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INTRODUCTION

Our previous studies demonstrated a relation between glutathionylation of cardiac myosin
binding protein C (cMyBP-C) and diastolic dysfunction in a hypertensive mouse model
stressed by treatment with salt, deoxycorticosterone acetate, and unilateral nephrectomy.
Although these results strongly indicated an important role for S-glutathionylation of
myosin binding protein C as a modifier of myofilament function, indirect effects of other
post-translational modifications may have occurred. Moreover, we did not determine the
sites of thiol modification by glutathionylation. To address these issues, we developed
an in vitro method to mimic the in situ S-glutathionylation of myofilament proteins and
determined direct functional effects and sites of oxidative modification employing Western
blotting and mass spectrometry. We induced glutathionylation in vitro by treatment of
isolated myofibrils and detergent extracted fiber bundles (skinned fibers) with oxidized
glutathione (GSSG). Immuno-blotting results revealed increased glutathionylation with
GSSG treatment of a protein band around 140 kDa. Using tandem mass spectrometry, we
identified the 140 kDa band as cMyBP-C and determined the sites of glutathionylation to
be at cysteines 655, 479, and 627 Determination of the relation between Ca2*-activation
of myofibrillar acto-myosin ATPase rate demonstrated an increased Ca?t-sensitivity
induced by the S-glutathionylation. Force generating skinned fiber bundles also showed
an increase in Ca-sensitivity when treated with oxidized glutathione, which was reversed
with the reducing agent, dithiothreitol (DTT). Our data demonstrate that a specific and
direct effect of S-glutathionylation of myosin binding protein C is a significant increase
in myofilament CaZt-sensitivity. Our data also provide new insights into the functional
significance of oxidative modification of myosin binding protein C and the potential role
of domains not previously considered to be functionally significant as controllers of
myofilament CaZt-responsiveness and dynamics.
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cross-bridge cycling kinetics (Colson et al., 2012b). There is also

In experiments reported here, we tested the hypothesis that oxida-
tive modification of cardiac myosin binding protein C (cMyBP-C)
at specific sites modifies myofilament response to Ca’*. cMyBP-
C is a thick filament associated protein composed of eight Igl-like
(C0-C5, C8, C10), three fibronectin-3-like domains (C6, C7, C9),
region between CO and Cl rich in proline and alanine residues
(Pro-Ala-rich linker), and cardiac specific sequence (M-domain)
that links C1 and C2 domains (Sadayappan and de Tombe, 2012).
There is also a cardiac specific domain housed in the C5 domain.
Gain and loss of function studies have shown that cMyBP-C is
an important regulator of cardiac dynamics (Tong et al., 2008).
cMyBP-C interacts with myosin S-2 (Harris et al., 2004; Ratti
et al., 2011; Pfuhl and Gautel, 2012) and with titin (Sadayappan
and de Tombe, 2012) and is believed to control the radial dis-
position of cross-bridges in relation to the thick filament proper
(Colson et al., 2012a; Sadayappan, 2012; Sadayappan and de
Tombe, 2012). For example, phosphorylation of the M-domain
moves cross-bridges closer to the thin filament and promotes

evidence of a direct interaction of MyBP-C with the thin filament,
but the significance and presence of this reaction remains contro-
versial and poorly understood (Harris et al., 2004; Kensler et al.,
2011). Linkage of prevalent and penetrant mutations to familial
cardiomyopathies points to the significance of cMyBP-C in home-
ostatic control of cardiac function (Harris et al., 2011; McNally
etal., 2013).

