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It has been observed that times series of gait parameters [stride length (SL), stride
time (ST), and stride speed (SS)], exhibit long-term persistence and fractal-like properties.
Synchronizing steps with rhythmic auditory stimuli modifies the persistent fluctuation
pattern to anti-persistence. Another non-linear method estimates the degree of resilience
of gait control to small perturbations, i.e., the local dynamic stability (LDS). The method
makes use of the maximal Lyapunov exponent, which estimates how fast a non-linear
system embedded in a reconstructed state space (attractor) diverges after an infinitesimal
perturbation. We propose to use an instrumented treadmill to simultaneously measure
basic gait parameters (time series of SL, ST, and SS from which the statistical persistence
among consecutive strides can be assessed), and the trajectory of the center of pressure
(from which the LDS can be estimated). In 20 healthy participants, the response to
rhythmic auditory cueing (RAC) of LDS and of statistical persistence [assessed with
detrended fluctuation analysis (DFA)] was compared. By analyzing the divergence curves,
we observed that long-term LDS (computed as the reverse of the average logarithmic
rate of divergence between the 4th and the 10th strides downstream from nearest
neighbors in the reconstructed attractor) was strongly enhanced (relative change +73%).
That is likely the indication of a more dampened dynamics. The change in short-term LDS
(divergence over one step) was smaller (+3%). DFA results (scaling exponents) confirmed
an anti-persistent pattern in ST, SL, and SS. Long-term LDS (but not short-term LDS)
and scaling exponents exhibited a significant correlation between them (r = 0.7). Both
phenomena probably result from the more conscious/voluntary gait control that is required
by RAC. We suggest that LDS and statistical persistence should be used to evaluate the
efficiency of cueing therapy in patients with neurological gait disorders.
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INTRODUCTION
During walking, individuals are able to voluntarily adjust their
gait to external cues, such as floor markers, metronomes, or the
moving belt of a motorized treadmill. External spatial or temporal
stimuli could facilitate movement: namely, cued walking exhibits
positive effects on various gait characteristics of neurologically
impaired patients (Thaut and Abiru, 2010), such as patients
with Parkinson’s Disease (PD; Nieuwboer et al., 2007), or stroke
(Thaut et al., 2007; Roerdink et al., 2009). In PD patients, syn-
chronizing steps with an external rhythmic stimulus (Rhythmic
Auditory Cueing, RAC), significantly improves walking speed,
stride length (SL), and cadence (Lim et al., 2005). Similarly, it
has been suggested that a treadmill could act as an external cue
to enhance gait rhythmicity and reduce gait variability (speed
cueing; Frenkel-Toledo et al., 2005), which may improve SL, max-
imal speed and balance (Bello et al., 2013). Combining several
cues together seems to provide further enhancements: treadmill
training associated with auditory and visual cues might give bet-
ter results than more conventional treatments (Frazzitta et al.,
2009).

Although empirical evidence supports the use of cued walking
in neurorehabilitation practice, many aspects of the underly-
ing neurophysiological mechanisms are not yet fully understood
(Bello and Fernandez-Del-Olmo, 2012). It is thought that a con-
tinuous control of kinematic fluctuations is required in order
to minimize energy expenditure and fall risks (Zarrugh et al.,
1974; Bauby and Kuo, 2000; Donelan et al., 2001). Those contin-
uous optimizations likely imply both feedforward (from internal
models) and feedback (from sensory inputs) mechanisms (Kuo,
2002), which require low attentional demands and are highly
automated: the existence of specific structures at the spinal level
(central pattern generators) is strongly suspected (Dimitrijevic
et al., 2006). In contrast, synchronizing movement with rhythmic
auditory cues requires complex supraspinal mechanisms, which
induce increased neuronal activity in sensorimotor cortex, sup-
plementary motor area, premotor cortex, inferior parietal cortex,
basal ganglia, and cerebellum (Repp and Su, 2013).

While the neurophysiological mechanisms of cued walk-
ing have not yet been fully characterized, it is evident that
synchronizing gait with external stimuli mobilizes specific
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supraspinal/cortical processes, which add to basic gait control.
That activation modifies the stride-to-stride fluctuation pattern
of basic gait parameters. Indeed, an interesting feature of gait con-
trol is that reasonable deviations from the mean persist across
subsequent strides: time series of stride time (ST), SL, and stride
speed (SS) exhibit substantial long-range autocorrelation (statis-
tical persistence), probably due to feedback loops in gait control
(Hausdorff et al., 1995; Terrier et al., 2005). In other words, a
larger stride as compared to average SL is more likely to be fol-
lowed by subsequent larger strides. In overground walking, RAC
induces a strong anti-persistence in ST time series (Terrier et al.,
2005; Sejdic et al., 2012), while a persistent pattern is conserved
in SL and SS (Terrier et al., 2005). Anti-persistence means that
deviations in one direction are statistically more likely to be fol-
lowed by subsequent deviations in the opposite direction (i.e.,
longer strides are more likely to be followed by shorter strides).
Similarly, treadmill walking (speed cueing) seems to induce an
anti-persistent pattern in SS only (Dingwell et al., 2010), while
ST and SL remain persistent. When both treadmill and RAC are
combined, all three parameters (ST, SL, and SS) are anti-persistent
(Terrier and Dériaz, 2012). The anti-persistent pattern could be
induced by fast over-correction of deviations in the controlled
variable, which results in continuous oscillations around target
values (Dingwell et al., 2010; Terrier and Dériaz, 2012).

The local dynamic stability (LDS) is another approach that
has been proposed to characterize non-linear properties of gait
variability. It evaluates the faculty to maintain steady progres-
sion despite the constant presence of small internal control errors
or small external disturbances. Gait LDS can be characterized
using the maximal Lyapunov exponent, which is a parameter that
assesses how fast a system diverges from neighboring points in a
state space that characterizes the dynamic of the system (Brown,
1996; Dingwell and Cusumano, 2000; Dingwell, 2006; Terrier and
Dériaz, 2011). Modeling studies (Roos and Dingwell, 2010; Bruijn
et al., 2011), as well as experimental studies in healthy individu-
als (McAndrew et al., 2011; Van Schooten et al., 2011; Hak et al.,
2012), provide some evidences that LDS is actually related to fall
risk. Furthermore, recent clinical studies observe that older peo-
ple at risk for falling exhibited lower LDS (Lockhart and Liu, 2008;
Toebes et al., 2012). A recent review concludes that LDS is among
the best gait stability indexes for fall risk prediction (Bruijn et al.,
2013).

