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Membrane potential (Vm), the voltage across the plasma membrane, arises because
of the presence of different ion channels/transporters with specific ion selectivity and
permeability. Vm is a key biophysical signal in non-excitable cells, modulating important
cellular activities, such as proliferation and differentiation. Therefore, the multiplicities of
various ion channels/transporters expressed on different cells are finely tuned in order
to regulate the Vm. It is well-established that cancer cells possess distinct bioelectrical
properties. Notably, electrophysiological analyses in many cancer cell types have revealed
a depolarized Vm that favors cell proliferation. Ion channels/transporters control cell volume
and migration, and emerging data also suggest that the level of Vm has functional
roles in cancer cell migration. In addition, hyperpolarization is necessary for stem
cell differentiation. For example, both osteogenesis and adipogenesis are hindered in
human mesenchymal stem cells (hMSCs) under depolarizing conditions. Therefore, in the
context of cancer, membrane depolarization might be important for the emergence and
maintenance of cancer stem cells (CSCs), giving rise to sustained tumor growth. This
review aims to provide a broad understanding of the Vm as a bioelectrical signal in cancer
cells by examining several key types of ion channels that contribute to its regulation. The
mechanisms by which Vm regulates cancer cell proliferation, migration, and differentiation
will be discussed. In the long term, Vm might be a valuable clinical marker for tumor
detection with prognostic value, and could even be artificially modified in order to inhibit
tumor growth and metastasis.
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INTRODUCTION
The presence of various ion channels and transporters at the
plasma membrane provides different permeability to distinct
ions, such as Na+, K+, Ca2+, and Cl−. Due to the unequal dis-
tribution of these ions, a voltage difference exists between the
cytoplasm and the extracellular environment, which is known
as the membrane potential (Vm). Vm is expressed relative to the
extracellular environment. A cell is depolarized when the Vm is
relatively less negative, whereas a hyperpolarized cell possesses a
more negative Vm. Vm changes because of alterations in the con-
ductance of one or more types of ion. The Goldman–Hodgkin–
Katz equation shows that the Vm depends on the permeability
(P) and both the intracellular and extracellular concentrations of
major ions (Goldman, 1943; Hodgkin and Katz, 1949):
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where R is the ideal gas constant, T the temperature, and F the
Faraday constant. In addition, intercellular communications (e.g.,
gap junction connections) are also able to influence Vm (Hulser
and Lauterwasser, 1982; Levin, 2007a). In excitable cells, such
as neurons and muscle fibers (Nakajima and Horn, 1967; Bean,
2007), changes in Vm underlie the action potential (AP) wave-
form. APs fire in response to a depolarization that exceeds a

threshold value. Fine-tuning of APs is tightly regulated by the
activities of several key ion channels and transporters, including
voltage-gated Na+ channels (VGSCs), voltage-gated K+ channels
(Kv), and the Na+/K+-ATPase (Caldwell and Keynes, 1957; Hille,
1992).

Emerging evidence suggests that the Vm also plays important
functional roles in non-excitable cells. In the late 1960’s, while
studying mitotic activities in sarcoma cells, Clarence D. Cone
Jr. reported that Vm underwent hyperpolarization before enter-
ing M phase, and suggested that the level of Vm correlated with
cell cycle progression (Cone, 1969). He subsequently showed that
membrane hyperpolarization reversibly blocked DNA synthesis
and mitosis (Cone, 1970). He later generalized existing data at
that time and postulated that the Vm level was correlated with
the level of differentiation. For example, terminally differenti-
ated cells (e.g., fibroblasts and epithelium) possess hyperpolarized
Vm (Cone, 1971). Since then, changes in Vm, representing the
long-term, slowly changing bioelectric gradient in non-excitable
cells (Lobikin et al., 2012), have been shown to control crit-
ical cell functions including proliferation, migration, and dif-
ferentiation (Binggeli and Weinstein, 1986; Schwab et al., 2007;
Blackiston et al., 2009; Sundelacruz et al., 2009). Recently, studies
have also demonstrated that Vm is able to, directly or indi-
rectly, control wound healing (Nuccitelli, 2003a,b; McCaig et al.,
2009), left-right patterning (Adams et al., 2006), development
(Nuccitelli, 2003a; Adams, 2008), and regeneration (Levin, 2007b,
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2009). Therefore, given the increasing evidence showing that ion
channels/transporters functionally participate in cancer progres-
sion (Kunzelmann, 2005; Fiske et al., 2006; Stuhmer et al., 2006;
Prevarskaya et al., 2010; Becchetti, 2011; Brackenbury, 2012), it
is not surprising that Vm has been implicated in cancer develop-
ment, since Vm is itself determined by the combined activities of
ion channels/transporters at the cell membrane. This article aims
to summarize current understanding of the Vm as a bioelectric
regulator in cancer, and examines the therapeutic potential of Vm

for tumor detection and treatment.