In previous studies, we reported data indicating a new role
for cMyBP-C in the response of the myocardium to hypertensive
stress in a mouse DOCA-salt model stressed by administration
of salt, deoxycorticosterone acetate and unilateral nephrectomy
(Lovelock et al., 2012; Jeong et al., 2013). These mice demon-
strated oxidative stress and a diastolic abnormality in hearts and
isolated myocytes, which occurred with no apparent change in
cellular Ca?*-fluxes (Lovelock et al., 2012). These findings indi-
cate that altered Ca’>*-responsiveness of the myofilaments might
be involved, and indeed our experiments demonstrated enhanced
myofilament response to Ca?T- with slowing of cross-bridge
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kinetics (Lovelock et al., 2012). We also reported a correlation
of levels of MyBP-C S-glutathionylation with diastolic dysfunc-
tion with reversal of the oxidative stress by treating the DOCA-salt
mice with tetrahydro-biopterin (Jeong et al., 2013). We identified
S-glutathionylation of cMyBP-C as a post-translational modifica-
tion likely to induce the altered response to Ca?* (Lovelock et al.,
2012; Jeong et al., 2013). Yet, we also found that myofilaments
from the DOCA-salt model had significantly depressed levels of
MyBP-C phosphorylation at Ser 282, which correlated with a
depression of cardiac Tnl (cTnl) phosphorylation at Ser 23, Ser
24. Thus, questions remained regarding whether the functional
effects of MyBP-C could be demonstrated by direct glutathiony-
lation of cMyBP-C at the same levels of phosphorylation of
cMyBP-C and cTnl. A question also remained regarding the sites
of the glutathionylation on cMyBP-C.

In the present experiments, we pursued an approach to
these questions by developing in vitro conditions for direct S-
glutathionylation of sarcomeric proteins. This approach provided
a direct test of the hypothesis that this post-translational modifi-
cation is the major mechanism of the altered sarcomeric response
to Ca?*. Our findings support this hypothesis and also show for
the first time that S-glutathionylation occurs on Cys residues in
domains of cMyBP-C not generally expected to be major players
in controlling myofilament function.

MATERIALS AND METHODS

ISOLATION OF CARDIAC MYOFIBRILS AND MEASUREMENTS OF
ATPase ACTIVITY

Four month old female FVBN mice were deeply anesthetized with
60 mg/kg pentobarbital. The heart was quickly excised and rinsed
in cold 0.9% sodium chloride. All methods were approved by the
University of Illinois at Chicago Animal Care and Use Committee.
We isolated myofibrillar fractions from ~50 mg wet weight of left
ventricular tissue using a modification of procedures described by
Solaro et al. (1971) and Layland et al. (2005). Membranes in the
tissue were extracted by two homogenizations in 1 ml of a stan-
dard buffer with Triton X-100 (75 mM KCl, 10 mM imidazole,
pH 7.2, 2mM MgCI2, 2mM EGTA, 1 mM NaN3, and 1% v/v
Triton X-100) using a 2 ml Dounce homogenizer. Following cen-
trifugation, pellets were washed twice with 1 ml standard buffer
without Triton X-100 and resuspended in the assay buffer (A-
70 containing 70 mM NaCl, 10 mM MgCI2, and 40 mM MOPS,
pH 7.0) (Kobayashi and Solaro, 2006). A DC assay (Bio-Rad)
was performed to determine protein concentration of the sample.
Modifications of assays of myofibrillar activity were carried out on
fresh isolated preparations. For in vitro glutathionylation (Chen
et al., 2007), myofibrillar protein suspensions (0.2 mg/ml) were
incubated for 1h at room temperature in either A-70 buffer or
A-70 containing various concentrations of oxidized glutathione
(GSSG). Following the glutathionylation reaction, the myofibrils
were suspended in an assay buffer containing 0.1 mg/ml protein,
35mM NaCl, 5mM MgCl,, I mM EGTA, 20mM MOPS, pH
7.0 with CaClyto achieve a range of pCa (—log [Ca’*] values
from pCa 7.8 to pCa. 4.6). Free Ca** concentration was calcu-
lated using WEBMAXC STANDARD. We determined myofibrillar
ATPase activity at 30°C by starting the reaction with 1 mM ATP
and stopping the progress by addition of trichloroacetic acid every

3min for 15min, during which Pi generation, as determined
with a malachite green based assay, was linear (Kodama et al,,
1986). Blank assays without protein did not demonstrate non-
enzymatic ATP hydrolysis. Data were normalized to maximum
activity. Graph Pad Prism 5.00 was used to analyze ATPase rates
and to fit the data to the Hill equation to generate half maximally
activating pCa values (pCasg) and Hill n values.