While it is still uncertain whether LDS could constitute a
relevant and usable proxy for fall risk, LDS is a valid non-
linear measure of gait variability based on sound theoretical
background (Dingwell, 2006; Stergiou and Decker, 2011). It can
therefore serve to highlight potential changes in the fluctuations
of continuously measured kinematics variables induced by var-
ious conditions, such as cued walking. The method implies to
measure the average divergence rate among neighboring tra-
jectories (see appendix A). Computing the short-term diver-
gence (short-term LDS) corresponding to one stride or one step
is likely the most relevant time scale to estimates gait stabil-
ity (Bruijn et al., 2013). However, a longer time scale (long-
term LDS, classically between the 4th and the 10th stride after
the initial perturbation, see Figure A2) has been also proposed
(Dingwell and Cusumano, 2000). Studies have highlighted an

opposite responsiveness between short-term and long-term LDS
in experiments that artificially destabilized healthy individuals
(McAndrew et al., 2011; Van Schooten et al., 2011). Moreover,
it has been shown that treadmill walking induces higher short-
term and long-term LDS as compared with overground walking
(Dingwell et al., 2001; Terrier and Dériaz, 2011). On the other
hand, it has been recently observed that RAC induced a higher
long-term LDS in overground walking, with no significant change
in short-term LDS (Sejdic et al., 2012). The significance of those
findings remains unclear and deserves further investigations. In
particular, the combination of RAC and treadmill walking and its
effect on LDS has not been studied.

The statistical persistence/anti-persistence and LDS of walking
characterize distinct aspects of gait control (Terrier and Dériaz,
2011). Assuming an autoregressive stochastic process, statistical
persistence quantifies temporal dynamics of discrete events (ST,
SL, SS) over hundreds of consecutive strides, and serves to char-
acterize the feedbacks in locomotor control (Dingwell et al., 2010;
Terrier and Dériaz, 2011, 2012). Assuming a chaotic system, LDS
quantifies temporal dynamics in continuous signals (acceleration,
speed, position) and assesses the degree of resilience of motor
control to small perturbations over shorter timescales (Dingwell,
2006; Roos and Dingwell, 2010). Although these two indexes seem
loosely related from a theoretical point of view, they are both
responsive to cued walking (Dingwell et al., 2001; Terrier and
Dériaz, 2011; Sejdic et al., 2012). A treadmill experiment revealed
a strong correlation between long-term LDS and statistical per-
sistence (Jordan et al., 2009), but this was contradicted by others
(Terrier and Dériaz, 2011). Therefore, more results are needed
to assess whether correlations exist between LDS and statistical
persistence and to clarify the mechanism behind such a potential
association.

LDS has been computed from several kinematics parame-
ters (e.g., accelerations, joint angle) using various measurement
technique (e.g., video analysis, accelerometer, goniometer). Each
method has its own drawbacks and advantages. In order to ana-
lyze persistent pattern in time series of ST and SL, we proposed
the use of a treadmill, instrumented with foot-pressure sen-
sors aimed at dynamic plantar pressure assessment (Terrier and
Dériaz, 2012). Because it allows the continuous measure of the
position of the center of pressure, it would be possible to assess
the LDS in parallel. The main advantage is that LDS and scaling
exponents (SL, ST, and SS) would be directly measured with the
same instrument.

The objective of the present study was to analyze the effect
of RAC on LDS in healthy, middle-aged individuals walking on
a treadmill. To estimate LDS, an innovative technique based on
the measure of the center of pressure was tested. Both short-
term and long-term LDS were assessed: the aim was to compare
the responsiveness to RAC at different time scales. The hypoth-
esis was that the increased control over the gait while com-
bining both treadmill and RAC would result in a more locally
stable gait. In addition, the correlation between LDS and sta-
tistical persistence [data from a companion article (Terrier and
Dériaz, 2012)] was evaluated. The overall aim is to determine
whether LDS could constitute a relevant index for studying cued
walking.
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METHODS
The present study is based on raw data obtained in a previous
study (Terrier and Dériaz, 2012). Please refer to this article for
further information about the experimental procedure.

PARTICIPANTS
Twenty healthy subjects (10 females, 10 males) took part in the
study. The participants’ characteristics were mean (SD): age 36
years (11), body mass 71 kg (15), and height 171 cm (9). The
experimental procedure was approved by the local ethics commit-
tee (Commission Cantonale Valaisanne d’Ethique Médicale, Sion,
Switzerland).

EXPERIMENTAL PROCEDURE
The testing sessions consisted of two series of three 5 min 30 s
treadmill walking: 30 s of habituation to the speed, and 5 min
of measurement. Treadmill speeds imposed on the subjects
were: Preferred Walking Speed (PWS), 0.7 × PWS (low speed)
and 1.3 × PWS (high speed). The speed sequence was ran-
domly attributed. The trials with the “metronome” condition
(treadmill + RAC) were performed at the same speeds as the first
3 trials. The imposed cadences were the preferred cadences, which
were measured during the first trials without metronome.

The measurement device was a motorized treadmill (FDM-
TDL, Scheinworks/Zebris, Schein, Germany), instrumented with
foot-pressure sensors (100 Hz sampling rate, 128 × 56 pressure
sensors on a 108.4 × 47.4 cm grid). A “movie” of the feet pres-
sure on the treadmill belt was obtained (as illustration, see
online supplementary materials, video S1). The raw data con-
sisted for each trial of 30,000 frames of 7,168 points. They were
exported for subsequent analysis with Matlab (Mathworks, MA,
USA). Complementary statistical analysis was realized with Stata
(StataCorp, TX, USA).

DATA ANALYSIS
The continuous trajectory of the center of pressure was computed
as the weighted average of the pressure data, and using the stan-
dard method for determining the barycenter (Sum of mass ×
position)/(Sum of mass). The two axes of the trajectory consisted
of an anteroposterior (AP) component (along the direction of the
displacement of the treadmill belt) and a mediolateral component
(ML, perpendicular to the displacement). Figure 1 presents a typ-
ical plot of center of pressure trajectory, with the corresponding
AP and ML signals. The raw trajectory can be also seen in the
video provided in the online supplementary material.

The raw 100 Hz signals were filtered down to 50 Hz in order
accelerate the subsequent steps of data analysis; an eighth-order
low pass Chebyshev Type I filter was used, which filtered the
signal in both the forward and reverse directions to remove all
phase distortion (Matlab command decimate). Step Frequency
(SF), and thus average step duration, was assessed by calculat-
ing the Fast Fourier Transform of the AP signal. Then, a duration
corresponding to 175 strides was selected from the raw signals.
The resulting segments, whose length depended upon the SF of
each participant at each speed condition, were time-standardized
to a uniform length of 10,000 samples, by using a polyphase filter
implementation (Malab command resample).