CANCER CELLS POSSESS DEPOLARIZED Vm

Cone’s theory proposing the general correlation between prolif-
eration and Vm (Cone, 1971) was supported by several previous
studies which demonstrated significant Vm depolarization during
malignant transformation of normal cells (Tokuoka and Morioka,
1957; Johnstone, 1959). Direct in vitro and in vivo compar-
isons of Vm levels between normal and cancerous breast cells
(Marino et al., 1994), hepatocytes and hepatocellular carcinoma
cells (Binggeli and Cameron, 1980; Stevenson et al., 1989), nor-
mal and neoplastic adrenocortical tissues (Lymangrover et al.,
1975), normal embryonic fibroblasts and fibrosarcoma (Binggeli
and Weinstein, 1985), benign and cancerous skin cells (Melczer
and Kiss, 1957; Woodrough et al., 1975), and between normal
and cancerous ovarian tissue (Redmann et al., 1972) showed that
cancer cells tended to be more depolarized than their normal
counterparts. In addition, the intracellular Na+ level is markedly
higher in tumors compared to non-cancerous tissues, whereas the
K+ level remains more stable (Smith et al., 1978; Cameron et al.,
1980; Sparks et al., 1983). A similar scenario occurs in fast pro-
liferating Chinese hamster ovary (CHO) and 3T3 cells (Cone and
Tongier, 1973). Thus, an increased intracellular Na+ concentra-
tion could be a determinant of a depolarized phenotype in rapidly
cycling cancer cells.

Recordings from rodent and human tissues have revealed that
proliferative cells, especially rapidly proliferating tumor cells,
displayed depolarized Vm, whereas non-proliferating, terminally
differentiated somatic cells, such as muscle cells and neurons, are
characterized by their hyperpolarized Vm (Figure 1) [reviewed
in Binggeli and Weinstein (1986)]. Given these findings, is Vm

merely an epiphenomenon, which only indicates the outcome
of the activities of various ion channels and transporters, or is
it is actually a functional instructor that is capable of promot-
ing tumorigenesis? A similar question had been posed 50 years
ago soon after Cone revealed the relationship between mitotic
activity and Vm level (Cone and Tongier, 1971). For example,
depolarization can initiate mitosis in CHO cells and mouse spleen
lymphocytes (Cone and Tongier, 1971; Kiefer et al., 1980). By
contrast, hyperpolarized Vm immediately precedes mitotic arrest
(Cone and Tongier, 1973). More recently, in vivo evidence shows
that membrane depolarization itself, regardless of the types of
ions and ion channel/transporter proteins, is able to bring cancer-
ous transformation (i.e., increased proliferation, change in mor-
phology and abnormal angiogenesis) in Xenopus laevis embryos
(Lobikin et al., 2012).

Hanahan and Weinberg proposed 10 hallmarks of cancer,
including sustaining proliferative signaling, activating invasion

FIGURE 1 | Membrane potential (Vm) scale. Rapidly proliferating cancer
cells possess depolarized Vm, while the Vm of quiescent cells is generally
more negative. Proliferative somatic cells are also depolarized, suggesting
that Vm is functionally instructive in cell development (Levin, 2007b). Scale
adapted from Binggeli and Weinstein (1986), with additional data from
Fraser et al. (2005); Mycielska et al. (2005); Yang et al. (2012).

and metastasis, and angiogenesis (Hanahan and Weinberg, 2011).
The following sections review the prevailing evidence that impli-
cates Vm in several of these processes.

