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Therapy-resistance and postoperative recurrence are causes of the poor prognosis
in pancreatic cancer. Conventional therapies have a limited impact on the control of
pancreatic cancer, resulting in the rapid re-growth of the tumor. The indispensable role
of tumor-stromal interaction, which acts as a defender of cancer cells and enhances
malignant potential, is being uncovered now. For example, specific signaling pathways for
desmoplasia induction have been identified, such as sonic hedgehog (Shh) or connective
tissue growth factor (CTGF), whose inhibition causes desmoplasia depletion and
therapeutic advantages at least in in vivo mouse models of pancreatic cancer. Revolutions
in drug delivery methods have led to the establishment of novel chemotherapeutic
regimens, with better patient survival. Furthermore, mechanisms of immunosuppression
in the pancreatic cancer-bearing host were clarified by the identification of myeloid-derived
suppressor cells (MDSCs), which also promote disease progression. Strategies to target
these components of the tumor stroma revealed certain anticancer effects in vitro and
in vivo, suggesting the possibility of stroma-targeting therapy. Suppression of the stromal
cell function increases the sensitivity of pancreatic cancer cells to therapeutic intervention.
Further study will clarify the complex nature of the tumor microenvironment, the targeting
of which has the potential to improve clinical outcome.
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INTRODUCTION
Radical surgical resection for pancreatic cancer is a curative ther-
apy, but benefits only a small percentage (∼20%) of pancreatic
cancer patients. Even when such patients receive surgical resec-
tion, early recurrence and metastasis threaten their lives. Most
pancreatic cancer patients show metastatic invasion to large blood
vessels or distant organs, resulting in unresectable disease. The
prognosis of inoperable patients is extremely poor, due to the
lack of an effective therapy (Hidalgo, 2010; Michl and Gress,
2013). According to the Japan Pancreatic Cancer Registry, which
summarized the clinical data of pancreatic cancer in Japan, the
prognosis of pancreatic cancer overall has been improving for
over 30 years, but the 5-year survival ratio is still lower than 20%
(Egawa et al., 2012). The clinical problem of pancreatic cancer
is its resistance to conventional therapies, such as chemother-
apy or radiation. Even though these therapies reveal suppressive
effects on tumor growth for a while, re-growth of the tumor fre-
quently occurs. Furthermore, conventional chemotherapy, gemc-
itabine itself was shown to induce therapy-resistant populations
of cancer cells in in vivo xenograft model in a previous study,
suggesting specific mechanisms underlying the development of

Abbreviations: ACEI, angiotensin I-converting enzyme inhibitor; ARB,
angiotensin II type 1 receptor blocker; CSC, cancer-stem cell; CTGF, con-
nective tissue growth factor; ECM, extracellular matrix; ERK, extracellular
signal-regulated kinase; 5-FU, 5-fluorouracil; MDSCs, myeloid-derived suppressor
cells; PSCs, Pancreatic stellate cells; Shh, sonic hedgehog; SPARC, Secreted protein
acidic and rich in cysteine.

resistance (Jimeno et al., 2009). Therefore, an additional thera-
peutic strategy needs to be established to prevent the development
of resistance.

Gemcitabine is a well-established therapeutic agent for unre-
sectable pancreatic cancer, but complete remission of the disease
rarely occurs (Burris et al., 1997). Gemcitabine alleviated disease-
related symptoms in this study, but nearly 50% of the patients
treated with gemcitabine showed only a partial response or static
disease in imaging studies. Additional chemotherapeutic reg-
imens using cytotoxic agents such as cisplatin, 5-fluorouracil
(5-FU) or capecitabine in combination with gemcitabine were
reported, but significant improvement in the patients’ survival
has not been achieved (Berlin et al., 2002; Heinemann et al.,
2006; Herrmann et al., 2007). Targeted therapies were also tested
alone or in combination with chemotherapy, such as vascular
endothelial growth factor antibody and multikinase inhibitors.
However, these agents have also failed to show improvement
in patients’ survival, so far (Kindler et al., 2010, 2012; O’Reilly
et al., 2010). In addition, pancreatic cancer shows resistance
against radiation therapy. A systematic review of the manage-
ment of locally advanced pancreatic cancer demonstrated that
radiation therapy alone does not have a survival benefit over that
of chemoradiation therapy, suggesting the difficulties in control-
ling pancreatic cancer by radiation alone (Sultana et al., 2007).
Recent studies indicated some beneficial effects of chemoradia-
tion for patients with borderline resectable pancreatic cancer, but
its effect on the patients with locally advanced disease remains
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controversial (Goodman and Hajj, 2013). Nevertheless, radiation
has few benefits for metastatic pancreatic cancer.

