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A PLEA FOR STRONG INFERENCE
The recent research topic “Fractal Analyses:
Statistical and Methodological Innovations
and Best Practices” reveals there is no con-
sensus among experts about the best pro-
cedure to estimate self-affine structure in
trial and time series data. One of the recur-
ring issues pertains to the validity of infer-
ences based on analysis results about the
physical change processes that generated
the empirical waveforms. In this paper I
argue that none of these approaches can
be used to validate such inferences out-
side of the context of theory evaluation
by strong inference (e.g., Platt, 1964). Two
arguments warrant this claim: (1) All pro-
cedures make an assumption about the
physics of the system under scrutiny. This
is arguably most prominent in ARFIMA
modeling, but associating an estimated
scaling exponent to a fractal dimension
is also based on assumptions (e.g., fGn
vs. fBm; Mandelbrot and Van Ness, 1968);
(2) given infinitesimal measurement reso-
lution and infinite observation time, prop-
erties like dimension and self-affinity are
not unique descriptors of a process, pat-
tern or object (cf. Vicsek, 2001). Multiple
mathematical models of physical processes
can be constructed to generate a waveform
with exactly the dynamical and invariant
properties as observed in the finite sam-
ple (e.g., Mandelbrot, 2001; Kantz and
Schreiber, 2003; Thornton and Gilden,
2005; Morrison, 2008).

The second issue pertains to a gen-
eral problem of model-based inference:
a good fit to a finite sample of mea-
surement outcomes can never be conclu-
sive in the evaluation of predictions by
theories (cf. Roberts and Pashler, 2000,
2002; Fiedler et al., 2012). Using results

of (fractal) analyses to answer questions
about the physics of the observed sys-
tem is an attempt to evaluate the ontol-
ogy of a theory, ex post facto; let’s leave
ontology evaluation to the metaphysicians
(cf. Poincaré, 1905, p. 211). The scientific
method is not a competition for mathe-
matical models constructed to produce the
best fit to measurement outcomes; instead,
theoretical predictions about the observed
system compete for highest empirical pre-
cision and accuracy in order to gain scien-
tific credibility.

In what follows I evaluate to what
extent fractal analyses are used in the con-
text of strong inference given the current
empirical record of human physiology and
performance. Subsequently I will explore
what may be gained when implicit ontol-
ogy falsification is removed from fractal
analyses by introducing the concepts of
intuitive dimension and informed dimen-
sion estimates.

ON FRACTAL SCALING AND
PLANETARY ORBITS
Why should an accurate prediction by
a theory be preferred over a good ret-
rospective model fit? Models proposed
to explain the orbit of Mercury (which
displays a perihelion advance) present
an interesting historical analogy. The
orbit was accurately modeled by the
classical geocentric models based on
Ptolemy’s Almagest (used from around
100–3500 CE; Toomer, 1984). These
models assumed celestial objects moved
around the earth on a celestial sphere that
could host one or more local orbits or
epicycles. The number of nested epicycles
was simply varied until the predicted tra-
jectory was sufficiently in accordance with

the empirical record. Curiously, to the
heliocentric models replacing Ptolemaic
astronomy like Newton’s theory of celes-
tial mechanics, Mercury’s orbit was an
anomaly! No wonder that Einstein con-
sidered the accurate prediction of this
anomaly the most important empirical test
of his theory of general relativity (Einstein,
1916; Will, 2005).

This brief history of orbit model-
ing reveals that the theoretical perspec-
tive used to observe the empirical record
changes one and the same reliably mea-
sured pattern from a good model fit,
into an anomalous phenomenon into a
critical benchmark for theory evaluation.
Ptolemy’s solution of adding epicycles to
reconstruct the shape of a trajectory is
essentially the same as adding weighted
autoregressive, moving average, season-
ally changing, or (fractionally) integrat-
ing components in a time series model.
Those components are constructed into
the model in order to create a better fit
with a pattern in the data. This is allowed
by mathematics, but their presence is not
predicted by a theory of principles about
physical change processes in living systems
and this renders its scientific evaluation
invulnerable to the presence of anoma-
lies. Compare to Newton’s closed theory
of principles: “In Ptolemy’s case, if the orbit
didn’t fit, he could add other epicycles. But
if an experiment does not fit in Newtonian
physics, you don’t know what you mean
by the words.” (Heisenberg interviewed by
Kuhn, 1963, p. 24, February 27th).

