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The importance of metabolism in cancer is becoming increasingly apparent with
the identification of metabolic enzyme mutations and the growing awareness of the
influence of metabolism on signaling, epigenetic markers, and transcription. However,
the complexity of these processes has challenged our ability to make sense of the
metabolic changes in cancer. Fortunately, constraint-based modeling, a systems biology
approach, now enables one to study the entirety of cancer metabolism and simulate
basic phenotypes. With the newness of this field, there has been a rapid evolution of
both the scope of these models and their applications. Here we review the various
constraint-based models built for cancer metabolism and how their predictions are
shedding new light on basic cancer phenotypes, elucidating pathway differences between
tumors, and dicovering putative anti-cancer targets. As the field continues to evolve, the
scope of these genome-scale cancer models must expand beyond central metabolism to
address questions related to the diverse processes contributing to tumor development
and metastasis.
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INTRODUCTION
“One of the goals of cancer research is to ascertain the mecha-
nisms of cancer.” These words, penned by Dulbecco (1986), began
a treatise on how a mechanistic understanding of cancer requires a
sequenced human genome. Now with the abundance of sequence
data, we are finding diverse genetic changes among different can-
cers (Vogelstein et al., 2013). While we are cataloging these muta-
tions, the associated mechanisms leading to phenotypic changes
are often unclear since mutations occur in the context of complex
biological networks. For example, mutations to isocitrate dehy-
drogenase lead to oncometabolite synthesis, which alters DNA
methylation and ultimately changes gene expression and the bal-
ance of normal cell processes (Sasaki et al., 2012). Furthermore,
many different combinations of mutations can lead to cancer.
Since the genetic heterogeneity between tumors can be large, the
biomolecular mechanisms underlying tumor physiology can vary
substantially. This is apparent in metabolism, where tumors can
differ in serine metabolism dependence (Possemato et al., 2011)
or TCA cycle function (Frezza et al., 2011b). In addition, diverse
mutations can alter NADPH synthesis by differentially regulat-
ing signaling pathways, such as the AMPK pathway (Cairns et al.,
2011; Jeon et al., 2012).

The challenges regarding complexity and heterogeneity
in cancer metabolism are beginning to be addressed with
the COnstraint-Based Reconstruction and Analysis (COBRA)
approach (Hernández Patiño et al., 2012; Sharma and König,
2013), an emerging field in systems biology. Specifically, it
accounts for the complexity of the perturbed biochemical pro-
cesses by using genome-scale metabolic network reconstructions

(Duarte et al., 2007; Ma et al., 2007; Thiele et al., 2013). In a
reconstruction, the stoichiometric chemical reactions in a cell are
carefully annotated and stitched together into a large network,
often containing thousands of reactions. Genes and enzymes
associated with each reaction are also delineated. The networks
are converted into computational models and analyzed using
many algorithms (Lewis et al., 2012). COBRA approaches are
also beginning to address heterogeneity in cancer by integrating
experimental data with the reconstructions (Blazier and Papin,
2012; Hyduke et al., 2013) to tailor the models to the unique
gene expression profiles of general cancer tissue, and even indi-
vidual cell lines and tumors. Here we describe the recent con-
ceptual evolution that has occurred for constraint-based cancer
modeling.

EVOLUTION OF MODEL SCOPE AND SPECIFICITY
The molecular basis of cancer includes mutations, epigenetic
changes, mRNA splice variants, fluctuations in protein expres-
sion, etc. Each molecular change influences other cell com-
ponents, and the perturbed molecular interactions ultimately
induce cancer phenotypes. Thus, cancer is a phenotypic mani-
festation of a dysfunctional biomolecular network. To understand
how the complex and heterogeneous changes in cell networks lead
to cancer phenotypes, several studies have recently constructed
constraint-based metabolic network models of the disease. With
each publication, these models have evolved in scope and detail
(Figure 1). That is, the first few models represented the coarse-
grained canonical commonalities of cancer metabolism, while the
more recent models have been specific to individual cell lines,
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tissues, or patients. Here we compare these models, and discuss
the scope of insights they provided.