FORCE MEASUREMENT OF SKINNED FIBER BUNDLES

Measurements of the force- Ca?* relationship were carried out on
fiber bundles from left ventricular papillary muscle of adult mice
essentially as previously described (Evans et al., 2000). Female
mice 4 months old were anesthetized as above and hearts were
quickly excised and placed in ice cold high relaxing (HR) solu-
tion pCa 10.0 of the following composition in mM: K-propionic
acid 41.89, MgCl, 6.57, BES 100, EGTA 10, ATP 6.25, phospho-
creatine 10, Na-azide 5, pH adjusted to 7.0 using KOH. The ionic
strength of all solutions was 150 mM. All solutions contained
protease inhibitors pepstatin (2.5 pg/ml), leupeptin (1 ug/ml)
and phenylmethylsulphonyl fluoride (PMSE, 50 wm). Fiber bun-
dles (150-200 pm in width and ~4-5mM long) were dissected
from papillary muscles. Membranes were extracted from the fiber
bundles by immersing them for 30 min in HR buffer contain-
ing 1% Triton X-100. We mounted the fiber bundles between
a force transducer and micromanipulator, and, after an initial
contraction to maximum force and return to relaxation, we set
the sarcomere length at 2.2 pm using laser diffraction patterns.
A, The fibers were then exposed to solutions of incrementally
increasing Ca®* concentrations ranging from 1077 to 10~ M
and force was recorded to determine the force-pCa relations.
Fibers were then incubated in 5mM GSSG in A-70 as prepared
above for 10 min, and then subjected to the varying Ca** con-
centrations. This process was repeated using 10 mM dithiothreitol
(DTT) solubilized in A-70 for 10 min. No changes in force or Ca-
sensitivity were observed when we treated control skinned fibers
(no BSSG) with DTT. Tension was calculated by dividing the
force by the cross-sectional area, as described previously (Evans
et al., 2000). Assuming a cylindrical shape we determined radius
from measurements of two perpendicular planes at three points
along the fiber. The mean radius was used to calculate the cross-
sectional area. Data from each experimental run were fit to the
Hill equation with pCa as the independent variable for non-linear
regression using Graphpad Prism 5 software. The results were
than averaged for reporting in the figures.

IMMUNOBLOTTING

Control and GSSG treated myofibrils in A-70 assay buffer were
solubilized in a non-reducing 2X Laemmli buffer (Laemmli,
1970) (4% SDS, 20% glycerol, 0.004% bromophenol blue, and
0.125 M Tris HCI pH 6.8) with 25 mM N-ethylmaleimide (NEM)
in a 1:1 ratio. A negative control was prepared by adding 10 mM
DTT to myofibril proteins. 20 p g of total protein was applied to
1D 12% non-reducing resolving SDS-PAGE gel (Fritz et al., 1989)
and transferred onto a 0.2 WM PVDF membrane (Matsudaira,
1987). The blot was blocked in 5% non-fat dry milk with
2.5mM NEM for 1h. Anti-glutathione mouse monoclonal pri-
mary antibody (Virogen) was used at 1:1000 dilution along
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with anti-mouse HRP-conjugated secondary antibody (Sigma)
at 1:40,000 dilution to detect for S-glutathionylation (Hill et al.,
2010). Skinned fibers (4-6 fiber bundles) from force measure-
ment studies were solubilized in 30 ] of the 2X Laemmli buffer
with 25 mM NEM. Proteins in the samples (4—10 pl) were sep-
arated on 1D 12% non-reducing resolving SDS-PAGE gel. The
SDS gels showed the same pattern of proteins and loading as
previously reported (12; Figure 5). Transfer and western blot pro-
cedure was same as above. Optical density of the bands was
measured with ImageQuant TL (GE Healthcare) and exported to
Excel for statistical analysis.