In order to advance scientific knowl-
edge about scaling phenomena in living
systems a program of strong inference
that aims to produce closed theories of
principles is needed. In order to reach
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this goal, empirical inquiries need to
go beyond describing scaling phenomena
in different populations in the context
of impaired performance or pathology
(e.g., Goldberger et al., 2002; Gilden and
Hancock, 2007; West, 2010; Wijnants et al.,
2012a). Several recent studies reveal scal-
ing phenomena can be brought under
experimental control, which is essential
for a program of strong inference (e.g.,
Kello et al., 2007; Wijnants et al., 2009;
Van Orden et al., 2010; Correll, 2011;
Holden et al., 2011; Kuznetsov et al.,
2011; Stephen et al., 2012). The diverg-
ing theoretical predictions examined in
most studies reveal that the observed
waveforms are more likely to origi-
nate from interaction-dominant com-
plexity than from component-dominant
mechanics (also see Turvey, 2007; Kello
et al., 2010; Diniz et al., 2011).

A closed theory should account for
most phenomena in the existing empiri-
cal record. A first step was recently made
in which it was shown that the well-known
speed-accuracy tradeoff in human perfor-
mance is meaningfully related to the emer-
gence of self-affine structure via nested
timescales (Wijnants et al., 2012b). At the
current level of scientific understanding
it seems reasonable to ask of those who
insist models based on AR-processes pro-
vide a parsimonious explanation of fractal
scaling (e.g., Wagenmakers et al., 2005;
Torre and Wagenmakers, 2009; Stadnitski,
2012), to provide experimental evidence
that can validate their claims.

As stated above however, most claims
about scaling phenomena based on fractal
analyses are prone to implicit ontology fal-
sification. In what follows, I will suggest an
approach to dimension estimation that is
based on intuitions about the geometry of
a curve rather than on known mathemati-
cal models of change processes. I will focus
on the mono-fractal case and show that a
consistent conversion scheme for common
estimates of self-affine structure is possible
when using this notion of dimension.

FINITE SELF-AFFINITY: THE BLIND
CURVE AND THE PERIMETER WALK
Dimension is an intrinsic property of a
mathematical object that indicates to what
extent it occupies the topological space in
which it is embedded. A dimension esti-
mate that is based on the properties of an

empirical waveform can be defined as a
finite walk in the plane that never forms a
perimeter. Formally, this is a self-avoiding
open curve dividing a bounded plane in
two unconnected regions (i.e., it is not a
Jordan Curve). Note that the properties
of the curve have a physical origin: it is
self-avoiding and open due to the arrow
of time and because observation duration
and measurement outcomes are finite, the
planar topology is bounded.

Estimation procedures derived from
formal definitions of dimension respect an
intuitive geometric notion of a scaling of
bulk with size (Theiler, 1990). Using the
definition above, the intuitive concept to
quantify would be a characterization of
the waveform as line-like or plane-like,
hence planar extent (e.g., Higuchi, 1988;
Katz, 1988; Raghavendra and Dutt, 2010).
Sevcik (1998) introduced such a dimen-
sion estimate based on the Hausdorff-
Besicovitch dimension (Hausdorff, 1919;
Xiao, 2008). It involves a double linear
transformation of the axes embedding the
waveform in a unit square of size N by
N. Its length can be calculated as the sum
of the Euclidean distance between points
on the normalized curve. The graph enti-
tled “Sevcik method” in Figure 1 shows
the equation used to approximate D based
on number of observation intervals (N–1)
and curve length L (for details see Sevcik,
1998, 2006). Across the top of Figure 1,
twelve different waveforms are shown that
were analyzed for self-affine structure (see
caption for details). The waveforms were
generated using freely available Matlab
scripts1.

INTUITIVE DIMENSION
The dimension estimates for the 12 wave-
forms based on Sevcik’s mehod are numer-
ically different from DuBC , as well as from
known exact values, the goal however is
to achieve relative consistency. Processes
that generated waveform 9 and 10 have
known D = 1.5, which is equal to a
sequence of random numbers drawn from
a Normal distribution (i.e., waveform
5, waveform 10 is its cumulative sum).
Using Sevcick’s method however, both
waveforms are classified as a Brownian
noise. If this waveform were known to be

1 The scripts are available at http://fredhasselman.com
in the section Supplementary Materials.

physiological and medical in nature, the
constrained dynamics associated with
Brownian noise would lead to profoundly
different conclusions about the health
and well-being of the patient in ques-
tion compared to blindly interpreting
the limit values D = 1.5 and H = 0.5
(e.g., Goldberger et al., 2002; Van Orden
et al., 2009). The gray-scale areas repre-
sent Sevcik’s estimate for 12100 simulated
series with ideal spectral slopes ranging
from −3 to 3. Note that at 25% of the data
length (first set of markers) the relative
ordering according to DuBC is recovered
for almost all waveforms.