GENERIC CANCER MODELS
Cancer is highly complex for two reasons. First, molecular
changes occur in the context of a vast network of interactions.
Thus, a mutation’s impact is not apparent without accounting
for the functions of many downstream molecules. Second, the
induction of tumorigenesis from one mutation is rare. Multiple
mutations accumulate over time as the tumor evolves (Yates and
Campbell, 2012) (Figure 1A). The complex context in which can-
cer mutations reside often confounds efforts to understand their
phenotypic link. However, the complexity of cellular networks
can be addressed computationally.

Several metabolic properties are common among tumors
(Kroemer and Pouyssegur, 2008), such as anaerobic glycoly-
sis, ATP production and growth. Thus, generic models of can-
cer metabolism were constructed by including major pathways
producing ATP or biomass. This was done for two small-
scale models of core metabolism (Resendis-Antonio et al., 2010;
Vazquez et al., 2010) and another genome-scale metabolic model
(Shlomi et al., 2011). Resendis-Antonio et al. (2010) analyzed
core metabolic pathways in cancer: glycolysis, TCA cycle, pentose

phosphate, glutaminolysis and oxidative phosphorylation. This
model accurately predicted HeLa cell line growth rates and
identified known drug targets, including lactate dehydrogenase
and pyruvate dehydrogenase. The model also recapitulated the
Warburg effect, i.e., at a fixed glucose uptake rate, a decrease
in pyruvate dehydrogenase flux increased biomass production
capacity. Using another model of ATP production, Vazquez and
colleagues demonstrated that the Warburg effect may result from
molecular crowding in proliferating cells (Vazquez et al., 2010;
Vazquez and Oltvai, 2011). This finding was further supported
by Shlomi et al. (2011), using a generic genome scale model
of human metabolism that was modified to simulate biomass
precursor formation as a proxy for cancer cell proliferation.

The initial three constraint-based cancer metabolic models
successfully recapitulated general features of cancer metabolism
and provided systems-level insights into the Warburg effect.
More detailed predictions were obtained from a fourth generic
cancer model (Folger et al., 2011). This model was built by
mapping transcriptomic data to the human metabolic network
(Duarte et al., 2007). Using the Model Building Algorithm
(MBA; Jerby et al., 2010) to remove pathways that were not
supported by the data, a model with 772 reactions and 683
genes was obtained. The MBA general cancer model was built

FIGURE 1 | The conceptual evolution of constraint-based models of

cancer metabolism. (A) Clonal evolution commonly occurs in a developing
tumor as new mutations are acquired that confer increased growth
capabilities to new mutants. At the time of diagnosis, a tumor often consists
of a mixed population of cancerous cells. (B) Similarly, the scope and
specificity of cancer metabolic models have rapidly evolved over the past few
years. Genome-scale metabolic network reconstructions have provided a
valuable resource, since they contain thousands of known human metabolic
reactions (Duarte et al., 2007; Ma et al., 2007; Thiele et al., 2013). This
knowledge enabled the first two cancer-specific metabolic models, which
focused on core metabolic pathways(Resendis-Antonio et al., 2010; Vazquez