FIGURE 1 | Trajectory of the center of pressure. A participant walked at
preferred walking speed (1.25 m·s−1) during 5 min. on an instrumented
treadmill, which measured the feet pressure on the treadmill belt. The
trajectory of the center of pressure was computed (barycenter method).
Only 5 s are shown. The upper-left panel shows the raw trajectory. The
upper-right and lower panels show the decomposition of the raw trajectory
in, respectively, the anteroposterior and the mediolateral directions.

The method for quantifying LDS has been described in many
articles (Dingwell and Cusumano, 2000; Lockhart and Liu,
2008; Terrier and Dériaz, 2011). More theoretical information
is provided in the appendix A at the end of the article. The
state space was reconstructed according to the Takens’ theorem,
as classically applied in gait dynamics studies (Dingwell and
Cusumano, 2000). The time delay and the embedding dimension
were assessed by the average mutual information (AMI) function
and global false nearest neighbors (GFNN) analysis, respectively.
A time delay of 15 and 18 samples, respectively, was used for the
ML and AP directions. A constant dimension of six was set for all
the directions. These values corresponded to the average results of
the AMI and GFNN analyses. In order to illustrate the influence
of RAC on the divergence dynamics, the mean logarithmic
divergence curve (see Figure A2) was computed by averaging
each sample across participants (N = 20). In addition, Standard
Deviation (SD) was computed at seven discrete points (Figure 2).
As in other studies (Dingwell and Cusumano, 2000; Dingwell
et al., 2001; Yakhdani et al., 2010; Van Schooten et al., 2011), two
divergence exponents were computed: short-term LDS over the
timescale corresponding to the first step (λS) and long-term LDS
(λL) over the timescale between the 4th and 10th strides.

STATISTICS
We analyzed four dependent variables: (1) short term LDS in
the anteroposterior direction (λS-AP); (2) short term LDS in
the mediolateral direction (λS-ML); (3) long term LDS in the
anteroposterior direction (λL-AP); (4) long term LDS in the
mediolateral direction (λL-ML). The independent variables were
speed (3 level) and cueing condition (treadmill and treadmill +
RAC), but in the present study we were interested mainly in the
effect of RAC. The descriptive statistics of dependent variables
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FIGURE 2 | Divergence curves. The average logarithmic divergence
(<ln[dj (i)]>) in anteroposterior and mediolateral directions was measured in
the reconstructed state space of the center of pressure trajectory (50 Hz
sampling rate), in 20 individuals walking at preferred walking speed. 175
consecutive strides were analyzed, normalized at 10,000 samples. The value
at each time (50 Hz) was averaged across the subjects (N = 20). Time was

normalized by the average stride time (1.14 s). Discontinuous lines (squares)
are the results for the treadmill only condition. Continuous lines (triangles) are
the results for the dual cueing condition (treadmill + rhythmic auditory
cueing). Mean value at 100, 200, 300, 400, 500, 600, 700, and 800 samples
are shown (squares and triangles) with the corresponding SD (vertical lines,
N = 20).

consisted of the mean and standard deviation, separately for each
independent variable (Figures 3, 4). In addition, the spread of
the individual results were presented by using notched boxplots
(median and quartiles, N = 20 participants, Figures 3, 4).
Standardized Effect Size (ES = delta(mean)/SDpooled, i.e.,
Hedges’s g) was computed in order to describe the strength of the
effect of RAC (Cohen, 1992; Nakagawa and Cuthill, 2007). The
precision on the effect sizes was estimated with 95% Confidence
Intervals (CI). CI were ±1.96 times the asymptotic estimates
of the standard error of g. Graphical representations of ES
and corresponding CI are shown for each variable and speed
condition (Figures 3, 4). Arbitrary thresholds for medium (0.5),
large (0.8), and huge (2) effects (Cohen, 1992) were used in
order to ease the interpretation. It should be reminded that the
analysis of ES and CI is strictly equivalent to the paired t-test.
Furthermore, in order to minimize type I error risk induced
by the multiple comparisons (3 different speeds, 2 directions),
the analysis was completed using a multivariate comparison
test (Hotelling’s T-squared test) separately for long-term and
short-term LDS, which is similar to omnibus ANOVA testing:
The null hypothesis H0 was that the mean differences (treadmill
+ RAC minus treadmill) were equal to zero.

Next, we are interested in comparing the LDS results with per-
sistence results, which were presented in the above-mentioned
companion article (Terrier and Dériaz, 2012): detrended fluctua-
tion analysis (DFA) was used to characterize statistical persistence
using scaling exponents (α). The results are summarized in the

appendix B. A scatterplot was used to illustrate the potential asso-
ciation between scaling exponents (α) and divergence exponents
(λ). In particular, we plotted (Figure 5) the overall DFA results for
ST (α-ST in 20 subjects × 3 speeds × 2 conditions = 120 points)
vs. the overall long-term LDS results (λL). The Pearsons’s r
correlation coefficient was computed, not only for the λL vs. α-ST
association, but also for λL vs. α-SL, λS vs. α-ST, and λS vs. α-SL.

We completed the analysis using Canonical Correlations
Analysis (CCA), after removing potential speed effects. The main
advantage of CCA is that it reduces the risk of type I errors that
increase when multiple correlations are performed (Hair et al.,
2010). First, a linear regression was computed between the aver-
age speed and each dependent variable, separately for each cueing
condition (N = 60). The spread of the average speeds among
individuals can be found in another companion article (Terrier,
2012). Then, the residuals of the linear regression were com-
puted by subtracting the predicted values from the data (observed
response minus predicted response). The residuals reflect the
remaining variance when linear speed effects are removed. In
other words, the LDS and DFA results were controlled for the
speed covariate. Consequently, the risk that speed would bias the
results was minimized, and the sample size (N = 60) was maxi-
mized. The CCA is a multivariate statistical method that assesses
the strength of association between two sets of variables (Hair
et al., 2010). The relationship (canonical function) between two
linear composites (variates) is computed. The canonical correla-
tion coefficient expresses the strength of the relationship between
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FIGURE 3 | Short-term local dynamic stability (LDS). Twenty healthy
subjects walked 3 × 5 min on an instrumented treadmill without (thin lines,
black) and with Rhythmic Auditory Cueing [RAC, (metronome), thick lines,
red] at their preferred cadence for the given speed. The center of pressure
trajectory over 175 consecutive strides was analyzed along the
anteroposterior and mediolateral axes. Short-term LDS is computed from
the rate of logarithmic divergence over one step (finite time Lyapunov
exponents, λS). Selected speeds were Preferred Walking Speed (middle,
PWS), 0.7 × PWS (left, Slow) and 1.3 × PWS (right, Fast). The range of
individual results (N = 20) is presented with notched boxplots. + signs
represent outliers. Printed values are mean (SD). Bottom panels show the
effect size (ES) of the auditory cueing [i.e., the mean difference normalized
by SD (Hedges’s g)]. Vertical boxes are the 95% confidence intervals for the
effect size estimations.

the two variates that compose the canonical function. Three sets
of variables were defined for each condition: from the results of
the present study, set#1: [λS-AP; λS-ML], set#2 [λL-AP; λL-ML];
from the results of the previous study, set #3 [α-ST; α-SL; α-SS].
Two CCAs were realized for each condition, set#1 vs. set#3 and
set#2 vs. set#3. Given the size of the sets, two orthogonal canonical
correlation coefficients were obtained. The significance of those
canonical correlations (i.e., r <> 0) was assessed with the Wilks’
lambda statistics. Furthermore, the analysis was completed with
redundancy results, which express the amount of variance in one
set explained by the linear composite (canonical variate) of the
other set.