Vm AND CANCER CELL PROLIFERATION
In general, in both highly proliferative tumor and non-tumor
cells, depolarization is believed to serve as a signal that could
initiate mitosis and DNA synthesis (Orr et al., 1972; Binggeli
and Weinstein, 1986). Artificially altering Vm by modulating the
extracellular ionic constitution or applying the Na+/K+-ATPase
inhibitor ouabain revealed interesting results: First, hyperpolariz-
ing CHO cells to −45 mV started to induce mitotic arrest and cell
division was fully blocked at −75 mV. The cell cycle was resumed
by depolarizing the cells to −10 mV (Cone, 1971). Secondly, qui-
escent (G0) mature chick spinal cord neurons showed mitotic
activity after depolarization (Cone and Cone, 1976) (Figure 2).
Recently, artificial control of Vm was accomplished in Xenopus
laevis embryos by expressing glycine-gated Cl− channels and
applying the activator ivermectin. Depolarization (caused by low-
ering the Cl− concentration in the extracellular medium, which
caused Cl− efflux) was found to be directly responsible for malig-
nant proliferation. This proliferation was ion and ion channel
non-specific, because (1) the phenotype caused by depolariza-
tion could be rescued by expressing a hyperpolarizing chan-
nel gene, and (2) the malignant phenotype could be induced
or suppressed simply by adjusting extracellular Cl− concentra-
tion, as predicted by Goldman–Hodgkin–Katz equation (Lobikin
et al., 2012). Therefore, the depolarized Vm frequently found in
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FIGURE 2 | Membrane potential (Vm) changes during the cell cycle. Vm

undergoes hyperpolarization at G1/S border, by virtue of K+ efflux through
various K+ channels. Before cells enter M phase, increased Cl− efflux
accompanies Vm depolarization. Quiescent cells at G0 stage show mitotic
activities after Vm depolarization (Cone and Cone, 1976).

cancerous cell types could be regarded as a “sustaining prolif-
erative signal” that instructs cells to rapidly advance in the cell
cycle.

An additional layer of complexity in this model is that the Vm

fluctuates during cell cycle progression, and follows a multi-step
and rhythmic pattern (Wonderlin and Strobl, 1996; Blackiston
et al., 2009) (Figure 2). A number of studies suggest that mem-
brane hyperpolarization at the G1/S checkpoint is generally
required for S phase initiation. For example, depolarizing the cell
membrane halts G1/S progression in glia (Canady et al., 1990),
Schwann cells (Wilson and Chiu, 1993), lymphocytes (Price et al.,
1989; Freedman et al., 1992; Wang et al., 1992), V79 Chinese ham-
ster lung cells (Sachs et al., 1974), C1300 mouse neuroblastoma
cells (Boonstra et al., 1981), and MCF-7 human breast cancer cells
(Wonderlin et al., 1995). The Vm then appears to remain rela-
tively hyperpolarized through S phase in some cell types (Sachs
et al., 1974; Boonstra et al., 1981; Strobl et al., 1995; Wonderlin
et al., 1995), but is more depolarized in others (Arcangeli et al.,
1995; Macfarlane and Sontheimer, 2000). The G2/M transition
exhibits a depolarized Vm (Sachs et al., 1974; Boonstra et al., 1981;
Blackiston et al., 2009), although it is not known whether or not
this depolarization is a prerequisite for progression. In fact, the
exact Vm thresholds for driving progression appear to depend
heavily on cell type, the state of differentiation, and the density
of cell monolayer in culture (Cone and Tongier, 1973; Blackiston
et al., 2009).

Importantly, the fluctuation of Vm levels across the cell cycle
does not necessarily contradict the observation that depolarized
Vm could be a hallmark of cancer cells. The mean Vm val-
ues in cancer cells are consistently depolarized relative to most
normal somatic cell types (Figure 1). For example, MCF-7 cells
arrested at G1 phase have a Vm of −9 mV and hyperpolar-
ize to ∼ −30 mV in the S phase (Wonderlin et al., 1995). Both

these values are more depolarized than normal breast cells, e.g.,
the mean Vm of unsynchronized MCF-10A cells is between −40
and −58 mV (Marino et al., 1994; Wonderlin et al., 1995; Fraser
et al., 2005).

Evidence suggests that the fluctuation in K+ concentration
plays a significant contribution to changes in Vm during the cell
cycle. For example, in neuroblastoma and Ehrlich ascites cells,
there is a transient decrease in K+ efflux before entering the G2

phase, a relatively high level of K+ efflux during the M phase
(Mills and Tupper, 1976; Boonstra et al., 1981). Given the diver-
sity of K+ channel types (Hille, 1992; Miller, 2000; Wang, 2004),
their relative contributions to the Vm and Vm-dependent cell cycle
progression is probably context-dependent and highly complex.
For example, inhibition of cell proliferation with K+ channel
inhibitors does not correlate with changes in the Vm in rat C6
glioma cells (Rouzaire-Dubois et al., 2000). In addition, the Vm is
likely to be determined by the collective activities of a variety of
ions/channels/transporters, which may exhibit reciprocal interac-
tions and form a large and complex network responsible for Vm

regulation and its downstream effects.