et al., 2010). In 2011, the first genome scale model of general cancer
metabolism was used to provide insights into the Warburg effect(Shlomi
et al., 2011). Shortly thereafter, transcriptomic data from the NCI-60 cell lines
were used to build a general genome-scale model of cancer metabolism,
which was used to assess metabolic drug targets(Folger et al., 2011). Now,
numerous additional models have been built using data from specific cell
lines and tumors. These models have elucidated pathways that differ
between tumors(Agren et al., 2012; Wang et al., 2012), identified pathways
that are differentially regulated with changes in estrogen receptor or p53
expression(Jerby et al., 2012; Goldstein et al., 2013), and predicted potential
anti-cancer drug targets(Folger et al., 2011; Frezza et al., 2011b).
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as follows. Highly expressed genes in the NCI-60 cell lines
were identified from transcriptomic data. Reactions associated
with the highly expressed genes were called “core” reactions
and assumed to be active in cancer cells. Then non-core reac-
tions were removed if all core reactions remained functional.
The model included a biomass objective function to simu-
late the synthesis of all metaboltes needed for cell proliferation
(e.g., nucleotides, amino acids, lipids, etc.). Thus, this model
was the first genome-scale model of cancer metabolism that
captured the main metabolic functions shared by many can-
cer types, while removing pathways that were not endemic to
cancer.

Flux Balance Analysis (FBA) (Orth et al., 2010) was used with
the generic MBA cancer model to identify potential drug targets
(Folger et al., 2011). Since FBA simulates a cell’s metabolic state
(including growth and metabolic flux), the phenotypic response
following gene knockdowns can be predicted, and the effects
of drug applications can be simulated on a large scale. In the
MBA cancer model, genes were identified that, when inhibited,
decreased the model-predicted growth rate. In doing so, 52 cyto-
static drug targets were identified, of which 40% are targeted by
known, approved, or experimental anticancer drugs. Predictions
were also made for pairs of synthetic lethal drug targets. The
synergistic effects of these target pairs were validated by look-
ing for increases in drug susceptibility among NCI-60 cell lines
lacking expression of one target in each synthetic lethal pair. Cell
lines missing one target were often more susceptible to treat-
ments against the other gene in the synthetic lethal pair. Thus,
by accounting for cancer-specific combinations of metabolic
pathways, one could design therapeutics to inhibit cancer cell
proliferation.

CELL LINE AND TUMOR-SPECIFIC CANCER MODELS
General cancer models have demonstrated that COBRA
approaches can manage the complexity of cancer metabolism.
While there are common biochemical features and muta-
tions, there remains much heterogeneity between different
tumors. Thus, algorithms are now generating genome-scale
metabolic models specific to cancer cell lines and tumors. These
models provide varying levels of insight by elucidating cancer-
specific pathways and predicting therapeutic targets for specific
tumors.

IDENTIFYING CANCER-RELEVANT PATHWAYS
Two studies recently identified metabolic pathways that differ
between cancer and the parent tissue from which the tumor
arose (Agren et al., 2012; Wang et al., 2012). To do this, algo-
rithms were developed to integrate omic data with a refer-
ence human metabolic reconstruction to build tumor-specific
metabolic networks.

One algorithm, called Integrative Network Inference for
Tissues (INIT), used immunohistochemical staining data (Uhlen
et al., 2010), metabolomic data (Wishart et al., 2013), and
transcriptomic data to construct metabolic models for 16 can-
cer types and their parent tissues (Agren et al., 2012). These
models each contained more than 2600 reactions. Genes and
reactions that were more frequently identified in the cancer

tissues were analyzed to identify Reporter Metabolites (Patil
and Nielsen, 2005) that were more frequently associated with
cancer. Several metabolites arose as dominant features in can-
cer. These included polyamines (e.g., spermine, spermidine,
and putrescine), intermediates of isoprenoid biosynthesis (e.g.,
geranylgeranyl diphosphate), prostaglandins and leukotrienes.
Previous studies targeted these processes in cancer, but this study
predicted key sites where the pathways could be targeted. In
addition, bilirubin and biliverdin arose as novel targets. By tar-
geting biliverdin reductase, one could potentially block the anti-
oxidative stress functions of these metabolites, thus enhancing cell
death.