MASS SPECTROMETRY

An 8% non-reducing 1D SDS-PAGE gel was stained with Imperial
Protein Stain (Thermo) according to manufacturer’s protocol.
The band around 140kDa (MyBP-C) was cut from the gel
and subjected to in-gel digest with Trypsin Gold (Promega).
Reduction and alkylation steps were omitted to preserve the
S-glutathionylation of the proteins. Pooled digestion extracts
were concentrated via Speed Vac to less than 20 .l and brought
up to 40l with mobile phase solution (5% ACN and 0.1%
formic acid). Peptides were filtered with 0.22 pm PVDEF Millipore
Ultrafree-MC spin filter and 35 pl of sample was analyzed with
Thermo Finnigan LTQ hybrid linear ion trap—Fourier Transform
ICR mass spectrometer coupled to Dionex U3000 nano LC.
Dionex acclaim PepMap100 C18 trapping column (500 pm x
5 mm column packed with 5 um, 100 A Symmetry C18 material)
was used to concentrate the samples at flow rate of 50 nl/min and
Agilent Zorbax 300SB-C18 Nanoflow column (75 pm x 150 mm
column packed with 3.5 uwm, C18 material) was used for sepa-
ration at flow rate of 0.250 pl/min. Peptides were eluted with a
linear gradient of 5-45% solution B (95% ACN, 0.1% formic
acid) through New Objective uncoated SilicaTips™ (5cm long,
tubing OD 360/75 pum, tip ID 8 wm). Peptides were ionized via
electrospray ionization with LTQ source voltage set to 1.0 kV and
capillary temperature set to 200°C. Mass spectra were obtained
in positive ion mode over m/z range of 400-1800 at a resolution
of 50,000 and top ten most intense ions were selected for tan-
dem MS. MS/MS were obtained in collision induced dissociation
mode with minimum signal required 5000, isolation width 3, and
normalized collision energy 35.

Mass spectrometry data were collected with Xcalibur 2.0.7
software as.Raw file, which were converted to mzXML and MGF
files using MassMatrix MS Data File Conversion tool (Xu and
Freitas, 2009). Mascot search engine was used to analyze the
MS/MS data (Perkins et al., 1999). Searches were performed
using NCBInr Mus musculus and a decoy (automatically gener-
ated reversed protein sequences) database with peptide tolerance
of 15 ppm. Variable modifications were set to glutathione (C).
The results are representative of three similar and separate mass
spectrometry runs.

STATISTICAL ANALYSIS

We determined pCa values at half-maximum ATPase activity
and force generation from data normalized to maximum activ-
ity. The data were fit to a modified Hill equation (Takeda et al.,
1997; Kobayashi and Solaro, 2006). Statistical significance was
determined using paired Student #-test or One Way ANOVA

followed by Newman-Keuls test where appropriate. Data are
presented as means + SEM with significance set at p < 0.05.

RESULTS

MYOFIBRILAR ATPase ACTIVITY

In order to determine direct effects of glutathionylation on
myofilament response to calcium, we compared ATPase activi-
ties of isolated myofibrillar preparations before and after treat-
ment with 1 and 5mM GSSG (Figure 1). Compared to controls,
myofibrils treated with either 1 mM (Figure 1A) or 5mM GSSG
(Figure 1B) demonstrated a significant leftward shift in the rela-
tion between pCa and myofibrillar ATPase activity. In the case
of modification by 1 mM GSSG, the half- maximally activat-
ing pCa value (pCasg) was 6.50 = 0.07 (n =4) compared to
a pCasgpof 6.17 £ 0.09 (n = 4) for controls. With 5mM GSSG
the pCasp was 6.60 £ 0.03 (n = 4) compared to controls with
pCa50 of 6.02 £ 0.07 (n = 4). The Hill coefficients, minimum,
and maximum ATPase rates did not change significantly between
the control myofibrils and myofibrils treated with either 1 or
5mM GSSG.
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FIGURE 1 | Myofibril pCa-ATPase activity of control and GSSG treated
samples. (A) /n vitro ATPase activity of myofibrils prepared from wild type
FVBN mouse heart treated with T mM GSSG for 1 h. pCa50 for control
samples is 6.17 £ 0.09 (shown also in panel B) and for 1 mM GSSG treated
samples is 6.50 & 0.07 (B) /n vitro ATPase activity of myofibrils prepared
from wild type FVBN mouse heart treated with 5mM GSSG for 1 h. pCa50
for control samples is 6.17 £ 0.09 and for 5mM GSSG treated samples is
6.60 + 0.03. Data are expressed as mean =+ standard error of mean, n =4
from 1 preparation. In both panels (A) and (B) the change in pCa50 was
significant (P < 0.05). ny, minimum pCa, and maximum pCa values were
not significantly different.
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GLUTATHIONYLATION OF MYOFIBRILLAR PREPARATIONS