ION CHANNEL-DEPENDENT REGULATION OF
PROLIFERATION AND Vm

Numerous studies have shown that pharmacological or genetic
block of Kv channels reduces proliferation of cancer cells (e.g.,
Fraser et al., 2000; Ouadid-Ahidouch et al., 2000; Abdul and
Hoosein, 2002; Chang et al., 2003; Menendez et al., 2010).
Increasing evidence suggests that Ether à go-go (EAG) K+ chan-
nels may serve as biomarkers for cancer (Ouadid-Ahidouch et al.,
2001; Farias et al., 2004; Pardo et al., 2005; Hemmerlein et al.,
2006; Ousingsawat et al., 2007; Ortiz et al., 2011; Rodriguez-
Rasgado et al., 2012). Inhibition of EAG channel expression
reduces proliferation in several cancer cell lines, whereas implan-
tation of CHO cells over-expressing EAG channels in mice
induces tumors (Pardo et al., 1999). In synchronized SH-SY5Y
cells, human IEAG is reduced to less than 5% in G1 phase, com-
pared to unsynchronized controls, suggesting that the activity of
EAG channels is cell cycle-dependent (Meyer and Heinemann,
1998). Indeed, in MCF-7 cells, inhibiting EAG channels with
astemizole increases the proportion of cells in G1 phase and
reduces the proportion in S phase (Borowiec et al., 2007). In
contrast, activation of hEAG channels is responsible for hyperpo-
larization at late G1 before the cells enter the S phase (Ouadid-
Ahidouch et al., 2001). Interestingly, the hyperpolarization is
accompanied by increased Ca2+-activated K+ (KCa) channel cur-
rents (Ouadid-Ahidouch et al., 2001), which might result from
the elevated intracellular Ca2+ due to the increased electrochem-
ical gradient (Figure 3) (Nilius and Wohlrab, 1992; Ouadid-
Ahidouch and Ahidouch, 2008).

When KCa channels were found in Friend murine ery-
throleukemia cells, they were thought to be one of the main
controllers of the Vm (Arcangeli et al., 1987). KCa channels have
been found since in glioma (Liu et al., 2002), prostate cancer
(Gessner et al., 2005), breast cancer (Haren et al., 2010), and
the CD133+ subpopulation of SH-SY5Y cells (Park et al., 2010).
Inhibiting KCa channels with iberiotoxin arrests D54-MG glioma
cells in S phase, and leads to apoptosis (Weaver et al., 2004).
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FIGURE 3 | Key ion channels that regulate Vm and cell cycle progression

in cancer. Hyperpolarizing channels (outward IK , red) would increase the
driving force for Ca2+ influx through voltage-independent channels, whereas
inwardly rectifying K+ channels (predominantly inward IK , green) and chloride
channels (outward Cl−, green) would depolarize the Vm, thus enabling
activation of voltage-dependent Ca2+ influx (Schwab et al., 2012). Time- and

domain-dependent Ca2+ signaling is then proposed to activate pathways that
promote cell cycle progression and proliferation. Abbreviations: KCa,
Ca2+-activated K+ channel; EAG, ether à go-go channel; Kv , voltage-gated K+
channel; KATP , ATP-sensitive K+ channel; K2P , two-pore domain K+ channel;
ERG, EAG-related gene K+ channel; Kir , classic inward-rectifier K+ channel;
ClC2/3, chloride 2/3 channel.

