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Bats use frequency-modulated echolocation to identify and capture moving objects in
real three-dimensional space. The big brown bat, Eptesicus fuscus, emits linear period
modulation sound, and is capable of locating static objects with a range accuracy of
less than 1 μs. A previously introduced model can estimate ranges of multiple, static
objects using linear frequency modulation (LFM) sound and Gaussian chirplets with a
carrier frequency compatible with bat emission sweep rates. The delay time for a single
object was estimated with an accuracy of about 1.3 μs by measuring the echo at a low
signal-to-noise ratio. This model could estimate the location of each moving object in
two-dimensional space. In this study, the linear period modulation sounds, mimicking the
emitting pulse of big brown bats, were introduced as the emitted signals. Echoes were
measured from moving objects at two receiving points by intermittently emitting these
sounds. It was clarified that this model could localize moving objects in two-dimensional
space by accurately estimating the object ranges.
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INTRODUCTION
Bats emit high-frequency sound waves, allowing them to track
and catch flying insects (Griffin, 1958; Simmons et al., 1995).
Bats perceive the location of moving objects in three-dimensional
(3D) space using frequency modulation. Experimental evidence
indicates that bats are capable of locating static objects at high
signal-to-noise ratios (SNRs) achieving sub-microsecond accu-
racy (Simmons, 1979; Menne et al., 1989; Moss and Schnitzler,
1989; Simmons et al., 1990). In echolocation, many kinds of
bats, including Eptesicus fuscus and Noctilio leporinus, emit lin-
ear period modulation (LPM) sound, the instantaneous period
of which increases linearly with time. It was clarified that the
LPM signal is useful for the range estimation of moving objects
because of its Doppler tolerance using matched filters (Altes and
Titlebaum, 1970; Altes and Skinner, 1977). Several previously
proposed models estimate the delay times of multiple objects
from an echo spectrogram, which is computed by IIR filters or
short-time Fourier transform, which corresponds to convolution
of the constant-frequency (CF) carrier wave at each frequency
(Saillant et al., 1993; Matsuo et al., 2001; Neretti et al., 2003).
However, it is difficult to accurately determine the delay time
for each object using the peak time, because the integration
time of the cochlear filters is long. An echolocation model was
proposed to estimate the delay times of multiple objects from
the time–frequency pattern using linear frequency modulation
(LFM) sound (Matsuo and Yano, 2004; Matsuo et al., 2004;
Matsuo, 2011, 2013). In this model, the time–frequency pattern
is computed through the convolution of Gaussian chirplet fil-
ters for which the carrier frequency agrees with the sweep rate of
emission (Matsuo and Yano, 2004; Matsuo et al., 2004; Matsuo,

2011, 2013). It was demonstrated that this proposed model could
estimate the range of the moving object or accurately localize the
moving object in two-dimensional (2D) space using the interau-
ral range difference (IRD), computed as the difference between
the object’s range at two receiving points. In addition, Gaussian
chirplet filters have been proposed for LPM sounds (Guarato
et al., 2011). The present study examines whether this model
can localize moving objects in 2D space from echoes, which are
measured from static and moving objects at two receiving points
by intermittently emitting LPM sounds, corresponding to the
emitting pulse of big brown bats.

METHODS
Acoustic data were recorded in a soundproof chamber (length ×
width × height = 2.8 m × 1.7 m × 1.8 m). The measuring sys-
tem, including one loudspeaker, two microphones, and objects
to be detected were located on an optical base (Chuo Precision
Industrial, TT-D6090), as shown in Figure 1. The loudspeaker
and microphones were placed at a height of 70 cm, and the dis-
tance between them was 4 cm. The origin was defined as the
center of the speaker’s surface. The reflecting objects used were
erect poles (radius of 8 mm) set on a rotating table controlled by
a computer via an electric rotary actuator (Taiyo, ESR1).

