0439E −003

KKPP ·KKP′ase v 8 1.5716E −006

K ·KKPP v 9 8.1041E −002

KP v 10 4.9431E −001

KP ·KP′ase v 11 5.3600E −002

KP ·KKPP v 12 5.5795E −003

KPP v 13 9.1279E −001

KPP ·KP′ase v 14 1.3996E −002
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