Thus, the functional contribution of KCa channels to cell cycle
regulation appears to be distinct from Kv channels. In addition,
in MCF-7 cells, inhibition of ATP-sensitive K+ (KATP) channels
reversibly arrests cells in the G0/G1 phase (Woodfork et al., 1995).
The two-pore domain K+ channel, TREK1, increases prolifera-
tion of PC-3 and LNCaP prostate cancer cells (Voloshyna et al.,
2008). In CHO cells, overexpression of TREK1 increases the num-
ber of cells in S phase, and reduces the number of cells at G0/G1

phase (Voloshyna et al., 2008).
Human EAG-related gene (HERG) K+ channels are strongly

inwardly rectifying and conduct K+ influx when the voltage is
more negative than the K+ equilibrium potential (Trudeau et al.,
1995; Smith et al., 1996). HERG channels are expressed at early
developmental stages in the neural crest, central nervous system,
dorsal root ganglion (DRG) and skeletal muscle, and are replaced
by classic inward rectifier K+ current (IKir) later in development
(Arcangeli et al., 1997; Crociani et al., 2000). HERG channels are
upregulated in a number of cancers (Arcangeli, 2005). Moreover,
IHERG increases tumor cell proliferation (Bianchi et al., 1998;
Wang et al., 2002). The activity of IHERG itself is cell cycle depen-
dent (Arcangeli et al., 1995), suggesting a complex relationship
between IHERG, Vm, and proliferation. Additional inward recti-
fier K+ (Kir) channels have been reported in various cancer cell
types, and are required for proliferation, including Kir2.2 (Lee
et al., 2010), Kir3.1, and Kir3.4 (Plummer et al., 2004; Takanami
et al., 2004; Plummer et al., 2005; Wagner et al., 2010). In con-
trast, overexpression Kir4.1 in glioma cells hyperpolarizes the Vm

and increases the number of cells in quiescent G0/G1, reducing
the proportion in G2/M phase (Higashimori and Sontheimer,

2007). Thus, different Kir channels may play opposing roles in
regulation of Vm/proliferation, as a result of their heterogeneous
voltage dependence (Figure 3). Cl− conductance also appears
to be linked to the cell cycle and regulate proliferation. For
example, in D54-MG cells, Cl− efflux through the outward recti-
fying ClC3 Cl− channel is significantly increased during M phase
(Habela et al., 2008). In addition, the ClC2 channel is expressed
in M phase in transfected NRK-49F rat kidney fibroblast cells
(Zheng et al., 2002).

The mechanisms underlying ion channel-dependent prolifera-
tion of cancer cells have been reviewed in detail elsewhere (Wang,
2004; Ouadid-Ahidouch and Ahidouch, 2008; Prevarskaya et al.,
2010). These include possible non-conducting, direct interac-
tions between ion channels and other pro-proliferative sig-
naling mechanisms. For example, coexpression of HERG and
tumor necrosis factor receptor 1 (TNFR1) has been found at
the cell membrane of SKBR3 and SH-SY5Y cell lines, and
HERG appears to recruit TNFR1 to the membrane, therefore
enhancing TNF-α-induced cancer cell proliferation (Wang et al.,
2002). Alternatively, ion channel-mediated Vm hyperpolariza-
tion would increase the electrochemical gradient for Ca2+ and
therefore elevate the intracellular Ca2+ concentration through
voltage-independent Ca2+ channels, such as transient receptor
potential (TRP) channels (Nilius and Wohlrab, 1992; Wang,
2004; Ouadid-Ahidouch and Ahidouch, 2008). Ca2+ signal-
ing is functional across the whole cell cycle (Santella et al.,
2005). For example, Ca2+ is required for G1 progression and
G1/S transition (Hazelton et al., 1979; Choi et al., 2006). In
turn, intracellular Ca2+ and calmodulin (CaM) can regulate
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KCa and EAG channels (Khanna et al., 1999; Ziechner et al.,
2006; Ouadid-Ahidouch and Ahidouch, 2008). Thus, there
may be a reciprocal, auto-regulatory relationship between
ion channel activity, Vm, intracellular Ca2+ signaling, and
proliferation.

In summary, a multiplicity of ion channels (predominantly
K+-conducting) participates in Vm regulation (both depolariza-
tion and hyperpolarization) in cancer cells. In turn, changes in
Vm promote transition through cell cycle checkpoints. Changes
in Vm are likely to trigger intracellular signaling messengers such
as Ca2+ in order to drive sustained proliferation.