To determine the mechanism for the higher Ca?™, sensitivity of
ATPase rate for the GSSG treated myofilaments, we analyzed the
samples by Western blot analysis. Figure 2A shows blots for con-
trol samples and samples treated with increasing concentrations
of GSSG. The Western blots revealed increased glutathionylation
of a band identified as MyBP-C by probing with a specific anti-
body. As summarized in Figure 2B, all samples treated with GSSG
demonstrated significant increases in glutathionylation compared
to controls. Samples treated with 3, 4, and 5mM GSSG had sig-
nificantly increased levels of MyBP-C glutathionylation compared
with the 1 mM GSSG treated samples, and the samples treated
with 3 and 4 mM GSSG had significantly higher levels of glu-
tathionylation than samples treated with 2mM GSSG. Levels of
glutathionylation were not significantly different among the 3,

4, and 5mM GSSG treated groups. Western blots also detected
glutathionylation of actin, but there were no significant differ-
ences between the GSSG treated groups and the control although
the levels at 4 and 5 mM GSSG treatment were higher than those
at 1, 2, and 3 mM GSSG treatment. Another band with mobil-
ity faster than that of actin and likely to be tropomyosin showed
glutathionylation. However, the glutathionylation detected in this
band did not show a dependence on dose of GSSG, and was the
same as the control at 5mM GSSG treatment.

THE EFFECT OF GSSG AND DTT ON SKINNED FIBER FORCE
GENERATION

We also determined the effect of glutathionylation on the force-
pCa relation of skinned fiber bundles. The fiber bundles were first
incubated for 10 min with A-70 buffer alone or 5mM GSSG in
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FIGURE 2 | Western blot analysis of proteins subject to
glutathionylation during ATPase assay. (A) Control myofibrils and
myofibrils treated with increasing concentrations of GSSG (20 ng) were
probed with anti-GSH (Virogen) antibody to detect glutathionylated
proteins. (—) lane contains myofibrils treated with 10mM DTT after 5mM
GSSG treatment to serve as a negative control. The blot was also probed

150 - —

Cmt 1 2 3 4 5

Tropomyosin

mM GSSG
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with myosin binding protein C antibody for identification of glutathione
band. (B) Load normalized quantitative results in arbitrary units showing
significant difference in glutathionylation (GSP) of MyBP-C between
non-treated and GSSG treated samples. Data are also shown for actin and
tropomyosin bands. Data are expressed as mean + standard error of
mean, n=4 (*P < 0.05).
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A-70 buffer and then switched to HR for determination of force at
various pCa values. As illustrated in Figure 3, skinned fiber Ca**
sensitivity was significantly higher after GSSG incubation as indi-
cated by pCasg of 6.15 &+ 0.01 (n = 4) compared to controls with
pCasp of 6.09 & 0.01 (n = 4). This increase in pCasy with direct
glutathionylation is similar the increase in pCasywe reported
when comparing myofilaments sham mice and DOCA/salt mice
[Figure 4A in Jeong et al. (2013)]To determine the reversibility
of the effect of GSSG, we measured the force-pCa relation in a
protocol in which we incubated the fiber bundles in 5 mM GSSG
for 10 min followed by 10 mM treatment with DTT. As shown in
Figure 3A the increased Ca?T sensitivity associated with GSSG
treatment was reversed after incubation in DTT as indicated by
pCasp 0f 6.03 £ 0.02 (n = 4). Cooperativity of activation, as mea-
sured by the Hill slope tended to decrease after GSSG incubation
and return to control levels after DTT incubation, but none of
the changes were statistically significant. As with the myofibril-
lar preparations, Western blots of the skinned fiber preparations
revealed glutathionylation of MyBP-C (Figure 3B). The 5mM
GSSG treated fibers showed higher glutathionylation level than
control fibers, and the level of glutathionylation returned to
control levels following 10mM DTT treatment. Although we
detected glutathionylation of myosin heavy chain and actin in
the skinned fibers treated with GSSG (data not shown), but there
were no significant changes in glutathionylation level between the
three groups for both proteins.