RESULTS
Figure 2 shows the average logarithmic divergence <ln [dj(i)]>
in both conditions (i.e., treadmill and treadmill + RAC). A very
different divergence regime is observed. While very few differ-
ences are evident over the first stride (short-term LDS), the curve
reaches a plateau faster under the treadmill + RAC condition.

The descriptive statistics for the short term LDS (λs) are shown
in the upper panels of Figure 3. The results of the multivariate T2

test revealed that a significant effect of RAC is likely (T2 = 40,
p = 0.007), but the average relative change is small (−3%). A
lower λ (lower divergence rate) signifies that the LDS was higher.
The partial ES results (Figure 3, lower panels) are contrasted,
but it seems that a relevant effect (increased LDS) is effective at

lower speeds (λS-AP: −6%, ES: −1.1; λS-ML: −4%, ES: −0.84).
At PWS, the results are λS-AP: −4%, ES: −0.44; λS-ML: −1%,
ES: −0.24. At fast speeds, the results are λS-AP: −1%, ES: −0.26;
λS-ML: −3%, ES: −0.44.

The descriptive statistics for the long term LDS (λL) are shown
in the upper panels of Figure 4. The results of the multivariate
T2 test shows a highly significant effect of RAC (T2 = 415, p <

0.0001), with a large increase in LDS (73% in average). The par-
tial ES results (Figure 4, lower panels) revealed very large effects
(lower λ ≥ higher LDS) across all directions and speeds: slow
speed: λL-AP: −68%, ES: −2.3; λL-ML: −86%, ES: −3.4; PWS:
λL-AP: −64%, ES: −3.3; λL-ML: −80%, ES: −3.3; fast speed:
λL-AP: −61%, ES: −2.9; λL-ML: −80%, ES: −2.5.

The Figure 5 globally compares the long-term LDS results
with the DFA results (λL vs. α-ST, N = 120). Because both vari-
ables are responsive to RAC (compare Figure 4 and Table B1),
the treadmill + RAC points (triangles) are logically collated in
the lower-left quadrants, and the treadmill-only points (circles)
are found in the upper-right quadrants. As a result, a high cor-
relation was found (0.82 and 0.88). High correlation coefficients
are also fund when λL and α-SL are compared (r = 0.81 and
0.87). In contrast, short-term LDS is poorly correlated with α-ST
(r = 0.21 and 0.23) and with α-SL (r = 0.16 and 0.16), because
the response of short-term LDS to RAC is lower.

Table 1 summarizes the results of the CCA, which analyze the
association between scaling exponents and divergence exponents
separately for both conditions (treadmill and treadmill + RAC,
N = 60). The two canonical orthogonal functions resulted in two
canonical correlation coefficients, which are presented in the first
and second columns, with corresponding p-values in the third
and fourth columns. Only the redundancy results of the first
canonical function are shown in the last two columns. Regarding
results for the short-term LDS (set#1 vs. set#3), the hypoth-
esis that a correlation exists with statistical persistence should
be rejected. Indeed, low (0.09–0.30), not significant, correlation
coefficients are observed and the redundancy results show that
the canonical functions explain a very small part of the variance
in the other set (3–6%). On the contrary, a relevant association
between the long-term LDS and the statistical persistence is likely,
especially under the treadmill + RAC condition (p < 0.001). In
addition, the redundancy results of the first canonical function
reveal that a substantial part of the variance in one canonical
variate is explained by the other canonical variate (20–53%).

DISCUSSION
By measuring the trajectory of the center of pressure on a motor-
ized treadmill, the objective of the present study was to analyze the
responsiveness of LDS to RAC in healthy individuals. RAC slightly
increased short-term LDS, with an effect that was especially evi-
dent at slow speeds. On the other hand, a huge effect of RAC
on long-term LDS was observed: LDS was largely increased for
all speeds and directions. Correlation results revealed that a rel-
evant association (positive correlation) between long-term LDS
and statistical persistence (scaling exponent α) is likely, especially
under the “treadmill + RAC” condition. On the contrary, an asso-
ciation between statistical persistence and short-term LDS is very
unlikely.
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FIGURE 4 | Long-term local dynamic stability (LDS). Twenty healthy
subjects walked 3 × 5 min on an instrumented treadmill without (thin lines)
and with Rhythmic Auditory Cueing [RAC, (metronome), thick lines at their
preferred cadence for the given speed]. The center of pressure trajectory
over 175 consecutive strides was analyzed along the anteroposterior and
mediolateral axes. Long-term LDS is computed from the rate of logarithmic
divergence among the 4 to 10th consecutive strides (finite time Lyapunov

exponents, λL). Selected speeds were Preferred Walking Speed (middle,
PWS), 0.7 × PWS (left, Slow) and 1.3 × PWS (right, Fast). The range of
individual results (N = 20) is presented with notched boxplots. + signs
represent outliers. Printed values are mean (SD). Bottom panels show the
effect size (ES) of the auditory cueing [i.e., the mean difference normalized by
SD (Hedges’s g)]. Vertical boxes are the 95% confidence intervals for the
effect size estimations.

METHODOLOGICAL CONSIDERATIONS
As far as we know, the present study proposes for the first time
computing LDS from the trajectory of the center of pressure
obtained from an instrumented treadmill. As illustrated in
Figure 1 and in the online movie (supplementary material), small
deviations in the trajectory is evident from one stride to the next,
which are the manifestation of the continuous adjustments that
the motor control performs to maintain stable gait. Other authors
have used the center of pressure in gait stability studies (Day et al.,
2012), for instance to analyze how motor control reacts to large
external perturbations (Hof et al., 2010). The center of pressure
trajectory seems therefore a relevant parameter, from which LDS
can be computed. Moreover, the results of the present study are
comparable to those of a recent study that analyzed the response
of LDS to RAC in overground walking (Sejdic et al., 2012), which
supports the fact that the method correctly assesses the LDS.