Another 26 tumor-specific genome-scale models were gen-
erated using an algorithm called Metabolic Context-specificity
Assessed by Deterministic Reaction Evaluation (mCADRE)
(Wang et al., 2012), and the sizes of these models ranged from
roughly 1000–1400 reactions. Each cancer model was compared
to a corresponding healthy tissue model. Cancer-specific path-
ways were identified, many of which were previously known
to contribute to tumorigenesis and neoplastic growth, includ-
ing folate metabolism, eicosanoid metabolism, and nucleotide
metabolism. For example, folate and nucleotide metabolism have
previously been chemotherapy targets since they contribute to
the increased nucleotide synthesis rate in cancer. Beyond gen-
eral pathway differences, several reactions were identified as being
more frequently associated with cancer models. These included
eicosanoid metabolism reactions catalyzed by 5-lipoxygenase,
which contributes to angiogenesis and proliferation (Ye et al.,
2005). Importantly, the association of these metabolic path-
ways with cancer was not apparent when the authors only
looked at differential gene expression without the model topol-
ogy. Thus, it is clearly advantageous to study gene regula-
tory programs in cancer in the context of functional metabolic
networks.

ASSESSING THE METABOLIC PHENOTYPE OF TUMORS
Recently, models were built to elucidate p53′s role in regulating
cancer metabolism (Goldstein et al., 2013). This was accom-
plished using an algorithm called integrative Metabolic Analysis
Tool (iMAT) (Shlomi et al., 2008), which uses gene expression
levels to predict the distribution of metabolic fluxes. iMAT uses
an optimization problem to maximize the number of highly
expressed genes that carry flux while minimizing the number of
low expression genes that must be used. Using iMAT, models were
constructed for cell lines with different levels of p53 expression.
Specifically, two liver-derived HepG2 cell lines were developed,
expressing either a short hairpin RNA (shRNA) targeting p53
or a control shRNA. The cell lines were grown with or without
Nutlin-3a, which activates p53, and then the transcriptomes of
the samples were assayed. For each condition, iMAT models were
constructed, and these models demonstrated that p53 increases
the expression of gluconeogenesis. Thus, p53 may be diverting
glucose away from growth-promoting pathways, such as glycolysis
and the pentose phosphate pathway, thereby inhibiting neoplastic
growth and tumorigenesis.

Another method, called Metabolic Phenotype Analysis (MPA),
elucidated metabolic features among 392 breast cancer tumors,
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based on microarray data (Jerby et al., 2012). To do this, several
cellular metabolic functions were defined (e.g., lipid produc-
tion). Then, for each breast cancer sample, microarray data were
used to constrain the human metabolic model using a variant
of iMAT. For each metabolic function, a score was assigned to
describe the fitness of the given tumor sample for performing
the metabolic function of interest. Across all samples, the authors
compared metabolic functions, growth rates, posttranscriptional
regulation, and metabolic biomarkers. For example, the authors
found that premalignant cells grow faster than malignant tumors,
suggesting a proliferative deceleration prior to metastasis. In addi-
tion, late-stage tumors showed increased flux in glycolysis, lac-
tate production, ROS detoxification, and the pentose phosphate
pathway.

MPA further elucidated metabolic differences between tumors
differing in their estrogen receptor (ER) status (commonly
used to differentiate between breast cancer types) (Jerby et al.,
2012). Specifically, between ER+ and ER− tumors, 73% of the
metabolic processes had significantly different MPA scores. For
example, glutamine biosynthesis/secretion and lactate produc-
tion were more pronounced in ER+, while serine metabolism
and glutamine uptake were more predominant in ER−. These
differences resulted from a stoichiometric tradeoff between glu-
tamine secretion and serine metabolism, consistent with the
observation that serine biosynthesis requires glutamine as a
nitrogen donor (Possemato et al., 2011). Thus, the use of
models for -omic data analysis can elucidate the biomolec-
ular mechanisms underlying complex phenotypes in different
tumors.