These clinical features of pancreatic cancer have been consid-
ered to be the result of resistance in the cancer cells themselves,
such as increased cell proliferation, enhanced survival signal, and
blocked apoptotic pathways. Indeed, cumulative gene mutations
provide these characteristics to cancer cells, which require more
than 20 years for the establishment of metastatic disease (Yachida
et al., 2010). However, host cells are also exposed to various sig-
nals from the pancreatic cancer cells at the same time. Recent
research identified that cancer stromal cells play pivotal roles
during the progression of pancreatic cancer, providing a cancer-
promoting microenvironment. In pancreatic cancer tissue, cancer
cells are surrounded by fibrotic stroma called desmoplasia, which
sometimes occupy a larger area than cancer cells (Erkan et al.,
2012). Pancreatic stellate cells (PSCs) play a central role in the
formation of fibrotic tumor stroma (Apte et al., 2004; Bachem
et al., 2005; Vonlaufen et al., 2008; Masamune and Shimosegawa,
2009, 2013). The interaction between cancer cells and stromal
cells perpetuates inflammation within the pancreatic cancer tis-
sue, which drives the formation and maintenance of desmoplasia.
This tissue structure and extracellular matrix (ECM) proteins
were reported to increase pancreatic cancer cell chemoresistance
against gemcitabine and 5-FU (Erkan et al., 2007). Similarly, the
ECM component hyaluronan, a megadalton glycosaminoglycan,
was also reported to impair the vascular function and drug deliv-
ery in a genetically engineered mouse model of pancreatic cancer
(Jacobetz et al., 2013). Another report described that the expres-
sion of Secreted protein acidic and rich in cysteine (SPARC) in
the tumor stroma was inversely correlated with patients’ survival.
This study confirmed the invasion-promoting role of exogenous
SPARC in pancreatic cancer cells, suggesting a tumor-promoting
role of ECM proteins (Mantoni et al., 2008). In addition, pan-
creatic cancer-derived immunosuppression also contributes to
the disease progression, which was confirmed by the existence
of myeloid-derived suppressor cells (MDSCs) in pancreatic can-
cer tissue (Clark et al., 2007; Evans and Costello, 2012). These
studies indicate that tumor-stromal interactions contribute to
therapy-resistance in pancreatic cancer, which therefore could be
an alternative therapeutic target.

Recently, attempts to treat pancreatic cancer by targeting
tumor-stromal interactions have been reported. Various strate-
gies have been examined such as targeting PSCs, inhibiting ECM
deposition, suppressing angiogenesis and restoring the immune
response in pancreatic cancer. Some of these strategies suggested
the possibility of targeting the tumor stroma of pancreatic can-
cer as a novel therapeutic option. Since stromal cells maintain
intact intracellular signals, these cells are assumed to show bet-
ter responses to therapeutic intervention compared with cancer
cells. In addition, the therapy-resistant evolution seen in cancer
cells is a rare phenomenon in normal cells, based on the normal
genomic regulation and lack of oncogenic mutations. The com-
bination of novel strategies with conventional therapies should
improve the clinical outcomes of pancreatic cancer. This review
article summarizes the mechanisms of therapy-resistance in pan-
creatic cancer that are provided by tumor-stromal interactions.
The current status and benefits of novel therapeutic strategies that

modify drug delivery and target tumor-stromal interactions are
discussed.

