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Mitochondria serve as a “powerhouse” which provides near 90% of ATP necessary for
cell life. However, recent studies provide strong evidence that mitochondria also play a
central role in cell death. Mitochondrial permeability transition (mPT) at high conductance
in response to oxidative or other cellular stresses is accompanied by pathological and non-
specific mPT pore (mPTP) opening in the inner membrane of mitochondria. Mitochondrial
PTP can serve as a target to prevent cell death under pathological conditions such as car-
diac and brain ischemia/reperfusion injury and diabetes. On the other hand, mPTP can be
used as an executioner to specifically induce cell death thus blocking tumorigenesis in can-
cer diseases. Despite many studies, the molecular identity of the mPTP remains unclear.
Cyclophilin D (CyP-D) plays an essential regulatory role in pore opening.This review will dis-
cuss direct and indirect mechanisms underlying CyP-D interaction with a target protein of
the mPTP complex. Understanding of the mechanisms of mPTP opening will be helpful to
further develop new pharmacological agents targeting mitochondria-mediated cell death.
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MITOCHONDRIAL PERMEABILITY TRANSITION AND CELL
DEATH
Studies over the past 30 years demonstrated that, in addition to
their role in cell life, mitochondria are the main executioners of
cell death in response to oxidative stress. Accumulation of ROS
along with Ca2+ overload induces is mitochondrial permeability
transition (mPT) that is associated with non-selective pathological
PT pore (mPTP) opening in the inner membrane of mitochon-
dria (IMM). Opening of the mPTP is accompanied by loss of the
mitochondrial membrane potential and proton gradient across
the IMM. At low electrochemical potential, F 0F1-ATPase induces
ATP hydrolysis in an attempt to maintain the mitochondrial
membrane potential, and adenine nucleotide translocase (ANT)
functions in a “reverse mode”, transporting ATP to the matrix.
Mitochondrial PT can occur at low and high conductance leading
to reversible of irreversible consequences. Reversible mPTPs are
permeable to ions and solutes with the molecular mass <300 Da,
and do not induce notable matrix swelling (Brenner and Moulin,
2012). This mode may be important in regulation of mitochondr-
ial Ca2+ homeostasis since mitochondrial Ca2+ efflux is inhibited
by the immunosupressor cyclosporine A (CsA) in various cells
including cardiomyocytes (Altschuld et al., 1992). Furthermore,
the low-conductance mode can initiate mitochondrial depolar-
ization spikes generating and conveying calcium signals (waves)
from one mitochondrion to another (Ichas et al., 1997). In a high
conductance mode, solutes, water, and ions with the molecular
mass up to ∼1.5 kD enter through the mPTP thus enhancing
colloid-osmotic pressure in the matrix. This causes rupture of
the outer membrane of the mitochondria (OMM) leading to
cell death via apoptosis and/or necrosis depending on the ATP
level in cells. Opening of the mPTP is regulated by ions (P i, H+,

Ca2+, Mg2+), ROS, adenine nucleotides, ubiquinones (Halestrap
et al., 1998; Bernardi, 1999; Crompton, 1999), and many other
factors.

CYCLOPHILIN D IS THE ONLY DEFINED mPTP COMPONENT
Although mPT induction has been broadly accepted as a well-
known phenomenon the molecular identity of the mPTP still
remains elusive. Initially three proteins, ANT in the IMM, voltage-
dependent anion channel (VDAC or porin) in the OMM, and
cyclophilin D (CyP-D) in the matrix were proposed as the main
structural components of the mPTP. In addition, the benzo-
diazepine receptor, hexokinase, creatine kinase, Bcl2, phosphate
carrier (PiC), and other proteins may play regulatory roles in pore
opening (Weiss et al., 2003). Later, genetic studies conducted in
knock-out mice demonstrated that mitochondria containing nei-
ther VDAC nor ANT were still susceptible to Ca2+-induced mPTP
induction therefore excluding the role of these proteins as the
essential structural components of the mPTP (Kokoszka et al.,
2004; Basso et al., 2005; Baines et al., 2007). However, mitochon-
dria isolated from Cyp-D-/- mice were more resistant to mPTP
opening than wild-type mice and exhibited mPT induction at
higher [Ca2+], and less cell death in response to oxidative stress
(Baines et al., 2005; Nakagawa et al., 2005). In addition, mPTP-
mediated cell death preferably occurred through necrosis rather
than apoptosis as CyP-D-/- cells were resistant to necrotic stim-
uli but demonstrated similar sensitivity to apoptotic factors as
wild-type cells (Nakagawa et al., 2005). It must be noted that
although genetic studies revealed VDAC and ANT as the non-
essential pore components, many questions related to the role of
these proteins in mPT induction remain unresolved. Recently, PiC
was identified as an essential component of the mPTP although
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studies on PiC knock-out mice are still required to validate these
data (Varanyuwatana and Halestrap, 2012). The presence of a
large number of proteins in the IMM and the dynamic struc-
ture of the pore complex apparently make difficult to uncover
its molecular identity. Here we will focus on CyP-D, which on
the basis of multiple genetic and biochemical studies has been
accepted as a key regulator and component of the pore opening.
CyP-D belongs to cyclophilins known as peptidyl-prolyl cis–trans
isomerases, a family of proteins that catalyze the cis-trans isomer-
ization of peptydyl-prolyl bonds, and possess chaperone activity
to regulate protein folding. There are seven major cyclophilin
isoforms found in subcellular compartments including the cyto-
plasm (CyP-D, CyP-NK, CyP-40), endo(sarco)plasmic reticulum
(CyP-B, CyP-C), nucleus (CyP-E), and mitochondria (CyP-D) (Lee
and Kim, 2010). Notably, individual cyclophilins can have dis-
tinct effects on cell survival under pathological conditions. Studies
performed on various cancer models and tissue samples from
patients demonstrated that overexpression of CyP-A stimulates
cancer cell growth (reviewed in Lee and Kim, 2010). On the other
hand, expression of CyP-D, a soluble matrix protein, is associated
with mPTP opening and cell death during ischemia/reperfusion
in the heart and brain. CyP-D is a nuclear encoded protein widely
expressed in all mammalian tissues. It contains a mitochondrial
targeting presequence which is cleaved after its translocation into
the matrix (Connern and Halestrap, 1992). Homozygous CyP-
D knock-out mice exhibit normal phenotype (Basso et al., 2005;
Nakagawa et al., 2005) although develop insulin resistance (Rieus-
set et al., 2012). In addition to its role in pore opening, CyP-D
has been shown to catalyze folding of newly imported proteins
in the matrix of mitochondria (Matouschek et al., 1995). Recent
studies on human SH-SY5Y neuroblastoma cells demonstrated