The emitted signal was generated by a computer (National
Instruments, PXI-8106), digital-to-analog (DA) converted (PXI-
5412), amplified (TDT, ED1), and emitted by the loudspeaker
(TDT, ES1). The sampling frequency of the DA converter was
1 MHz, and the resolution was 16 bits. The echoes reflected
by the objects were recorded using a 1/8-inch condenser micro-
phone (Brüel & Kjær, 4138), amplified (Brüel & Kjær, NEXUS
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FIGURE 1 | Measuring system (top view) with a pole set on a rotating

table.

FIGURE 2 | Characteristics of the loudspeaker. The solid curve shows the
amplitude spectrum computed from the measured waveform with the
loudspeaker facing the microphone. The dotted curve shows the noise
level.

2670, 2690), bandpass-filtered (NF, CF-4BL, CF-4BH), and
analog-to-digital (AD) converted (NI, PXI-6133). The sampling
frequency of the AD converter was 400 kHz, and the resolution
was 14 bits. The temperature was measured in the chamber to
compute the sound velocity. To estimate the characteristics of the
measuring system, LFM sound, sweeping from 135 to 5 kHz over
2 ms, was used and the waveform was measured when the loud-
speaker and microphone were positioned face-to-face. Figure 2
shows the spectrum computed by taking the Fourier transform
of the measured waveform. At a distance of 40 cm, the maxi-
mum and average values for the amplitude spectrum in the range
of 30–100 kHz were 98.6 and 89.3 decibels sound pressure level
(dB SPL), respectively, and the half-power (3-dB) bandwidth was
32 kHz (Matsuo, 2013).

In this paper, the bat-like LPM sound signal was synthesized by
referring to the sound emitted by a big brown bat, Eptesicus fus-
cus, during approach of an object. The sound duration was almost
1.9 ms and the LPM signal started at 53 kHz and swept down to
25 kHz. Figure 3A shows the emitted waveform. The echoes were
measured from the rotating pole for two situations. The first mea-
surement was of the echo from the object moving back and forth,
and the second was of the echo from the object moving from side
to side. In addition, to clarify the effect of the Doppler shift on the
accuracy, echoes from the static object were measured.

MODEL
TRANSFORMATION OF THE WAVEFORM INTO A SPECTROGRAM
USING CHIRPLET FILTERS
The waveforms of the object echoes were entered into the
echolocation model discussed in the Introduction. They were
transformed into spectrograms in a manner that simulated the
process in the mammalian cochlea. The temporal changes in the
interference pattern were extracted using Gaussian chirplet fil-
ters with a carrier frequency consistent with the sweep rate of
emission (Matsuo and Yano, 2004; Matsuo et al., 2004; Guarato
et al., 2011). The temporal characteristics of the filter can be
described by

F(fj, t) = exp

(
− t2

αj

)
exp

(
2πj

ln(kt + l)

k

)
(1)

Here fj (kHz) is the center frequency for the jth bandpass filter, t
is time (s), and αj is a parameter that describes the width of the
window function:

αj = w/2

ln(0.7)
,

w = bw

(
f1
fj

)
,

where f1 is the start frequency of the signal and bw is the filter’s
base bandwidth fixed as 160 μs. Constants k and l are defined by

k = fsta − fend

dur · fsta · fend
,

l = 1 − k · tsta · fsta

fsta
,

where dur is the duration of the signal, fsta (53 kHz) and fend

(25 kHz) are the starting and end frequencies of the signal, and tsta

is the start time of the signal. The bandpass filter bank comprised
24 filters with center frequencies ranging 27–50 kHz, positioned
at regular intervals. The quality factor at 10 dB (Q10 dB) values
ranges from 1.7 at 27 kHz to 3.1 at 50 kHz.

The waveforms for both the emitted waves and the echoes were
transformed into a spectrogram P(f, t) through convolution with
the filters as shown in Equation 1. Figure 3B shows the outputs of
the cochlear filters for the emitted waveform. Figure 3C shows the
temporal pattern corresponding to the spectrogram P(f, t) of the
emission for one filter (with a center frequency of 30 kHz). The
shapes of the temporal patterns corresponding to the spectrogram
P(f, t) for all filters were the same because the window lengths
were set dependent on center frequencies.