MASS SPECTROMETRY

We employed tandem mass spectrometry to identify
glutathionylated proteins and determine the sites of cMyBP-C
glutathionylation. Mass spectra resulting from the LC/MS/MS
of the ~140kDa band (Figure4) identified myosin-binding
protein C, cardiac-type (gi|134031947), with 43-50% sequence
coverage as the number one hit. Tryptic peptides of cMyBP-C
were analyzed for a mass shift of 305 Da, indicating cova-
lent attachment of GSH to one of the peptide residues.
Three separate peptides, ®!'THLDCPGSTPDTIVVVAGNK®?,
#SVEFECEVSEEGAQVK*?, and “LTIDDVTPADEADYSFV
PEGFACNLSAK®32, were found to be glutathionylated (Figure 5,
Table 1). When the myofibrils were treated with 1 mM GSSG,
only peptide ®>'THLDCPGSTPDTIVVVAGNK®®was found to
be glutathionylated at Cys®>>. The precursor ion for the triply
charged glutathionylated peptide was observed at m/z 781.04>*
compared to the unmodified precursor peptide observed at m/z
679.353+. Comparison between select b and y product ions of the
glutathionylated and unmodified peptide (Figures5A,B) show
mass shift of 305 Da (singly charged ions) or 152.5 Da (doubly
charged ions). With treatment of 5mM GSSG, we identified
all three of the above peptides to be glutathionylated at Cys®™,
Cys*”%, and Cys®”’. The triply charged glutathionylated peptide
475VEFECEVSEEGAQVK*® was observed at m/z 663.28%F and
S0SITIDDVTPADEADYSFVPEGFACNLSAK®??  glutathionylated
precursor peptide was observed at m/z 1098.49°%. Expect value
of less than 0.1 was considered to be significant identification of
each individual peptide. Significant identification of glutathiony-
lated cMyBP-C peptides was not made in the control non-treated
myofibril samples.
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FIGURE 3 | The effects of GSSG and DTT on force generating
parameters of skinned papillary fibers. (A) Data represent the force-pCa
relationship in skinned cardiac muscle fibers recorded primarily using only
the varying increasing CaZ* solutions, then followed by treatment with
5mM GSSG in A-70 for 10 min and subsequently bathed in the Ca2+
solutions. The fibers were then incubated in 10 mM DTT in A-70 for 10 min
and were then bathed in increasing Ca2*t solutions again. The pCa50 values
were all statistically significant between treatments. pCa50 values for
control fibers, 5mM GSSG treatment, and 10 mM DTT treatment were 6.09
+ 0.01, 6.15 £ 0.01, and 6.03 £ 0.02, respectively. Data represented as
mean + SEM, n = 4 for all groups, significance was set at p < 0.05. (ny,
minimum pCa, and maximum pCa values were not significant). (B) Western
blot analysis of skinned fiber showing significant difference in
glutathionylation levels between control and GSSG treated fibers (p = 0.05).
Glutathionylation levels are also significantly decreased when fibers were
treated with DTT compared to the GSSG treated fibers (p = 0.03). There is
no significant difference between control and DTT treatment. Data are
expressed as mean =+ standard error of mean, n=6.7 (*P < 0.05).

DISCUSSION

Our data provide support for the hypothesis that
S-glutathionylation of MyBP-C is functionally significant in
controlling myofilament response to Ca’*. Figure6 illus-
trates a current concept of the position of MyBP-C in the
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sarcomere with the potential for interactions with thin filaments,
myosin, and titin. Our data indicate that the sites modified
by S-glutathionylation occur at Cys*’%, Cys®?’, and Cys®>>,
and are in the poorly understood C3, C4, and C5 domains of
MyBP-C. These domains have been previously considered to
be more important in the structure and assembly of MyBP-C
but not with major importance in the mechanism of action
of MyBP-C, in which focus has been on the CO, L, C1, and
especially the cardiac specific phosphorylation sites in the M
domain. Thus, in addition to phosphorylation, which has well
documented effects on cardiac MyBP-C function (Cazorla et al,,
2006; Tong et al., 2008; Sadayappan et al., 2009; Hill et al.,
2010) redox related post-translational modifications need to be
considered.

With the discovery that many proteins are targets for glu-
tathionylation, the search for functional implications of this
post-translational modification has taken on new significance
(Brennan et al., 2006; Pastore and Piemonte, 2012). Brennan

et al. (2006) briefly reported the presences of S-gluthionylation
of MyBP-C in rat hearts, but functional implications were not
assessed. Glutathionylation is a form of oxidation involving
formation of a mixed disulfide between the tri-peptide glu-
tathione (GSH) and a protein cysteine residue. The tri-peptide
glutathione is the most abundant non-protein thiol present in
cells, with concentrations varying from 1-10 mM depending on
the cell type. For example, the amount of glutathione that is
present in the heart is 5-fold lower than that found in the
liver (Ishikawa and Sies, 1984). Glutathione has many functions
including its role as an antioxidant, indicator of oxidative stress,
and ROS scavenger (Pastore and Piemonte, 2012). Under phys-
iological conditions, much of the cell’s GSH pool is present in
the reduced form and less than 1% is present in oxidized GSSG.
Under oxidative stress, the ratio of GSH/GSSG decreases and pro-
motes protein glutathionylation. When we added DTT to the
skinned fiber preparations (Figure 3) there was a right shift of
the pCa-force relation indicating the presence of redox modified

Table 1| Significantly glutathionylated peptides discovered by mass spectrometry.