MODEL-GUIDED INHIBITION OF CANCER CELL PROLIFERATION
The biochemical detail provided by COBRA models is elucidating
differences between tumors. Can the models also predict thera-
peutic targets? While the constraint-based cancer modeling field
is young, two studies demonstrated the predictive power of cell
line-specific models. Folger et al. (2011) built a cancer model for
non-small cell lung cancer metabolism, based on microarray data.
Model-predicted genes that were essential for growth significantly
overlapped with experimentally measured essential genes from
an shRNA screen. Furthermore, the overlap was more significant
than when the test was repeated with the general cancer MBA
model, thus demonstrating that cell-line specific models could
suggest novel targets.

A subsequent study found and validated a target relevant to
hereditary leiomyomatosis and renal cell cancer (HLRCC). This
cancer can develop when the tumor suppressor gene fumarate
hydratase (FH) is mutated. To mimic HLRCC, a murine renal cell
line was derived, and subsequently FH was disabled (Frezza et al.,
2011b). MBA models were constructed for the cell line before and
after disabling FH. Simulations with these models demonstrated
that a loss of FH is buffered by other pathways. Indeed, 24 model
genes were synthetic lethal with FH, most of which contributed
to heme biosynthesis. When an inhibitor for heme oxygenase was
used, FH-deficient cells could not proliferate. Since normal cells
are FH+, they were relatively unaffected by the therapeutic inhi-
bition of heme oxygenase. Thus, a cell-line specific model enabled
the identification of a potential new drug target for a specific

tumor type, highlighting the potential of model-predicted cancer
therapies.

EXPANDING THE SCOPE OF GENOME-SCALE MODELS IN
CANCER
Insight into cancer metabolism may be expanded as genome-
scale metabolic network models are further analyzed using the
expanding toolbox of constraint-based modeling methods (Price
et al., 2004; Lewis et al., 2012). A current challenge, how-
ever, is to increase the scope of genome-scale cancer modeling.
Three directions of relevance to cancer include: (1) employ-
ing models as data integration platforms, (2) using models to
discover details about mutations and enzyme regulation, and
(3) expanding models to account for the other hallmarks of
cancer.

True to Dulbecco’s vision (Dulbecco, 1986), the human
genome sequence enables systematic approaches and novel tech-
nologies to understand cancer. Numerous cancer genomes have
been sequenced (Hudson et al., 2010), and their mutations are
being cataloged (Forbes et al., 2011). Others have profiled cancer
chromatin landscapes (Schuster-Böckler and Lehner, 2012) and
studied dysregulated transcriptional regulatory programs in can-
cer (Lee et al., 2012; Lee and Young, 2013). Protein modifications
are routinely identified and proteins are being quantified (Cohen
et al., 2008; Uhlen et al., 2010). In parallel, other studies are char-
acterizing the metabolome (Jain et al., 2012) and metabolic flux
through pathways in cancer (Wellen et al., 2010; Locasale et al.,
2011).

Genomic, metabolomic, and phenotyping studies yield valu-
able data, but it is challenging to integrate the datasets for
deeper insight. Relationships between disparate data types can
be unclear. Some successes have relied on complex statistical
methods to find loci that co-vary with metabolites (Kettunen
et al., 2012; Krumsiek et al., 2012). Genome-scale metabolic
models provide a complementary approach. Their mechanistic
context with physical interaction data enables one to integrate
metabolomic, transcriptomic, proteomic, genomic, and high-
throughput phenotyping array data (Figure 2A) (Blazier and
Papin, 2012; Hyduke et al., 2013). For example, changes in the
extracellular metabolome can be used to constrain model uptake
and secretion fluxes. Then transcriptomic and proteomic data can
constrain internal fluxes, and phenotypic assays provide limits on
growth rates or other phenotypic measures. Thus, these mod-
els become biochemically-based data integration platforms. This
will likely become increasingly common for interpreting cancer
omic data.