INFORMED DIMENSION ESTIMATES
The other graphs represent self-affinity
exponents estimated using the power
spectrum (PSD), detrended fluctuation
analysis (DFA), standardized dispersion
analysis (SDA), and ARFIMA (modeling
strategy: Reisen and Lopes, 1999; Silva
et al., 2006). The informed estimates of
D refer to conversions of the self-affinity
indices obtained for the 12 waveforms.
ARFIMA modeling did not provide a con-
sistent conversion scheme therefore the
differencing parameter was plotted against
the PSD based estimates. The gray-scale
coded regions in these plots refer to the
PSD slope estimates for the 12100 sim-
ulated series. These areas thus display
the relation between the DFA, SDA, and
ARFIMA self-affinity indices and the PSD
slope based estimate.

The equations suggested for PSD and
DFA indices produce approximations of
well-known (H, D) pairs and should
not be confused with an analytic solu-
tion. For SDA the known formula 1-Slope
yields relatively consistent results, a prob-
lem is that for some ranges of PSD
slopes, the SDA indices are the same.
ARFIMA modeling by the AIC selection
criterion preferred models without self-
affine structure (d = 0) of varying order
(p = 0–2, q = 0–2) for the majority of
simulated PSD slope series (ARIMA 42.8%
vs. ARFIMA 20.6%). The remaining series
produced fit errors (see Supplementary
Materials for details).

Most waveforms in Figure 1 get
assigned a value for D that is in accor-
dance with their planar extent as indicated
by DuBC . Waveform 11 is more line-like
than waveform 9 and 10, which both map
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FIGURE 1 | The top row shows 12 waveforms of 211 data points

embedded in a unit square and ordered according to their planar extent

estimated by DuBC . This is a 2D box-counting dimension estimate calculated
from a binary image (2×N by 2×N logical matrix) of the graph of the
waveform. The same relative order was recovered using Sevcik’s method,
which estimates D from the waveform based on curve length L and data

length N − 1 (N ′). The gray-scale coded areas refer to Sevcik’s estimate for
12100 simulated series with PSD slopes varying from −3 to 3. In the other
graphs, the gray areas show the estimate of D based on PSD slope. The
conversion formulas relate self-affinity exponents to D informed by known
values of these exponents for power laws in spectral density. No conversion
could be found for ARFIMA modeling. See text for details.

closely to known D of Brownian noise.
Expected exceptions are waveforms 2 and
12. A sequence of random numbers drawn
from a uniform distribution (waveform 2)

has a PSD slope of zero. Taking the Fourier
transform of a square wave (waveform
12) gives a frequency spectrum of odd
harmonics only, with a slope of exactly

−2 (the Gibbs phenomenon). Another
expected result is that ARFIMA is pre-
ferred for series produced as HfGn (except
HfGn = 0.5).
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TO SELF-AFFINITY . . . AND BEYOND!
It seems possible to remove implicit
assumptions about system ontology from
fractal analysis by defining dimension
as the planar extent of a finite curve.
Direct estimates based on curve length
and 2D box-counting provide a consistent
relative ordering on this dimension. An
informed conversion scheme using esti-
mates of self-affine structure obtained
from PSD, DFA, and SDA analyses give
similar results. Some exceptions were pre-
dicted, but ARFIMA modeling could not
be included in the approach due to incon-
sistent analysis results. A mono-fractal
perspective was explored here, but there is
no reason to assume it cannot be extended
to the multi-fractal framework as well.

Exact numerical similarity of estimates
is sacrificed for the convergence of esti-
mates to a similar relative ordering. This
sacrifice is acceptable given that in prin-
ciple, even the best estimates of dimen-
sion and self-affinity leave us blind to
the physical processes that generated the
waveform. I suggest that claims about the
physics of the system need to be evalu-
ated by comparing the empirical accuracy
of theoretical predictions in a program
of strong inference, not by comparing fit
indices.

REFERENCES
Correll, J. (2011). Order from chaos? 1/f Noise pre-

dicts performance on reaction time measures.
J. Exp. Soc. Psychol. 47, 1–6.

Diniz, A., Wijnants, M. L., Torre, K., Barreiros,
J., Crato, N., Bosman, A. M. T., et al. (2011).
Contemporary theories of 1/f noise in motor con-
trol. Hum. Mov. Sci. 30, 889–905.

Einstein, A. (1916). Die Grundlage der allgemeinen
Relativitätstheorie. Annalen der Physik. 354,
769–822.