GSSG Accession Description  Score  Percent Glutathionylated Charge Observed Peptide Miss lons Expect
(mM) number cover- peptide mass mass cleavages score
age tolerance
(ppm)
1 gi[134031947  myosin- 7820 42.9 K.IHLDC*PGST 3+ 781.04 -5 0 41 0.0033
binding PDTIVVVAGNK.L
protein C,
cardiac-type
[Mus
musculus]
5 gi[134031947  myosin- 8033 49.7 K.IHLDC*PGST 3+ 781.04 -5 0 51 0.00033
binding PDTIVVVAGNK.L
protein C,
cardiac-type
[Mus
musculus]
K.IHLDC*PGST 3+ 781.04 -5 0 48 0.00071
PDTIVVVAGNK.L
KIHLDC*PGST 3+ 781.04 -2 0 51 0.00041
PDTIVVVAGNK.L
KIHLDC*PGST 3+ 781.04 -2 0 50 0.00049
PDTIVVVAGNK.L
R.VEFEC*EV 3+ 663.28 0 0 45 0.00066
SEEGAQVK.W
R.VEFEC*EV 3+ 663.28 0 0 36 0.0051
SEEGAQVK.W
R.VEFEC*EV 3+ 663.28 1 0 30 0.018
SEEGAQVK.W
K.LTIDDVTPADE 3+ 1098.49 5 0 40 0.0034
ADYSFVPEGFAC
*NLSAK.L
K.LTIDDVTPADE 3+ 1098.49 3 0 40 0.0031
ADYSFVPEGFAC
*NLSAK.L

Myofibrils treated with T mM and 5 mM GSSG. Mass spectrometry identified three separate sites as targets for S-glutathionylation. Note the increase in amount of

peptides discovered to be glutathionylated and new sites for glutathionylation when myofibrils are treated with increased amount of GSSG.
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FIGURE 4 | SDS-PAGE gel for in-gel digestion. 8% SDS-PAGE gel stained
with mass spectrometry compatible Imperial Protein Stain (Thermo); bands
at ~140kDa (dotted boxes) were cut out for mass spec analysis.

sarcomeres in the controls. Although this indicates the possi-
ble glutathionylation of MyBP-C in the controls, in situ levels
remain to be determined. GSSG reacts with protein thiols through
a disulfide exchange mechanism to form a protein mixed disul-
fide. Cardiac myocytes provide an excellent cell type for inves-
tigation of the potential effects of protein S-glutathionylation
in both physiological and pathological redox signaling. Results
presented here provide further support that specificity for a par-
ticular protein and regulatory process and may form an important
aspect of signaling via S-glutathionylation. In the case of the
DOCA-salt mouse model of hypertension, we could find no
change in the levels and dynamics of intracellular Ca** tran-
sients, even though it has been reported that glutathionylation of
L-type Ca’* channel results in an increase in Ca®* influx and
an increase in diastolic Ca?* in cardiac myocytes (Tang et al.,
2011). However, there is a reported glutathionylation of car-
diac L-type Ca®*t channels associated with ischemic heart disease
(Tang et al., 2011). Thus, it appears important to evaluate the
role of post-translational modifications by glutathionylation in
the context of the particular physiological or pathophysiological
condition.