CRITICAL MEDIATORS OF TUMOR-STROMAL INTERACTION
Desmoplasia consists of the deposition of ECM proteins and
consistently activated stromal cells such as PSCs and fibroblasts.
Among stromal cells, PSCs play a central role in ECM pro-
duction and trigger continuous inflammation through cytokine
production (Erkan et al., 2012). In addition to PSCs, cancer-
associated fibroblasts suppress blood vessel formation leading
to the sparse vasculature, making drug delivery more difficult
(Olson and Hanahan, 2009). These stromal cells contribute to the
establishment of desmoplasia that involve the activation of mul-
tiple signaling pathways and cell-to-cell interactions. However,
the entire picture of these processes remains ambiguous. Recent
research identified some of the critical pathways that induce
desmoplasia in pancreatic cancer that could be pharmaceutically
targeted.

For example, sonic hedgehog (Shh) is highly expressed in
pancreatic cancer tissues and their precursor lesions, which sug-
gests some contribution to the pancreatic cancer progression
(Kayed et al., 2006). The hedgehog signal plays an important role
in cell-fate determination during organ development by mod-
ulating multiple cellular functions. Recently, pancreatic cancer
cell-derived Shh was found to induce desmoplasia in an ortho-
topic implantation model of pancreatic cancer in athymic nude
mice (Bailey et al., 2008). Shh affected the differentiation of
human PSCs and fibroblasts, demonstrating an indispensable role
as a mediator of the desmoplastic reaction. Another study identi-
fied that connective tissue growth factor (CTGF) expression was
elevated in pancreatic cancer tissue compared with normal pan-
creatic tissue. CTGF is able to bind various growth factors or
integrins modifying their activity (Abreu et al., 2002; Heng et al.,
2006). CTGF was found to stimulate the proliferation of PSCs,
migration, and fibrogenesis (Gao and Brigstock, 2006). CTGF
expression was associated with the elevated expression of the
endogenous hypoxia marker carbonic anhydrase-IX in pancreatic
cancer tissue, suggesting that pancreatic cancer cell-derived fac-
tors affect the tissue structure and microenvironment (Bennewith
et al., 2009).

In turn, PSCs activate multiple signaling pathways in pan-
creatic cancer cells. Indirect co-culture of PSCs with human
pancreatic cancer cell lines activated extracellular signal-regulated
kinase (ERK) and Akt pathways in vitro, which are cell survival-
related signaling pathways (Takikawa et al., 2013). Furthermore,
PSCs promote cancer metastasis in an orthotopic implantation
model and increase cellular migration of cancer cells (Vonlaufen
et al., 2008).

Interaction between PSCs and pancreatic cancer cells also
enhanced cancer-stem cell (CSC)-related phenotypes such as
increased in vivo tumorigenicity, the in vitro ability to form
spheroids and epithelial-mesenchymal transition (EMT) (Kikuta
et al., 2010; Hamada et al., 2012). ECM proteins produced from
PSCs were also found to play cancer-promoting role by previous
studies. For instance, ECM protein SPARC promoted the EMT
of cancer cells (Neuzillet et al., 2013). These cell-to-cell interac-
tions form a feed-forward loop, which perpetuates the fibrogenic
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process within pancreatic cancer. Therefore, the inhibition of
specific pathways indispensable for desmoplasia and broad sup-
pression of the stromal function were evaluated for therapeutic
application.

EFFECT OF INHIBITING DESMOPLASIA-PROMOTING
PATHWAYS
Recently, the novel chemotherapeutic agent nab-paclitaxel
became available for the treatment of pancreatic cancer (Von
Hoff et al., 2011). This albumin-bound paclitaxel-based formula
enables the hydrophobic paclitaxel to be administered at higher
doses of the drug without solvent, and increases the maximum
tolerated dose (Ibrahim et al., 2002). In addition, preopera-
tive nab-paclitaxel administration decreased collagen deposition
and cancer-associated fibroblasts in resected specimens, suggest-
ing that nab-paclitaxel has an additional effect, tumor stroma
disruption (Alvarez et al., 2013). Accordingly, the combination
of nab-paclitaxel with gemcitabine increased the intratumoral
gemcitabine concentration, leading to enhanced antitumor activ-
ity. The effect of nab-paclitaxel on the tumor stroma was also
confirmed in the genetically engineered mouse model of pan-
creatic cancer, with impaired collagen maturation (Neesse et al.,
2013b). This new regimen improved the overall survival and
progression-free survival of patients with metastatic pancreatic
cancer (Heinemann et al., 2013). These lines of evidence are an
excellent example of the clinical benefits that can be provided by
the evolution of drug delivery methods. Of note, the additional
effect of nab-paclitaxel on the tumor stroma, which synergistically
potentiates gemcitabine’s antitumor effect, suggests the possibility
of tumor-stromal interaction-targeting therapy.