ROLE OF Vm IN CANCER CELL MIGRATION
Metastasis involves loss of adhesion at the primary site,
increased migration and invasion, circulation through the vas-
cular/lymphatic systems and growth of secondary tumors at
distant sites (Gupta and Massague, 2006; Prevarskaya et al., 2010).
Among the various steps in the metastatic cascade, it is well-
established that cell migration is tightly controlled by the move-
ment of ions and water [Figure 4; reviewed in depth in Schwab
et al. (2007, 2012)]. Vm is regarded as an indirect factor that can
affect cell migration, whose main regulatory role might be set-
ting up the electrical driving force for Ca2+ (Prevarskaya et al.,
2010; Schwab et al., 2012). A hyperpolarized Vm can increase
intracellular Ca2+ via TRP channels, whereas membrane depo-
larization could activate voltage-gated Ca2+ channels (Schwab
et al., 2012). Intracellular Ca2+ displays a concentration gradient
in migrating cells, with lowest concentration at the leading edge
(Brundage et al., 1991). During cell migration, oscillations in
Ca2+ concentration are observed within microdomains, such that
Ca2+ flickering is highest in the lamellipodia (Wei et al., 2009).
These fluctuations play a role in regulating tractional forces (Lee
et al., 1999; Ridley et al., 2003), direction sensing, and cytoskele-
ton reorganization (Pettit and Fay, 1998). Vm may also affect
downstream intracellular signaling cascades that could contribute

FIGURE 4 | Relationship between Na+, K+, Cl− channels and Vm in

cancer cell migration. Vm provides the driving force for Ca2+, and
downstream Ca2+ signaling leads to cell migration (Schwab et al., 2012).
Vm also regulates cytoskeleton reorganization (Chifflet et al., 2003, 2004).
Cl− and K+ channels both contribute to Vm regulation and cell volume
control (Soroceanu et al., 1999; Sontheimer, 2008; Habela et al., 2009;
Schwab et al., 2012). Inhibiting particular Na+, K+, and Cl− channels can
reduce cancer cell migration (Sontheimer, 2008; Brackenbury, 2012;
Schwab et al., 2012).

to cell migration in a Ca2+-independent way (Figure 4). For
example, in kidney epithelial cells, Vm depolarization induces
diphosphorylation of myosin light chain (MLC) without induc-
ing Ca2+ signaling, but instead by activating the Rho-Rho kinase
(ROK) pathway (Szaszi et al., 2005). In addition, actin filaments
undergo reorganization following Vm depolarization in bovine
eye endothelial and epithelial cells (Chifflet et al., 2003, 2004),
suggesting a functional role for Vm in cytoskeletal reorganiza-
tion, although it is not clear whether or not Ca2+ is involved.
Furthermore, applied electrical fields, which would impact on
Vm, can enhance motility and galvanotaxis (Djamgoz et al., 2001;
Levin, 2003, 2009; Schwab et al., 2012).

A number of Na+, K+, and Cl− channels, that potentially
contribute to the Vm, are directly implicated in cancer cell migra-
tion. For example, functional VGSCs have been found in a num-
ber of cancer types [reviewed in Brackenbury (2012)], and sup-
pressing VGSCs with siRNA or pharmacological agents inhibits
migration and invasion (Roger et al., 2003; Fraser et al., 2005;
Brackenbury et al., 2007; House et al., 2010; Yang et al., 2012).
In several breast carcinoma/melanoma cell lines, KCa2.3, which
is responsible for maintaining a hyperpolarized Vm, enhances
migration, likely via promotion of intracellular Ca2+ signaling
(Potier et al., 2006; Chantome et al., 2009). In addition, KCa3.1
activity causes a local shrinkage at the rear of migrating MDCK-F
cells, therefore supporting retraction at this pole during move-
ment (Schwab et al., 2006). In order to maintain electroneutrality,
K+ efflux must be accompanied by an anion, and Cl− is the most
likely candidate (Schwab et al., 2007, 2012). In agreement with
this, Cl− channels, which contribute to the depolarized Vm in
glioma cells, enhance migration and invasion by permitting the
release of K+, Cl−, and water at the leading edge, resulting in
shrinkage and facilitating movement into tortuous extracellular
spaces (Soroceanu et al., 1999; Sontheimer, 2008; Habela et al.,
2009; Schwab et al., 2012).

In conclusion, a direct role for Vm in regulating cancer cell
migration is much less clear than for proliferation. Given the great
variety of ion channels and transporters that are involved in the
process of cell migration, the concept of the “transportome” has
been proposed (Schwab et al., 2012), which implies that rather
than individual ion channels or transporters, it is a complex net-
work of ion translocators that directs the migration and invasion
of cells (Figure 4). Further work is required to establish to what
extent Vm directly impacts on this network.