As in other recent LDS studies (Yakhdani et al., 2010; Van
Schooten et al., 2011; McAndrew Young and Dingwell, 2012), this
study used a normalized sample size (10,000) and a normalized

number of strides (175). It also employed uniform time delays
and dimensions. As proposed by others (Yakhdani et al., 2010;
Van Schooten et al., 2011), this study computed short-term LDS
over one step, and not one stride. Regarding short-term LDS,
the total variance (Figures 3, 4), which is the combination of
the actual biological inter-individual variability, the actual intra-
individual variability and the measurement error, was rather
low: expressed as CV (SD/mean), it lies between 5 and 8%.
In comparison, in a previous treadmill study that used trunk
accelerometry and a less standardized methodology (Terrier and
Dériaz, 2011), we observed an average CV of 21% for short-
term LDS. Because both studies included the same number of
subjects who were sampled from the same population, the dif-
ference is very likely the measurement error. Consequently, the
combination of standardized procedures and use of the cen-
ter of pressure trajectory probably makes it possible to obtain
a lower measurement error and thus higher reliability, which
increases the statistical power and reduces the risk of type II
errors.
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FIGURE 5 | Scatter plot of statistical persistence and long-term local

dynamic stability (LDS). Twenty subjects walked on a treadmill at slow
speed (red), preferred walking speed (PWS, blue), and fast speed (green)
without (circles) and with (triangles) rhythmic auditory cueing (N = 120).
Detrended fluctuation analysis was used to determine the scaling
exponents of the time series of stride time (α-ST, see Appendix B), which
are plotted along the horizontal axis. Divergence exponents (λL, see
Figure 4) are plotted along the vertical axis. The discontinuous line is the
best linear fit (least squares method). Values are the Pearson’s correlation
coefficients (r).

EFFECTS OF RHYTHMIC AUDITORY CUEING
The logarithmic divergence curves, such as presented in Figure 2,
were strikingly modified by RAC. It is known that with the
Rosenstein’s algorithm a plateau is reached when the diver-
gence cannot further grow because of the limits of the attractor
(Figure A2). In other words, the trajectories in the state space
form a flow, which is bounded. As hypothesized in the intro-
duction, RAC enabled specific sensory-motor synchronizing pro-
cesses: this additional control probably narrowed the maximal
bounds in the state space. Because reconstructed phase space
reflects the dynamical comportment of gait, a narrower flow in
the attractor indicates that RAC restricts the dynamical range,
which is employed by motor control during walking. The mod-
ification of the attractor bounds is logically also reflected in
long-term LDS results, because it is computed from the slope
close to the plateau (Figures 2, A2). Thus, long-term LDS was

strongly enhanced (lower λl, ES > 2, relative change 73%). On the
other hand the change in short-term LDS was smaller (ES −0.55,
3% relative change). The study by (Sejdic et al., 2012) highlighted
the same findings in overground walking, which indicate that the
LDS change is not solely due to the interaction between treadmill
and RAC.

COMPARATIVE RESPONSIVENESS OF SHORT-TERM AND LONG-TERM
LOCAL DYNAMIC STABILITY
The results suggest that a specific modality of gait control (i.e.,
the synchronization with an external cue) may affect differen-
tially short-term and long-term LDS through a modification of
divergence curves.

Three theoretical studies based on artificial gait modeling
attempted to better understand the relationships between λS, λL,
and actual fall risk. With a 2-D passive model, Su and Dingwell
(Su and Dingwell, 2007) showed that short-term stability λS

increased linearly with the mean amplitude of applied perturba-
tions, but not λL, which remained unchanged. With an improved
3-D active model, they subsequently showed that λS was respon-
sive to noise amplitude applied to the lateral step controller, while
λL was not responsive (Roos and Dingwell, 2010). Interestingly,
contrary to human results, λL was around zero, which may indi-
cate an attractor with narrow limits: the authors explained that
“the noise applied to the controller was dampened out quickly”
(Roos and Dingwell, 2010). An independent study, based on 2-
D passive modeling and using alternative methods to induce
perturbations to the gait model, confirmed that λS relates to
the probability of falling (Bruijn et al., 2011). Moreover, they
observed only a weak relationship between λL and actual stability.

Two recent human studies further analyzed the use of LDS as
an index for global stability and falling risk by inducing perceptual
perturbations to healthy individuals. Van Schooten et al. (2011)
used galvanic vestibular stimulation to impair balance. They con-
firmed that λS could be used to assess global stability of gait.
However, they reported that the impaired balance decreased λL

(improved stability). They explained that that “may be due to
compensatory changes, which occur at longer timescales [. . .].”
The same contradictory stability outcome has been described
in (McAndrew et al., 2011): by inducing visual and mechanical

Table 1 | Canonical correlation analysis (CCA).

Canonical correlation p-values (Wilks’) Redundancy first

coefficients (lambda statistics) (canonical function)

Treadmill only Short-term LDS vs. Scaling exponents 0.30 0.09 0.32 0.42 3% 5%

Long-term LDS vs. Scaling exponents 0.57 0.33 0.00 0.24 20% 20%

Treadmill + RAC Short-term LDS vs. Scaling exponents 0.29 0.19 0.20 0.34 3% 6%

Long-term LDS vs. Scaling exponents 0.83 0.26 0.00 0.14 41% 53%

Scaling exponents (α) evaluate the statistical persistence present in the time series of stride time (ST), stride length (SL) and stride speed (SS). The local dynamic

stability assesses the local divergence (λ) of the trajectory of the center of pressure in anteroposterior (AP) and mediolateral (ML) directions. Two CCAs were

performed for each cueing condition: (1) between short-term LDS (two variables, λs-AP and λs-ML) and scaling exponents (3 variables, α-ST, α-SL, and α-SS); (2)

between long-term LDS (two variables, λL-AP and λL-ML) and scaling exponents (3 variables, α-ST, α-SL, and α-SS). All the seven variables were normalized with

respect to walking speed prior to CCA (N = 60, i.e., 3 imposed speed times 20 participants for each variable). Significant values (p < 0.05) are highlighted in bold.

See text for more precision on the CCA method.
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perturbations to healthy individuals, they observed increased λS

and decreased λL. They showed divergence curves shifting up and
to the left under destabilizing conditions, with a steeper slope in
the short term (higher λS), and then a flatter (lower λL), and
higher plateau in the long term. The authors explained that the
divergence curves reached their maximum local divergence limits
more quickly during perturbed walking.