To demonstrate the output from the cochlear filters, we con-
sidered the situation of a static object with position (x, y)
of (0 mm, 450 mm) and range of 901.8 mm. Figure 4A shows
the measured waveforms including the object’s echo as well
as the sound transmitted from the loudspeaker. The spectro-
gram P(f, t), which was computed from the outputs of the
Gaussian chirplets, was transformed into a range-frequency
pattern Secho (f , τ) with 10-μs intervals by compensating for
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FIGURE 3 | (A) Emission waveform. (B) Emission spectrogram, computed
by convolution of the Gaussian chirplets. (C) The temporal emission pattern
Wemi corresponds to the spectrogram for one bandpass filter (with a center
frequency of 30 kHz).

the sweep rate, as shown in Figure 4B. The compensation
time is denoted τ, and it is implied that the range corre-
sponds to the delay time since the start time of emission was
zero.

DETERMINATION OF THE OBJECT’S RANGE AND LOCATION IN 2D
SPACE
The delay time for one object, T1, was estimated from the range–
frequency pattern around the onset (Matsuo et al., 2004; Matsuo,
2011, 2013). First, the averaged pattern was computed by the inte-
gration of bandpass filter channels. The delay times for the onset
and offset were determined using a threshold corresponding to
almost four times the noise level (Matsuo, 2011, 2013). T1 and the
corresponding reflectivity, r1, were uniquely determined from the
averages of the two spectra at the onset delay time τon and 10 μs
later. Figure 4C shows the averaged pattern, which was computed
from the range–frequency pattern shown in Figure 4B. In this
case, the delay time τ of the onset was estimated using a thresh-
old of 2630 μs. The black curve in Figure 5 shows candidates
for T1 according to the reflected intensity distribution estimated

FIGURE 4 | (A) Echo waveform. (B) Range–frequency pattern computed
from the spectrogram, through convolution of the Gaussian chirplets. (C)

Averaged pattern computed by integration of bandpass filter channels.

FIGURE 5 | Determination of T1. The solid curve shows candidates for the
reflected intensity distribution estimated from Secho at onset delay time
τon. The dotted curve shows candidates for the reflected intensity
distribution estimated from Secho at 10 μs after τon. T1 was determined by
estimating the correspondence between the reflectivity of candidates at
each delay timepoint.

from the average of Secho at the onset delay τon (2630 μs). The
red curve shows candidates estimated from the average of Secho

10 μs after τon (2640 μs). The delay time for T1 was deter-
mined to be 2678 μs, corresponding to 908.6 mm, by comparing
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the correspondence between the reflected intensities of the two
candidates.

The location of the object in 2D space was determined by the
difference between the object’s ranges at the two microphones.
The object’s position (x, y) is represented by polar coordinates
(r, θ):

x = r sin(θ),

y = r cos(θ),

where r is the distance between the speaker and the object, and
θ the direction of the object with respect to the horizontal axis.
The distance r between the speaker and object was obtained from
the mean of the ranges at the two microphones. If r >> d, corre-
sponding to the distance between two microphones, the direction
of the object, θ, was computed from this difference, �r, using the
approximation

θ = sin−1
(

�r

d

)

The object was continuously tracked by estimating its position at
each timepoint.

RESULTS
LOCALIZATION OF ONE POLE MOVING BACK AND FORTH
To evaluate the effect of the Doppler shift on the localization
accuracy, the echoes from one object moving back and forth
were measured and analyzed. The center of rotation was fixed at
(250 mm, 450 mm) and the radius of rotation was 250 mm. The
circles in Figure 6A show the estimated range along the time axis.
The object’s range could be estimated accurately using the tempo-
ral changes of echo spectra at the onset time. Figure 6B shows the
IRD at each timepoint when the pole was moving back to forth.
As shown in Figure 6C, the errors of the IRD were less than 4 mm.
The circles and curves in Figure 6D show the estimated location
and position of the object in 2D space. The locations of one pole
could be estimated using the object’s ranges for two microphones.