Several studies reported more specific strategies directed at
desmoplasia. As mentioned earlier, critical signals required for the
inductions of desmoplasia have been identified. The Shh pathway
plays an important role during embryonic development, and is
aberrantly expressed in pancreatic cancer tissue. The Shh ligand
binds to its receptor. Patched allows cell membrane-associated
signal activator Smoothened to mediate the downstream signal.
Small-molecule inhibitors of the Shh pathway were identified
such as cyclopamine, a naturally occurring teratogenic molecule
(Stanton and Peng, 2010). Additional Shh inhibitors have been
identified thereafter, and their effects on desmoplasia were exten-
sively studied. Conditional expression of mutant K-ras (consti-
tutively active mutation G12D) and mutant p53 (inactivating
mutation R172H) in mice pancreas recapitulates pancreatic can-
cer development, which shows a progression pattern similar to
that of human pancreatic cancer such as liver metastasis and
desmoplasia (Hingorani et al., 2005). Pancreatic tumors in this
KPC mouse were resistant to gemcitabine, as confirmed by the
sustained tumor growth under gemcitabine administration (Olive
et al., 2009). Isolated pancreatic cancer cells from KPC mice were
sensitive to gemcitabine, and the accumulation of active metabo-
lites of gemcitabine in isolated cancer cells was not impaired,
suggesting that the tumor stroma is responsible for this resistance.
Oral administration of IPI-926, a derivative of cyclopamine suc-
cessfully depleted desmoplasia in the tumors of KPC mice (Olive
et al., 2009). IPI-926 caused a transient increase in the vascular-
ity of the tumors, which increased the intratumoral gemcitabine

concentration. Gemcitabine or IPI-926 alone did not show sur-
vival benefits, but combination therapy with IPI-926 and gem-
citabine prolonged survival. Based on these results, clinical trial
using IPI-926 in combination with gemcitabine was carried out.
Unfortunately, the phase II clinical trial of IPI-926 halted due to
the significantly shorter survival in patients on the IPI-926 arm.
This result might be due to the heterogeneity of human pancreatic
cancer, which could not be recapitulated by genetically engineered
mouse model. In addition, depletion of desmoplasia by a single
agent might be insufficient to eliminate cancer cells completely.

An alternative pathway has also been examined as a therapeu-
tic target. Conditional expression of mutant K-ras (constitutively
active mutation G12D) with TGF-β receptor type II knockout
in pancreas also developed pancreatic cancer in mice, accompa-
nied by desmoplasia. Elevated expression of CTGF was detected
in these pancreatic tumors, and its induction was mediated by
Cxc chemokine signal. Cxc receptor inhibitor SB225002 adminis-
tration alone could decrease the CTGF expression in pancreatic
tumors and prolonged the survival of the cancer-bearing mice
(Ijichi et al., 2011). In another study using a monoclonal antibody
against CTGF (FG-3019), an enhancement of the chemotherapy
response by combination therapy with gemcitabine in KPC mice
was described. In this study, cytidine deaminase inhibitor admin-
istration did not show therapeutic advantages despite the elevated
gemcitabine concentration within the pancreatic tumors, whereas
FG-3019 monoclonal antibody could enhance the effect of gemc-
itabine (Neesse et al., 2013a). Since cytidine deaminase inhibitor
did not alter the tumor microenvironment, the poorer response
to gemcitabine and the cancer cell survival might be largely due
to environmental factors derived from the desmoplasia.

These targeted therapies against tumor stroma have certain
effect, but several problems need to be solved for the estab-
lishment of effective regimen. Resistance against single targeted
therapy is a common phenomenon, such as the resistance against
epidermal growth factor receptor tyrosine kinase inhibitor in
non-small cell lung cancer (Sun et al., 2013). To overcome this
resistance mechanism, downstream target of epidermal growth
factor pathway, MEK inhibition was tested that induced apoptosis
in epidermal growth factor receptor tyrosine kinase inhibitor-
resistant lung cancer cells (Song et al., 2013). Taken together,
targeted therapy against tumor stroma will also suffer from
the resistance, which needs to be prevented by a combination
approach.