that CyP-D can also act as a redox sensor in mitochondria of
mammalian cells (Linard et al., 2009), and regulate Ca2+ exchange
between endoplasmic reticulum and mitochondria (Rieusset et al.,
2012).

THE ROLE OF CyP-D IN PORE OPENING
The mechanisms of interaction of CyP-D with a target protein(s)
in the IMM and the induction of conformational changes of the
target protein to form the mPTP complex remain unrevealed.
Importantly, the translocation of CyP-D from the matrix to the
IMM and its interaction with a target protein to induce pore open-
ing in response to oxidative stress can occur through both direct
and indirect mechanisms (Figure 1). Direct binding of CyP-D to
a target protein in the IMM can be triggered by activation of the
latter in response to oxidative stress. Oxidative stress can induce
conformational changes of the target protein by chemical mod-
ification and/or alterations in the inner membrane topography
due to increased matrix swelling. Most, if not all, previous studies
were focused on ANT as a target protein interacting with CyP-D
to initiate the pore opening. Initial studies provided strong evi-
dence that Ca2+-triggered conformational change of the ANT is a
key step in mPTP opening which is facilitated by CyP-D binding.
GST-CyP-D pull-down and co-immunoprecipitation studies on
isolated mitochondria revealed CsA-sensitive binding of CyP-D to
ANT (Crompton et al., 1998; Woodfield et al., 1998). Also, oxida-
tive stress sensitizes the mPTP to [Ca2+] by antagonizing adenine
nucleotide binding, and enhances CyP-D binding to the ANT
(McStay et al., 2002). Chemical modifications of three cysteine
residues (Cys56, Cys159, and Cys256) in ANT in response both to
oxidative stress and thiol reagents were shown to be associated with
a conformational change of the exchanger (Majima et al., 1993).