LOCALIZATION OF ONE POLE MOVING FROM SIDE TO SIDE
To evaluate the model’s performance for different movements, the
echoes from one pole moving from side to side were measured

FIGURE 6 | Outputs for one object, moving back and forth with a rotation radius of 250 mm. (A) Estimated and actual ranges. (B) Estimated IRDs. (C)

Estimation errors of IRDs. (D) Estimated and actual positions in 2D space.
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and analyzed. First, the center of rotation was fixed at (0 mm,
575 mm) and the radius of rotation was 125 mm. The circles and
curves in Figure 7A show the estimated range and the object’s
actual range along the time axis. The object’s range could be esti-
mated using the temporal changes of echo spectra at the onset
time. The circles and curves in Figure 7B show the estimated
location and object’s position in 2D space, respectively. One pole
could be localized except for side positions.

In the second measurement scenario, the center of rotation was
fixed at (0 mm, 700 mm) and the radius of rotation was 250 mm.
The circles and curves in Figure 8A show the estimated range and
the object’s actual range along the time axis. The object’s range
could be estimated using the temporal changes of echo spectra
at the onset time. The circles and curves in Figure 8B show the
estimated location and object’s position in 2D space, respectively.
One pole could be localized except for side positions.

DISCUSSION AND CONCLUSION
Bats can locate and discriminate between individual objects even
when the objects are moving (Griffin, 1958; Webster and Griffin,
1962; Griffin et al., 1965; Simmons et al., 1995). In a previous

FIGURE 7 | Outputs for one object, moving side to side with a rotation

radius of 125 mm. (A) Estimated and actual ranges. (B) Estimated and
actual positions in 2D space.

study, echoes were measured from a moving object while emit-
ting (LFM) sound intermittently. The object’s range and location
in 2D space was estimated by extracting the temporal changes
of echo spectra. In this paper, bat-like LPM sound was used to
localize a moving object. It was demonstrated that this model
could extend the localization of the moving object from echoes
using the LPM signal. For this model, the errors in the IRD were
less than 4 mm, corresponding to 12 μs, as shown in Figure 6,
while the errors in the IRD using the LFM signal (Matsuo, 2013)
were less than 2 mm, corresponding to 6 μs. The range accuracy
was dependent on the signal-to-noise ratio (SNR) and the fre-
quency bandwidth (Burdic, 1968; Menne and Hackbarth, 1986;
Simmons et al., 2004; Boonman and Ostwald, 2007). The fre-
quency bandwidths were 23 kHz in this model using the LPM
signal, and 70 kHz in the previous model using the LFM signal.
It is thought that the difference of errors is due to differences in
frequency bandwidths of the emitted sound.

Bat can perceive the object in 3D space by localizing object’s
distance and direction. Directional information by real bats
has previously been investigated by measuring the head-related
transfer function (Wotton et al., 1995; Aytekin et al., 2004;

FIGURE 8 | Outputs for one object, moving from side to side with a

rotation radius of 250 mm. (A) Estimated and actual ranges.
(B) Estimated and actual positions in 2D space.
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Mey et al., 2008). Therefore, it is necessary to extend to local-
ize objects in 3D space using the IRD in combination with the
interaural level difference and the transfer function.

In this paper, only the first harmonics of the LPM signal
were used. Eptesicus fuscus emits ultrasonic frequency modulation
sounds containing two prominent downward-sweeping harmon-
ics. In behavioral studies, echo-delay perception was disrupted
by small temporal misalignments of echo harmonics (Bates and

Simmons, 2011; Bates et al., 2011). Thus, the temporal cues for
two harmonics are important to echolocation in nature. In future
work, it will be necessary to extend this model to describe these
results using harmonic sound signals.
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