Taking into consideration this short review of the literature
and the results of the present study, we propose that a parallel
should be made between the fractal-like, persistent fluctuation
pattern that is observed among consecutive strides (Terrier et al.,
2005; Dingwell and Cusumano, 2010; Terrier and Dériaz, 2011)
and the positive long-term LDS. In other words, as motor con-
trol allows deviations from the mean to persist across strides (α >

0.5), that translates into a long-term local instability (positive
λL). On the contrary, when motor control tightly regulates gait
parameters, for instance by attempting to synchronize with RAC,
the persistent pattern is replaced by oscillations around the target
value [anti-persistence (Terrier and Dériaz, 2012)], more station-
ary time series take place (Terrier, 2012), and the local divergence
is more quickly dampened within an attractor exhibiting nar-
rower bounds (Figures 2, 4), as in the gait models (Roos and
Dingwell, 2010). On the other hand, we hypothesize that short-
term LDS λS is more related to rapid automated/unconscious
motor processes that hinder uncontrolled growth of small per-
turbations and manage obstacle avoidance (Weerdesteyn et al.,
2004). That would explain why λS is a relevant proxy for fall risk
(Roos and Dingwell, 2010; Bruijn et al., 2011, 2013; McAndrew
et al., 2011; Van Schooten et al., 2011). The opposite response of
λS and λL (McAndrew et al., 2011; Sloot et al., 2011) is there-
fore more likely due to compensatory mechanisms: by altering
rapid feedback mechanisms, perceptual perturbations induce not
only lower short-term LDS (higher λS), but also a more cautious,
voluntary controlled gait, which results in higher long-term LDS
(lower λL), as induced by RAC.

CORRELATIONS BETWEEN LOCAL DYNAMIC STABILITY AND
STATISTICAL PERSISTENCE
The global examination (N = 120, Figure 5) of the relationship
between divergence exponents (λ) and scaling exponents (α)
revealed that only long-term LDS exhibited a relevant positive
correlation with statistical persistence, because both variables are
highly sensitive to RAC. The assessment of the correlations under
each combination of the independent variables (3 speeds and 2
conditions), would be difficult to interpret: this is why we use
a multivariate approach. The results of the CCA confirmed that
a relevant correlation exists between statistical persistence and
long-term LDS, even when the results are separately analyzed for
both conditions (N = 60) and corrected for speed effects. That
means that individuals, who presented a more persistent pattern
in stride-to-stride fluctuations tend to also have lower long-term
LDS (higher λL). The relationship is stronger under the tread-
mill + RAC condition. In this case, individuals that presented a
more anti-persistent pattern in stride-to-stride fluctuation (lower
α) tended to have higher long-term LDS (lower λL). A previous
study (Terrier and Dériaz, 2011) also showed a moderate cor-
relation between α-ST and λL (r = 0.28 and 0.42), which was

not significant due to a smaller sample size. An independent
study also observed a strong correlation between long-term LDS
and statistical persistence during treadmill walking (r = 0.72;
Jordan et al., 2009). Overall, these results reinforce the hypoth-
esis that both long-term instability (positive λL) and statistical
persistence/anti-persistence are the manifestation of a common
underlying motor control process. In contrast, λS seemed not cor-
related with statistical persistence (Table 1), which corroborates
the hypothesis that short-term LDS is related to an independent
motor control process.

SIGNIFICANCE FOR NEUROREHABILITATION
There is conclusive evidence that synchronizing gait to exter-
nal clues substantially modifies the stride-to-stride fluctuation
dynamics (Terrier et al., 2005; Dingwell and Cusumano, 2010;
Sejdic et al., 2012; Terrier and Dériaz, 2012), the stationar-
ity of gait parameters (Terrier, 2012) and the long-term LDS
(Figures 1, 3 and Sejdic et al., 2012). It is very likely that
those substantial modifications are induced by the mobiliza-
tion of specific cortical sensory-motor synchronization mecha-
nisms (Halsband et al., 1993; Zijlstra et al., 1995; Egerton et al.,
2011), which partially replace (or add to) the automated regula-
tion of the gait. This activation could be one of the underlying
mechanisms that explains the benefits of cued walking in patients
with neurological disorders. For instance, in PD patients, it has
been shown that a combination of attentional strategy (focusing
on big steps) and RAC reduced gait variability (Baker et al., 2008),
which corroborates with the hypothesis that cued walking redi-
rects higher cognitive functions to gait, and thus compensates for
automated gait regulation deficit. As a result, the abovementioned
parameters should be assessed in order to evaluate neurological
gait disorders and the outcome of cued walking intervention. In
particular, an enhanced long-term LDS could indicate a more
cautious gait (compensatory mechanism), as well as the pres-
ence of a less correlated pattern (lower α) in stride-to-stride
fluctuations (Herman et al., 2005).

One could wonder whether the cognitive processes that RAC
mobilizes divert motor control from performing gait stabilization
tasks, which may results in higher fall risk. Indeed, it is well-
established that dividing attention between gait and a cognitive
task may impair gait stability (dual tasks paradigm; Woollacott
and Shumway-Cook, 2002; Weerdesteyn et al., 2003). It has been
recently observed that combining treadmill walking and RAC
requires high attentional demands (Peper et al., 2012). However,
opposite to classical dual-task situations, during cued walking,
the increased attentional demands are devoted to a specific gait
control task. Therefore, it could be assumed that the increased
control over the gait would lead to a higher level of stability and
thus to lower falling risk, which could benefit patients with gait
disorders. This hypothesis is confirmed by our results: both tread-
mill (Terrier and Dériaz, 2011) and RAC tend to enhance LDS,
or at least do not diminish it (Sejdic et al., 2012). Similarly, a
recent study analyzed the influence of RAC on obstacle avoid-
ance capabilities in PD patients (Nanhoe-Mahabier et al., 2012).
The experimental design combined treadmill walking and RAC,
as in the present study. The authors observed that PD patients
were able to successfully execute an obstacle avoidance task, when
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auditory cueing is administered simultaneously. They concluded:
“our data suggest that PD patients can benefit from auditory
cueing even under complex, attention-demanding circumstances,
and that the metronome does not act as a dual task that negatively
affects gait.”

CONCLUSION
Synchronizing steps with rhythmic auditory stimuli tends to
induce more dampening in the divergences among state space
trajectories, which likely reflects a more restricted range in the
gait dynamics. That effect is concomitant to the apparition of
a strong anti-persistent pattern in the stride-to-stride fluctu-
ations of gait parameters. Both phenomena are probably the
manifestation of a more conscious/voluntary modality of gait
control.

Furthermore, although further studies are needed to ana-
lyze LDS and other variability indexes in various neurological
gait disorders, the present study introduced new evidence that
cued walking could be a valuable and safe treatment in gait
rehabilitation.
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Movie 1 | Illustration of the measurement of the center of pressure.