TARGETING PSCs’ FUNCTION
Broad inhibition of the stromal function is an additional thera-
peutic strategy to attenuate tumor-stromal interactions. A wide
variety of agents inhibit ECM production or the constitutive acti-
vation of PSCs. These agents include plant-derived polyphenol
(ellagic acid, curcumin, and green tea polyphenol), nicotinamide
adenine dinucleotide phosphate oxidase inhibitor (diphenylene
iodonium and apocynin) and angiotensin II type 1 receptor
blocker (ARB) (Masamune et al., 2005a,b, 2006, 2008; Sakurai
et al., 2011). Treatment with these agents resulted in decreased
ECM protein production such as collagen from PSCs. The
attenuation of cytokine production from PSCs, inhibition of
pro-inflammatory signals and reduced proliferation of PSCs were
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also observed by these treatments. Since these agents could be
administered orally, tumor stroma-repressive effects have been
well examined in vivo (Masamune et al., 2008; Sakurai et al.,
2011).

Among these agents, ARB is an antihypertensive drug with
established feasibility and safety in clinical use. An anti-
inflammatory effect of ARB in the pancreas was found in one
of the clinically-available ARBs, candesartan. The administration
of candesartan in a rat model of chronic pancreatitis attenu-
ated pancreatic inflammation and fibrosis (Yamada et al., 2003).
Candesartan decreased the alpha-smooth muscle actin-positive
cells in pancreas, suggesting suppressed activation of PSCs. A ret-
rospective study of patients with pancreatic cancer who received
angiotensin I-converting enzyme inhibitors (ACEIs) and ARBs
demonstrated the contribution of both drugs to a better prog-
nosis (Nakai et al., 2010). The overall survival was 15.1 months
in the ACEI/ARB group and 8.9 months in the non-ACEI/ARB
group (Nakai et al., 2010). Another report described the use of
olmesartan to treat subcutaneous-tumor bearing immunodefi-
cient mice. The growth of subcutaneous tumors derived from the
co-injection of human pancreatic cancer cell line AsPC-1 with
human PSC cell line was significantly suppressed by olmesar-
tan (Masamune et al., 2013). Furthermore, olmesartan treatment
attenuated the cell viability of PSCs and suppressed collagen
production in vitro. Accordingly, decreased expression of alpha-
smooth muscle actin and collagen deposition in subcutaneous
tumors was confirmed, indicating an alteration of the microenvi-
ronment in the cancer tissue. In this study, delayed administration
(2 weeks after the subcutaneous implantation of cancer cells with
PSCs) of olmesartan also attenuated the growth of subcutaneous
tumors, suggesting the contribution of PSCs to sustained tumor
growth as well as successful tumor implantation. In addition to
the inhibitory effect on PSCs, losartan, another ARB, reduced
stromal collagen and hyaluronan that led to the reduction of
solid stress and increased blood perfusion. This study suggested
that ARB has a potential to remodel tumor microenvironment
(Chauhan et al., 2013).

Together with the inhibition of specific signaling pathways
such as Shh or CTGF, these inhibitors of PSC functions could
become candidates for therapeutic applications that target tumor-
stromal interaction. PSC functions that promote pancreatic can-
cer and possible therapeutic interventions are summarized in
Figure 1.