Fiedler, K., Kutzner, F., and Krueger, J. I. (2012).
The long way from α-error control to valid-
ity proper: problems with a short-sighted
false-positive debate. Perspect. Psychol. Sci. 7,
661–669.

Gilden, D. L., and Hancock, H. (2007). Response vari-
ability in attention-deficit disorders. Psychol. Sci.
18, 796–802.

Goldberger, A. L., Amaral, L. A. N., Hausdorff, J.
M., Ivanov, P. C., Peng, C.-K., and Stanley, H. E.
(2002). Fractal dynamics in physiology: alterations
with disease and aging. Proc. Natl. Acad. Sci. U.S.A.
99(Suppl. 1), 2466–2472.

Hausdorff, F. (1919). Dimension and äusseres Mass.
Math. Ann. 79, 157–179.

Heisenberg, W. (1963). Oral History Interview of
Werner Heisenberg by Thomas Kuhn. Archive
for the History of Quantum Physics. Cambridge,
MA: Harvard University. [deposit at Harvard
University, Cambridge, MA].

Higuchi, T. (1988). Approach to an irregular time
series on the basis of the fractal theory. Physica D
31, 277–283.

Holden, J. G., Choi, I., Amazeen, P. G., and Van
Orden, G. (2011). Fractal 1/f dynamics suggest
entanglement of measurement and human perfor-
mance. J. Exp. Psychol. Hum. Percept. Perform. 37,
935–948.

Kantz, H., and Schreiber, T. (2003). Nonlinear
Time Series Analysis, 2nd Edn. Cambridge, UK:
Cambridge University Press.

Katz, M. J. (1988). Fractals and the analysis of wave-
forms. Comput. Biol. Med. 18, 145–156.

Kello, C. T., Beltz, B. C., Holden, J. G., and Van
Orden, G. C. (2007). The emergent coordination
of cognitive function. J. Exp. Psychol. Gen. 136,
551–568.

Kello, C. T., Brown, G. D. A., Ferrer-i-Cancho, R.,
Holden, J. G., Linkenkaer-Hansen, K., Rhodes, T.,
et al. (2010). Scaling laws in cognitive sciences.
Trends Cogn. Sci. 14, 223–232.

Kuznetsov, N. A., Wallot, S., Alexander, E., and Ihlen,
F. (2011). Effects of accuracy feedback on frac-
tal characteristics of time estimation. Front. Integr.
Neurosci. 5:62. doi: 10.3389/fnint.2011.00062

Mandelbrot, B. B. (2001). Scaling in financial prices:
III. Cartoon Brownian motions in multifractal
time. Quant. Finance 1, 427–440.

Mandelbrot, B. B., and Van Ness, J. (1968). Fractional
brownian motions, fractional noises and applica-
tions. SIAM Rev. 10, 422–437.

Morrison, F. (2008). The Art of Modeling Dynamic
Systems: Forecasting for Chaos, Randomness
and Determinism. Mineola, NY: Dover
Publications, Inc.

Platt, J. (1964). Strong inference. Science 146,
347–353.

Poincaré, H. (1905). Science and Hypothesis (Trans. p.
Science and Hypothesis). New York, NY: The Walter
Scott Publishing Co., Ltd.

Raghavendra, B. S., and Dutt, D. N. (2010).
Computing fractal dimension of signals using
multiresolution box-counting method. Int. J. Inf.
Math. Sci. 6, 50–65.

Reisen, V. A., and Lopes, S. (1999). Some simula-
tions and applications of forecasting long-memory
time-series models. J. Stat. Plan. Inference 80,
269–287.

Roberts, S., and Pashler, H. (2000). How persuasive is
a good fit? A comment on theory testing. Psychol.
Rev. 107, 358–367.

Roberts, S., and Pashler, H. (2002). Reply to Roders
and Rowe (2002). Psychol. Rev. 109, 605–605.

Sevcik, C. (1998). A procedure to estimate the
fractal dimension of waveforms. Complexity
International, 05. Available online at: http://www.
complexity.org.au/ci/vol05/sevcik/sevcik.html

Sevcik, C. (2006). On fractal dimension of waveforms.
Chaos Solitons Fractals 28, 579–580.

Silva, E. M., Franco, G. C., Reisen, V. A., and
Cruz, F. R. B. (2006). Local bootstrap approaches
for fractional differential parameter estimation in
ARFIMA models. Comput. Stat. Data Anal. 51,
1002–1011.