Five seconds of analysis are shown, slowed down to 25 s. The

pressure on the grid of sensors is shown with color ranging from blue

(no pressure) to red (high pressure): the succession of 10 steps is

visible. The dark red circle indicates the current position of the center

of pressure. The dark red trace shows the corresponding trajectory,

which is also displayed in Figure 1.
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APPENDIX A: MAXIMAL LYAPUNOV EXPONENT
The objective of this appendix is to summarize the theoretical
background behind the assessment of the local dynamic stability
(LDS) based on the Rosenstein’s algorithm. Most of the concepts
described below are adapted from Rosenstein et al. (1993), Fraser
and Swinney (1986), and Kennel et al. (1992).

LYAPUNOV EXPONENTS
The Lyapunov exponents assess the sensitivity to initial condi-
tions of a dynamical system, which is characterized by a finite
number of n state variables and n equations. If an n-dimensional
sphere of initial conditions is defined, the exponential rates of
divergence are given by a spectrum of n Lyapunov exponents (λ).
These exponents describe a multidimensional ellipsoid expend-
ing/contracting with time along particular axes (Lyapunov direc-
tions), which are dependent upon the system flow. A particular
Lyapunov exponent represents the local instability in a given
direction. If the exponent is positive, it diagnoses chaos. When the
system is globally stable the rate of contractions in some direc-
tions must counterbalance the rate of expansions in others in
order to obtain a stable attractor. Thus, the sum across the entire
spectrum of the Lyapunov exponents is negative. The largest
(maximal) Lyapunov exponent (λ1 ≥ λ2 ≥ . . . ≥ λn) defines the
direction along which the system is the most unstable, because the
exponential growth in this direction will dominate growth along
the other directions. It is defined by the following equation:

d(t) = Ceλ1t (A1)

d(t) being the average divergence at time t and C a constant that
normalize the initial separation.

PHASE SPACE RECONSTRUCTION: EMBEDDING
When working with real world data, the set of n equations char-
acterizing a dynamical system is not available. However, the
attractor dynamics can be reconstructed from a single time series
according to the Takens’s theorem (Takens, 1980). The process
that unfolds the time series into a multidimensional state space is
referred to as embedding. The reconstruction is based on the time
delay method. The state of the system X defined by a N-point time
series {x1,x2 . . ., xn} at discrete time i is:

Xi = (x, xi + J , . . . , xi + (m − 1)J ) (A2)

Where J is the lag or the reconstruction (or time) delay and m
is the embedding dimension. In principle, for an infinite noise-
free time series, the time delay J and the embedding dimension m
can be arbitrarily chosen. In smaller data set of noisy data, a too
small J would produce a compressed attractor along the identity
line (high correlation or excessive redundancy); conversely, a too
large J would produce causally disconnected attractor (irrelevance
issue) (Fraser and Swinney, 1986; Kim et al., 1999). A solution
is to choose a delay J that maximizes the independence between
the coordinates (for instance xi and xi + J ). A linear independence
is realized when the autocorrelation function of the time series
first pass through zero. However, non-linear dependence is likely
in most dynamical systems. The method of the AMI (Fraser and

Swinney, 1986) solves this issue by assessing the general depen-
dence of two variables (namely, xi and xi + J ) using the Shannon’s
information theory. J is determined from the first minimum in
the mutual information function of the time series. Thus, xi + J

adds the largest amount of information available to the first coor-
dinate xi and conserves some correlation among them, which
has been empirically proven to be a good equilibrium between
redundancy and irrelevance (Fraser and Swinney, 1986).

The issue of the choice of a correct embedding dimension is
more topological than dynamical. A phase space with a sufficient
number of dimensions allows the attractor to deploy without self-
crossing, thus correctly capturing the dynamic flow of the system.
However, an excessive number of dimensions make difficult the
manipulation of the reconstructed attractor (high computational
time). Furthermore no dynamics is operating in the dimensions
in excess and they are mostly populated by noise. Conversely, a too
small number of dimensions increases the risk of spurious vicin-
ity between points in the phase space due to projection effects.
In other words, the distances between points are distorted. Thus,
a too compact attractor contains a high number of these false
neighbors, which makes difficult to account for the true flow of
the system. The method of GFNN assesses the rate of spurious
vicinity that occurs in under-dimensioned phase spaces (Kennel
et al., 1992). It differentiates the points that are neighbor due to
the dynamics of the system (following the flow) from the points
that are neighbor solely due to projection issues. The percentage
of false neighbors is computed for increasing dimensions, and the
minimal dimension for a correct embedding is found when the
percentage is close to zero.

MAXIMAL LYAPUNOV EXPONENT
The rate of exponential divergence in the appropriately embed-
ded attractor is computed as follows: First, nearest neighbor of
each point on the attractor is located. The nearest neighbor Xĵ is

found by searching the point that minimizes the distance to the
particular reference pointXj:

dj(0) = min
∥∥Xj− Xĵ

∥∥∥ (A3)

where dj(0) is the initial distance from the jth point to its near-
est neighbor, and ‖ ‖ denotes the Euclidian norm. An additional
constraint is imposed, namely that the nearest neighbors must
be separated by a time, which exceeds the mean period of the
time series. As a result, the two neighbors are on a different orbit
of the attractor. Then the Euclidian distances dj(i) between the
two trajectories defined by the subsequent points i downstream
the reference point and its nearest neighbor are computed, for
instance as follows for the first iteration:

dj(1) = ∥∥X(j + 1)− X
(ĵ + 1)

∥∥∥ (A4)

It is expected that the rate of divergence between the trajectories
is given by the Equation A1. In its logarithm form, the Equation
A1 becomes:

ln dj(i) ≈ ln Cj + λ1(i�t) (A5)
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FIGURE A1 | Illustration of the computing of LDS with gait data. (A)

Shows 3.5 s of the medio-lateral displacement of the center of pressure
sampled at 50 Hz. The result of the average mutual information analysis
was 18 samples (0.36 s), which defined the reconstruction delay J. The
results of the false neighbor analysis revealed that the minimal embedding
dimension should be 6. Therefore, five time-delayed copies of the original
time series have been built, according to the Equation 2. (B) Displays the
reconstructed attractor with J = 18 and m = 6. Only the first three
dimensions are used to build a 3D projection of the 6D attractor. (C) Is a 2D
magnification of the attractor. It shows the flow of the trajectories along
which the maximal Lyapunov exponent will be computed. Two nearest
neighbors (Equation A3) are shown, separated by the initial distance dj (0).
Two downstream points are separated by the distance dj (i) (Equation A4).

where Cj is the initial separation. This linear equation defines a
set of parallel lines with slope equal to the maximal Lyapunov
exponent. Thus, the average logarithmic divergence for all j is
computed <ln dj(i) ≥ avg[d1(i), d2(i), . . . , dn(i)]. The average
logarithmic divergence <ln dj(i)> can be represented in a dia-
gram as a function of time (see Figures 2, A2). Finally, the
Lyapunov exponent is approximated using least-square fit to the
average line:

y(i) = 1

�t

〈
ln dj(i)

〉
(A6)

DIVERGENCE CURVES AND APPLICATION TO GAIT DYNAMICS
Using the example of the Lorenz attractor, Rosenstein et al.
described that plotting the average divergence as a function of
time (Figure A2) showed “a long linear region” after a “short
transition.” A plateau occurs at longer times (“saturation”)
because the attractor is bounded in phase space, which implies
that the average divergence cannot continuously grow with time.
Thus, the linear fit to the divergence must be performed on
“prominent” linear region. The authors acknowledge that the
determination of that region is mostly empirical and may be
difficult in real systems.