MODIFICATION OF IMMUNE REACTION AGAINST
CANCER CELLS
Interactions between pancreatic cancer cells and host immune
cells play critical roles during the progression of pancreatic
cancer. Recently, progress has been made in identifying the
detailed mechanisms of immune suppression in pancreatic can-
cer. Infiltration of inflammatory cells is observed, in addition
to desmoplasia, in pancreatic cancer tissue. These cells consist
of immature myeloid cells that have immunosuppressive func-
tions, known as MDSCs (Clark et al., 2007; Scarlett, 2013). These
cells produce arginase, nitric oxide, and reactive oxygen species
that suppress cytotoxic T-cell functions (Ostrand-Rosenberg and
Sinha, 2009). Recently, several approaches have been devised to

FIGURE 1 | Schematic view of tumor-promoting PSC functions and

PSC-targeting strategies in pancreatic cancer. The tumor-promoting
interaction between cancer cells and PSCs could be therapeutic targets, by
the inhibition of specific signaling pathways or PSC’s functions. ARB,
angiotensin II type 1 receptor blocker; CTGF, connective tissue growth
factor; ECM, extracellular matrix; ERK, extracellular signal-regulated kinase;
PSCs, Pancreatic stellate cells; Shh, sonic hedgehog; SPARC, Secreted
protein acidic and rich in cysteine.

target MDSCs. The elimination of MDSCs by effector T cells tar-
geting CD11b+Gr1+ MDSCs efficiently inhibited tumor growth
(Zhang et al., 2008). Treatment with interleukin-12 was reported
to attenuate the immunosuppressive effect of MDSCs by enhanc-
ing differentiation and decreasing nitric oxide synthase expression
(Steding et al., 2011). Furthermore, IL-12 changed the function
of MDSCs to enhance the effect of CD8+ T-cells, which could
lead to tumor regression in the mouse model (Kerkar et al.,
2011). Since MDSCs have immature nature, induction of dif-
ferentiation using several reagents such as all-trans-retinoic acid
or vitamin D3 was also tested (Lathers et al., 2004; Mirza et al.,
2006).

Reinforcement of the host immune reaction by vaccination or
dendritic cell therapy is an additional approach for modification
of the immune reaction. Currently, survivin2B is targeted as a
possible antigen in pancreatic cancer treatment, and immuno-
logical responses in patients have been reported (Kameshima
et al., 2013). Another clinical trial targeting vascular endothe-
lial growth factor receptor 2 by oral DNA vaccine is now in
progress (Niethammer et al., 2012). As an immunotherapy, the
combination of dendritic cell injection with gemcitabine admin-
istration was administered in mice that received subcutaneous
implantation of pancreatic cancer cells. This treatment signifi-
cantly delayed the growth of subcutaneous tumors by decreasing
MDSCs within them (Ghansah et al., 2013). Previous attempts
to develop cancer vaccines did not achieve favorable results,
but novel targets and technical improvements might yield suc-
cess. Since these therapeutic strategies targeting immune systems
largely remain experimental, further examination and validation
of their efficacy are required.

CONCLUSION
Tumor-stromal interactions contribute to the specific microen-
vironment of pancreatic cancer and hamper effective cancer

Frontiers in Physiology | Gastrointestinal Sciences November 2013 | Volume 4 | Article 331 | 4

http://www.frontiersin.org/Gastrointestinal_Sciences
http://www.frontiersin.org/Gastrointestinal_Sciences
http://www.frontiersin.org/Gastrointestinal_Sciences/archive


Hamada et al. Tumor stroma yields therapy resistance

FIGURE 2 | Schematic view of therapy-resistance related

tumor-stromal interaction and possibility as a tumor stroma-targeting

therapy. Stroma-targeting strategies include the modification of drug
delivery, inhibition of PSC functions and restoration of immune functions.
ARB, angiotensin II type 1 receptor blocker; ATRA, all-trans retinoic acid; IL,
interleukin; MDSCs, myeloid-derived suppressor cells; PSCs, Pancreatic
stellate cells; Shh, sonic hedgehog; SPARC, Secreted protein acidic and rich
in cysteine.

cell elimination. The relationship between tumor-stromal inter-
action, therapy-resistance and future perspectives for stroma-
targeting therapy is summarized in Figure 2. The novel anticancer
agent nab-paclitaxel provided an additional therapeutic option
in pancreatic cancer treatment, with proper inhibitory effects on
the tumor stroma. Present strategies for depleting the pancre-
atic cancer stroma itself have revealed promising effects, though
their clinical application has not yet been established. Specific
inducers of desmoplasia and broad inhibition of PSC functions
might be combined for effective therapy. Further study will enable
novel therapeutic options targeting the critical mechanisms that
maintain pancreatic cancer.
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