Stadnitski, T. (2012). Measuring fractality. Front.
Physiol. 3:127. doi: 10.3389/fphys.2012.00127

Stephen, D. G., Anastas, J. R., and Dixon, J. A. (2012).
Scaling in cognitive performance reflects mul-
tiplicative multifractal cascade dynamics. Front.
Physiol. 3:102. doi: 10.3389/fphys.2012.00102

Theiler, J. (1990). Estimating fractal dimension. J. Opt.
Soc. Am. A 7, 1055.

Thornton, T. L., and Gilden, D. L. (2005). Provenance
of correlations in psychological data. Psychon. Bull.
Rev. 12, 409–441.

Toomer, G. J. (1984). Ptolemy’s Almagest. New York,
NY: Springer-Verlag.

Torre, K., and Wagenmakers, E.-J. (2009). Theories
and models for 1/f(beta) noise in human move-
ment science. Hum. Mov. Sci. 28, 297–318.

Turvey, M. T. (2007). Action and perception at the
level of synergies. Hum. Mov. Sci. 26, 657–697.

Van Orden, G. C., Kello, C. T., and Holden, J. G.
(2010). Situated behavior and the place of mea-
surement in psychological theory. Ecol. Psychol. 22,
24–43.

Van Orden, G. C., Kloos, H., and Wallot, S. (2009).
“Living in the pink: intentionality, wellbeing, and
complexity,” in Handbook of the Philosophy of
Science, ed C. Hooker (Amsterdam: Elsevier),
639–682.

Vicsek, T. (2001). Fluctuations and Scaling in Biology.
Oxford: Oxford University Press.

Wagenmakers, E.-J., Farrell, S., and Ratcliff, R.
(2005). Human cognition and a pile of sand:
a discussion on serial correlations and self-
organized criticality. J. Exp. Psychol. Gen. 134,
108–116.

West, B. J. (2010). Homeostasis and Gauss statis-
tics: barriers to understanding natural variability.
J. Eval. Clin. Pract. 16, 403–408.

Wijnants, M. L., Bosman, A. M. T., Hasselman, F.,
Cox, R. F. A., and Van Orden, G. C. (2009). 1/f
scaling in movement time changes with practice in
precision aiming. Nonlin. Dyn. Psychol. Life Sci. 13,
79–98.

Wijnants, M. L., Hasselman, F., Cox, R. F. A.,
Bosman, A. M. T., and Van Orden, G. (2012a).
An interaction-dominant perspective on read-
ing fluency and dyslexia. Ann. Dyslexia 62,
100–119.

Wijnants, M. L., Cox, R. F. A., Hasselman,
F., Bosman, A. M. T., and Van Orden, G.
(2012b). A trade-off study revealing nested
timescales of constraint. Front. physiol. 3:116. doi:
10.3389/fphys.2012.00116

Will, C. (2005). “Special relativity: a centenary per-
spective,” in Einstein, 1905–2005: Poincaré Seminar
2005, Vol. 47, eds T. Damour, O. Darrigol,
B. Duplantier, and V. Rivasseau (Basel-Boston-
Berlin: Birkhäuser Verlag), 33–58.

Xiao, Y. (2008). Packing dimension, Hausdorff
dimension and Cartesian product sets. Math. Proc.
Camb. Philos. Soc. 120, 535.

Received: 18 January 2013; accepted: 21 March 2013;
published online: 08 April 2013.
Citation: Hasselman F (2013) When the blind curve
is finite: dimension estimation and model inference
based on empirical waveforms. Front. Physiol. 4:75. doi:
10.3389/fphys.2013.00075
This article was submitted to Frontiers in Fractal
Physiology, a specialty of Frontiers in Physiology.
Copyright © 2013 Hasselman. This is an open-access
article distributed under the terms of the Creative
Commons Attribution License, which permits use, dis-
tribution and reproduction in other forums, provided
the original authors and source are credited and sub-
ject to any copyright notices concerning any third-party
graphics etc.

Frontiers in Physiology | Fractal Physiology April 2013 | Volume 4 | Article 75 | 4

http://www.complexity.org.au/ci/vol05/sevcik/sevcik.html
http://www.complexity.org.au/ci/vol05/sevcik/sevcik.html
http://dx.doi.org/10.3389/fphys.2013.00075
http://dx.doi.org/10.3389/fphys.2013.00075
http://dx.doi.org/10.3389/fphys.2013.00075
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive

	When the blind curve is finite: dimension estimation and model inference based on empirical waveforms
	A Plea for Strong Inference
	On Fractal Scaling and Planetary Orbits
	Finite Self-Affinity: The Blind Curve and the Perimeter Walk
	Intuitive Dimension
	Informed Dimension Estimates
	To Self-Affinity … and Beyond!
	References