FIGURE A2 | Divergence curves. (A) Shows the reconstructed Lorenz
attractor build with the same parameters as in Rosenstein et al. (1993). The
corresponding divergence curve (i.e., the logarithmic average divergence as
a function of time, Equation A6) is presented in the (B). The “prominent”
linear region between 0.5 and 2 s is highlighted by the vertical dotted lines.
The linear fit to the curve in that region is highlighted by the red dotted line,
and the slope corresponds to the maximal Lyapunov exponent (Equations
A5 and A6), λ = 1.45. The true Lyapunov exponent for the Lorenz attractor
is 1.5. The reconstructed attractor for gait data (mediolateral signal,
Figures 1, A1) is displayed in (C). (D) Shows the corresponding divergence
curve, with time normalized by the average stride duration. The time scale
for the computation of the long-term LDS (4–10 strides) is shown with the
vertical dotted lines. The linear fit is displayed (red dotted line), with the
slope value (divergence exponent λL).

Gait dynamics produces a divergence curve that does not
exhibit a clear linear region (Figure A2). Whether gait could be
considered as a real chaotic process described by a limited set of
equations is therefore debatable. However, a pragmatic approach
is to consider that the linear fitting estimates the local diver-
gence over a given time scale, which is used to characterize the
dynamics of the system, even if a true maximal Lyapunov expo-
nent does not exist (Dingwell, 2006). Thus, the term “divergence
exponent” may be more appropriate than the term “maximal
Lyapunov exponent.” Each time the foot is on the ground, it gives
to the motor control the opportunity to thwart perturbations;
consequently, the rate of divergence per stride (or per step) is
more physiological than the rate of divergence per second (Bruijn
et al., 2013). The long-term divergence fitted against a time scale
between the fourth and the tenth stride has been adopted on a
purely empirical basis (Dingwell and Cusumano, 2000). On the
other hand, the short-term divergence fitted over the first stride
(or first step) estimates the local dynamic stability immediately
after a perturbation, which is more physiologically sound.

APPENDIX B: DETRENDED FLUCTUATION ANALYSIS (DFA)
The aim of this appendix is to briefly summarize the DFA method
and to report the scaling exponents, which were showed in the
companion article (Terrier and Dériaz, 2012).
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BACKGROUND
A process that possesses a “memory” of its previous comportment
(feedback loop) exhibits autocorrelations in its output. The cor-
relation function C(s) indicate the degree of correlation among
subsequent data points in the time series separated by a time lag
(or scales) s (Kantelhardt et al., 2001). C(s) is by definition 0 for
all s if the time series is uncorrelated (white noise). If the time
series presents correlations over short time scales, C(s) declines
exponentially fast as C(t) ∼exp(−s/tx)(tx being the decay time),
which is typical for a simple autoregressive process (AR). In case
of long-range correlations, the slow decline follows a power law:

C(s) ∝ s−γ (B1)

with the correlation exponent 0 < γ < 1. Such persistent behav-
ior is typical for a self-affine, fractal-like scaling behavior,
i.e., autoregressive fractionally integrated moving average model
(ARFIMA). The estimation of C(s) is problematic if many non-
stationarities are present in the time series. Therefore, many
alternative methods have been proposed to estimate the correla-
tion exponent, such as the Hurst’s Rescaled-Range analysis, or the
spectral analysis.

DFA
The detrended fluctuation analysis has been designed to detect
the presence of long-range correlations in time series, which are
highly unstationary. The time series of length N is first integrated.
Then, it is divided in non-overlapping boxes of equal length n. In
each box, a linear fit (least squares method) is performed. The
average fluctuation F(n) for that box length is determined as
follows:

F(n) =
√√√√ 1

N

N∑
k = 1

[
y(k) − yn(k)

]2
(B2)

where yn(k) is the y-coordinate of the kth point of the straight
line resulting of the linear fit, and y(k) is the corresponding

point in the original time series. The procedure is repeated
for increasing box size n, over all time scales. It is expected
that the fluctuation F(n) increases with box size n. If the time
series exhibits long-range power-law autocorrelations, the rela-
tionship between F(n) and n would be F(n) ≈ nα. Thus, the
scaling exponent α is determined by a linear fit of F(n) vs. n in
a log-log graph. If α = 0.5, then a random process (uncorrelated
white noise) is most likely. If 0.5 < α < 1, a persistent pattern
is present in the times series, most likely characterized by long-
range correlations. If 0 < α < 0.5, an anti-persistent pattern is
likely.

DFA RESULTS
The Table B1 summarizes the results of our previous study, which
are used in the correlation analyses.

Table B1 | DFA results

N = 20 Treadmill Treadmill + RAC Relative change (%)

Slow α-ST 0.85 (0.11) 0.27 (0.11) −68

α-SL 0.79 (0.11) 0.33 (0.10) −58

α-SS 0.23 (0.08) 0.29 (0.08) 26

PWS α-ST 0.80 (0.12) 0.28 (0.11) −65

α-SL 0.72 (0.11) 0.36 (0.08) −50

α-SS 0.31 (0.08) 0.30 (0.06) −3

Fast α-ST 0.75 (0.11) 0.32 (0.12) −57

α-SL 0.72 (0.11) 0.39 (0.11) −46

α-SS 0.30 (0.08) 0.30 (0.06) 0

The detrented fluctuation analysis (DFA) was used to compute scaling expo-

nents (α), which evaluate the statistical persistence present in the time series of

stride time (ST), stride length (SL) and stride speed (SS). Both conditions were

tested: treadmill only and treadmill with rhythmic auditory cueing (RAC). Values

are means and (SD). Values for anti-persistent dynamics are shown in italic. The

last column shows the relative change between both conditions. PWS, preferred

walking speed.
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