FIGURE 1 | Proposed direct and indirect mechanisms of CyP-D interaction with a target protein of the mPTP complex.
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Two distinct thiol groups have been identified to participate in the
modulation of mPTP activity (Costantini et al., 1996), and cysteine
residues in the ANT may represent these thiol groups that regulate
the binding affinity of the ANT for CyP-D and ADP (Halestrap
et al., 1997). Consequently, oxidative stress or thiol reagents have
been shown to induce cross-linking of two matrix facing cysteine
residues (Cys56 and Cys159) of ANT that modulate mPTP activ-
ity through the CyP-D-ANT interaction (Halestrap and Brenner,
2003). Direct binding of CyP-D to a target protein in the IMM
can also occur through activation of the former. In fact, Cys203
residue of Cyp-D has been shown to play a crucial role in oxidative
stress induced activation of mPTP in mouse embryonic fibroblasts
(Nguyen et al., 2011). CyP-D can be activated in the matrix due to
post-translational modification, which may facilitate its transloca-
tion to the IMM and initiate mPT (Figure 1). Moreover, CyP-D can
undergo post-transitional modifications (phosphorylation, nitro-
sylation, acetylation, etc.) on specific site(s) which would increase
its activity to interact with a target protein. However, at present,
there are rather few studies directly showing post-translational
modifications of CyP-D. Recent studies also discovered that acety-
lation of CyP-D due to inhibition of the mitochondrial isoform
of sirtuins, SIRT 3, a NAD+ dependent deacetylase, increased
interaction of CyP-D with ANT (Shulga and Pastorino, 2010). Fur-
thermore, CyP-D acetylation was associated with reduced SIRT3
expression and increased pore opening in heart failure induced by
transverse aortic constriction (Hafner et al., 2010) and myocardial
infarction (Parodi-Rullan et al., 2012) in rodents. In addition, sig-
nificant fraction of GSK-3beta has been shown to be co-localized
with CyP-D in mitochondria, suggesting thus a potential regula-
tory role for GSK-3beta in pore opening. Active GSK is shown
to phosphorylate CyP-D in an ERK1/2-dependent manner, and
phospho-CyP-DSer/Thr promoted depolarization of mitochondria
and pore opening (Rasola et al., 2010). Conversely, pharmacolog-
ical inhibition of GSK-3beta prevented the phosphorylation of
CyP-D, which may lead to the inhibition of the mPT in murine
tubular epithelial cells (Bao et al., 2012). Post-translational modi-
fication of CyP-D induced by nitrosylation may also be important
in regulating of the mPTP. In vitro studies using proteins and
cells revealed that both NO and ONOO− can affect ANT and
increase mPT in a CsA-sensitive manner (Vieira et al., 2001),
suggesting a key role of nitrosylation in the activation of pore
opening. Nitric oxide can induce or inhibit the mPT depending on
its concentration in the cell (Burwell and Brookes, 2008). Recent
studies demonstrated that treatment of heart homogenates with
GSNO resulted in S-nitrosylation of CyP-D on cysteine-203 (Kohr
et al., 2011). Increased nitration of CyP-D as well as VDAC and
ANT on tyrosine was found in mitochondria of neurons after
cortical injury which was associated with elevated ROS produc-
tion and cell death (Martin et al., 2011). However, it is not clear
yet how nitrosylated CyP-D interacts with the target protein to
induce mPT. Recent in vitro studies demonstrated that CyP-D
association to the lateral stalk of F 0F1-ATP synthase modulates
the activity of the complex, and the ATP synthase-CyP-D inter-
actions were modulated by P i and CsA, respectively, increasing
and decreasing CyP-D binding to the enzyme (Giorgio et al.,
2009). Interestingly, P i was specifically required for PTP desen-
sitization by CsA or by CyP-D ablation (Basso et al., 2008) as well

as for inhibition of mPTP by blocking the complex I (Li et al.,
2012).

Indirect binding of CyP-D to a target protein(s) in the IMM can
occur through its interaction with other proteins in the matrix.
Most recent studies demonstrated that in response to oxidative
stress induced by brain ischemia/reperfusion injury p53, a tumor
suppressor protein, accumulates in the mitochondrial matrix and
triggers mPTP opening and necrosis by physical interaction with
CyP-D (Vaseva et al., 2012). Conversely, reduction of p53 lev-
els or treatment of mice with CsA prevented the p53-Cyp-D
complex opening which was associated with effective stroke pro-
tection (Vaseva et al., 2012). Likely, p53 triggers translocation of
CyP-D to the IMM and therefore facilitates the pore opening
through interaction with a pore protein(s). However, the study
demonstrated no regulation of calcium-dependent MPTP open-
ing by p53. It is not clear how p53-CyP-D interaction senses and
induces mPTP opening in a Ca2+-independent manner (Karch
and Molkentin, 2012). Notably, binding of CyP-D to a matrix
protein in cancer cells may have an opposite effect, leading to
inhibition of the mPTP. Also, it has been demonstrated that
abundant expression of Hsp60 in mitochondria of tumor cells is
associated with increased levels of the Hsp60-CyP-D complexes
and reduced mPTP opening (Ghosh et al., 2010). Conversely,
Hsp90 antagonists directed to mitochondria caused severe mito-
chondrial dysfunction and selective tumor cell death inhibiting
the interaction of Hsp90 with CyP-D (Kang et al., 2007). Like-
wise, interaction of CyP-D with Bcl2 has been shown to exert an
anti-apoptotic effect, and CsA, disrupted the CyP-D-Bcl2 inter-
action. The anti-apoptotic effect of CyP-D in some cancer cells
which overexpress the protein can be explained by CyP-D-Bcl2
interaction to suppress apoptosis in these cells (Eliseev et al.,
2009).

Thus, accumulating data suggest that activation of CyP-D
and its interaction with the mPTP complex can occur through
different mechanisms including (i) post-translational modifi-
cation of the protein, (ii) direct interaction with an active
target protein, and/or (iii) indirectly via binding to a matrix
protein.

CONCLUSION
Irreversible mPTP opening acts as a target and executioner of cell
death under pathological conditions such as cardiac and brain
ischemia/reperfusion, diabetes, and cancer. Although mPT is a
well-known phenomenon, the molecular identity of the mPTP
complex is still unidentified. Existing studies provide strong evi-
dence that CyP-D plays a regulatory role in mPT, and under-
standing the mechanism(s) of CyP-D activation and its inter-
action with the mPTP complex is important in developing new
pharmacological agents to modulate mitochondria-mediated cell
death.
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