Metabolism significantly changes during tumorigenesis and
metastasis (Cairns et al., 2011). This stems from numerous bio-
chemical adjustments, including mutations and posttranslational
modifications (PTMs) (Solit and Mellinghoff, 2010). Ongoing
studies biochemically characterize how aberrant PTMs and muta-
tions regulate metabolism in cancer, but the low-throughput
nature of biochemistry prohibits the characterization of all muta-
tions. Fortunately, emerging approaches are beginning to priori-
tize and infer the functional impact of biomolecular changes (Ng
and Henikoff, 2006; Beltrao et al., 2012). Furthermore, develop-
ments in constraint-based modeling and metabolic flux analysis
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FIGURE 2 | Expanding the reach of genome-scale metabolic models for

studying cancer. (A) Genome-scale metabolic models serve as
biochemically-supported data-integration platforms. In the metabolic network,
metabolomic data can be associated with metabolites, while genomic,
transcriptomic, proteomic, and related data types can be associated with
metabolic reactions. Phenotypic measurements can be used to constrain

properties of the network such as growth rate under certain experimental
conditions. (B) The various Hallmarks of Cancer either affect metabolism or
are modulated by metabolic changes. Therefore, modeling techniques are
needed to account for these interactions between metabolism and other cell
processes. Panel B adapted from (Hanahan and Weinberg, 2011) and
(Kroemer and Pouyssegur, 2008) with permission.

are beginning to predict regulatory roles of PTMs in metabolism
(Oliveira et al., 2012). As cancer models further improve, they
will likely help to rapidly characterize biochemical changes in
cancer.

Several mutations have been repeatedly witnessed in metabolic
enzymes in tumors. Many of these changes also influence other
Hallmarks of Cancer (Kroemer and Pouyssegur, 2008; Hanahan
and Weinberg, 2011) (Figure 2B). For example, mutations in suc-
cinate dehydrogenase and fumarate hydratase eventually lead to
the activation of the HIF-1 transcription factor. HIF-1 regulates
invasion, cell survival, angiogenesis, and inflammation in cancer
(Semenza, 2003; Frezza et al., 2011a). Conversely, some changes
in metabolic flux are downstream effects of perturbed tran-
scriptional regulatory and signaling systems. For example, p53
expression influences gluconeogenesis (Goldstein et al., 2013),
and mTOR signaling influences pyrimidine synthesis (Robitaille
et al., 2013). Furthermore, metabolic changes in cancer influence
cell-cell interactions in tumors. For example, changes in kynure-
nine concentration induce immune suppression, thereby facili-
tating immune escape in cancer (Prendergast, 2008). Metabolic
exchanges also occur between cancer cells and the surround-
ing stroma (Giatromanolaki et al., 2012). These are just a few
examples of diverse cell processes that interact with metabolism
throughout the stages of cancer.

Advances in constraint-based modeling are now addressing
cell–cell interactions(Lewis et al., 2010; Bordbar et al., 2011;
Zomorrodi and Maranas, 2012; Levy and Borenstein, 2013)
and incorporating other cellular processes into these models,
including transcription regulation, translation, and signaling (Lee
et al., 2008; Karr et al., 2012; Lerman et al., 2012; Thiele et al.,
2012, 2010; Simeonidis et al., 2013). Efforts to link these pro-
cesses to cancer metabolism should be fruitful. Lastly, models
are needed that incorporate the hallmark processes of can-
cer, such as angiogenesis, apoptosis evasion, and cell adhe-
sion. Such models will allow COBRA methods to reach beyond
metabolism for a more holistic view of dysregulated processes in
cancer.

CONCLUSION
When Renato Dulbecco pleaded with the scientific commu-
nity to sequence the entire human genome (Dulbecco, 1986),
seeds were sown for the genomic era of cancer biology. Now
we are witnessing early developments in genome-scale model-
ing of cancer metabolism. The recent modeling successes serve
as a harbinger to the discoveries that, in conjunction with
advances in experimental tools, will deepen our understanding
of cancer biology and our success in treating diverse classes of
cancer.
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