Vm AND THE DIFFERENTIATION OF CANCER STEM CELLS
Stem cells and cancer cells share similar properties, such as the
ability to differentiate and self-renew, increased membrane trans-
porter activity and the ability to migrate and metastasize (Wicha
et al., 2006). The cancer stem cell (CSC) hypothesis contains two
key concepts: (1) cancers arise from dysregulated transformation
of normal tissue stem cells or progenitor cells, and (2) cellular
components that display stem cell properties can lead to cancer
progression (Wicha et al., 2006). In contrast to normal, regu-
lated asymmetric division of stem cells during tissue homeostasis,
where a stem cell produces one copy of itself and one cell that later
differentiates into a mature cell, the dysregulation of transformed
CSCs during tumorigenesis involves “symmetric division” in
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FIGURE 5 | Vm in normal stem cell (SC) differentiation and

hypothesized role for Vm in cancer stem cells (CSCs). Depolarized Vm

is needed during the maintenance of SCs. SC undergoes asymmetric
division where it produces one copy of itself and one progeny that later
differentiate into mature cells. The maturation requires Vm

hyperpolarization (Sundelacruz et al., 2008). However, CSCs frequently
undergo symmetric division, in which one CSC divides into two identical
CSC progenies (Wicha et al., 2006). Sustained Vm depolarization may help
to maintain the increasing CSCs in an undifferentiated state. Proliferation
of CSCs then increases cancer malignancy.

which each malign CSC generates two identical daughter cells
(giving rise to either proliferation or differentiation), which sig-
nificantly expands the malign stem cell reservoir (Figure 5) (Liu
et al., 2005).

A role for Vm in differentiation of normal stem cells has
been previously reported. Studies in quail neural crest cells and
a subpopulation of SH-SY5Y cells have demonstrated that stem
cells exhibit distinct bioelectrical profiles during development
(Arcangeli et al., 1997; Biagiotti et al., 2006; Sundelacruz et al.,
2009). In particular, a hyperpolarized Vm is required during
stem cell maturation (Sundelacruz et al., 2009). For example,
Kir-induced Vm hyperpolarization is required during human
myoblast fusion (Liu et al., 1998). In a genome-wide microar-
ray analysis of depolarization-regulated genes in postnatal mouse
cerebellar granule neurons, among 87 depolarization-responsive
genes, 22 are developmentally up-regulated and 26 are devel-
opmentally down-regulated (Sato et al., 2005). Remarkably, 18
of the 22 (82%) developmentally up-regulated genes coincide
with depolarization down-regulated genes, and 20 of 26 (77%)
developmentally down-regulated genes with depolarization up-
regulated genes (Sato et al., 2005). Vm hyperpolarization is
also a functional determinant of human mesenchymal stem cell
(hMSC) differentiation. Pharmacologically-induced Vm depolar-
ization suppresses adipogenic and osteogenic differentiation of
hMSCs (Sundelacruz et al., 2008). In addition, depolarization
reduces the differentiated phenotype of hMSC-derived cells and
improves their ability to transdifferentiate, without fully restor-
ing a stem cell-like genetic profile (Sundelacruz et al., 2013).
Taken together, these data suggest that Vm depolarization may

maintain cells in an undifferentiated stage at the gene expres-
sion level. Therefore, it is not unreasonable to postulate that
depolarized Vm may also help maintain a population of undiffer-
entiated CSCs (Figure 5). This possibility would raise additional,
related questions: does a more depolarized Vm promote the pro-
liferation of CSCs? Does Vm affect the pattern of symmetric vs.
asymmetric division? Further work is required to investigate these
possibilities.

CLINICAL IMPLICATIONS
Given that the fluctuation of Vm can functionally regulate tumori-
genesis, differentiation, and promote cancer progression, it may
serve as a potential marker for tumor detection and treatment,
with prognostic value. For example, bioelectrical impedance anal-
ysis, which determines tissue electrical properties, has shown
promise as a prognostic indicator to monitor cancer progres-
sion (Gupta et al., 2004a,b); , and recently, the development of
non-invasive, voltage-sensitive optical probes provides a poten-
tial approach for in vivo Vm measurement (Adams and Levin,
2012; Chernet and Levin, 2013). Considering the vast array of
therapeutic drugs that target ion channels (Sontheimer, 2008;
Stuhmer and Pardo, 2010; D’amico et al., 2013; Djamgoz and
Onkal, 2013), modulating the Vm of malign tissues by adjusting
the activities of varies ion channels/transporters may provide a
convenient clinical approach.
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