Although it is likely that other proteins in cardiac sarcom-
eres are S-glutathionylated, based on the present results and
our previous data, the impact of S-glutathionylation of MyBP-C
appears to be of relatively high significance in controlling cardiac
relaxation and as an important mechanism for the diastolic dys-
function associated with hypertension induced oxidative stress.
There have been reports that reversible glutathionylation of actin
at Cys®”* has functional impact on actin polymerization (Wang
et al., 2001; Dalle-Donne et al., 2003) and actomyosin-S1 ATPase
activity (Pizarro and Ogut, 2009). However, in the present study,
we did not observe actin glutathionylation at Cys>’#. Moreover,
we could detect no actin glutathionylation in cardiac myofila-
ments from the DOCA-salt model, although there was an increase
in Ca?t sensitivity compared to controls (Lovelock et al., 2012).
Western blots (Figure 2B) showed a variable level of glutathiony-
lation of actin and a protein migrating with the mobility of
tropomyosin. However, unlike the case with MyBP-C, the level

of glutathionylation of actin and tropomyosin was not corre-
lated with the effects of GSSG on myofibrillar ATPase activity.
We also did not detect glutathionylation of the reactive Cys’%’
of myosin sub-fragment 1 (S1) (Prochniewicz et al., 2008).
These data support our conclusion that in some conditions glu-
tathionylation of cMyBP-C is a dominant oxidative stress related
post-translational mechanism for control of myofilament Ca®*
sensitivity.

Our data indicate high susceptibility of cMyBP-C for modifica-
tion by glutathionylation at specific cysteine residues, which may
be exposed in the in the three dimensional structure for ease of
access by GSSG. Glutathionylation has also been correlated with
relatively low pKa values for susceptible Cys residues (Pastore and
Piemonte, 2012). It would be of interest, therefore, to examine
the position and comparative pKa values of the Cys*’?, Cys®%,
and Cys®>. The modification in the C5 domain may be of partic-
ular interest inasmuch as this domain contains a cardiac specific
region. Some evidence points to a functional significance of these
C-terminal domains of cMyBP-C in the heart. Interactions of this
region with titin and light meromyosin have been documented
but not extensively analyzed in terms of functional significance
(Yang et al., 1998; Sadayappan and de Tombe, 2012). Surprisingly
the C-terminal regions outside C0—C4 bind to actin equally as
well as the full length MyBP-C, and the speculation was made by
Rybakova et al. (2011) that this actin-MyBP-C interaction may
be relatively more specific than the relatively non-specific electro-
static interactions of the N-terminal regions. Missense mutations
inducing familial hypertrophic cardiomyopathy occur in all of
the MyBP-C domains (Flashman et al., 2004; Harris et al., 2011)
indicating that each domain has a special significance in cardiac
homeostasis or that effects of modifications are transmitted to
others in the domain network. Studies by Palmer et al. (2011)
have provided some indirect insights into a potential functional
role of regions of MyBP-C outside the N-terminal domains and
phosphorylation sites. Their studies indicated that phosphory-
lation and the presence of the N-terminal domains of MyBP-C
provide structural support and radial rigidity to the myofila-
ment lattice. However, the presence of cMyBP-C also provided a
longitudinal rigidity in the myofilament lattice that did rely on
phosphorylation of the N-terminus. We hypothesize regions glu-
tathionylation of those regions may be significantly involved in
maintenance of longitudinal rigidity as well as potential interac-
tions with as well dwell time of cross-bridges in their reaction with
thin filaments.

CONCLUSION

In conclusion our data emphasize and support our earlier data
indicating the potential for redox related post-translational mod-
ification of MyBP-C as a significant factor controlling cardiac
function. Our results also emphasize the need for better under-
standing of the role of the C-terminal regions of MyBP-C that
contain thiols highly reactive with GSSG. The specificity of
the correlation of S-glutathionylation with myofilament func-
tion also indicates that effects of oxidative stress need to be
considered in the context of the particular circumstances gen-
erating ROS. It will be important in further studies to deter-
mine interactions among these redox related post-translational
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FIGURE 5 | Representative mass spectra (MS) and tandem mass spectra shows the precursor ion (m/z 679.35%%) mass spectrum. (B), MS/MS of
(MS/MS) of a triply protonated cMyBP-C peptide glutathionylated peptide (GSH covalently bound to amino acid residue
(557 IHLDCPGSTPDTIVVVAGNK®7°) showing Cys®%°® glutathionylation. identified by asterisk) showing the same b ions (solid boxes) marked in the
1mM GSSG treated myofibrils subjected to mass spectrometry analysis unmodified peptide spectrum shifted by 305 Da (singly charged b ions) or
revealed cysteine 655 of the C5 domain of mouse cardiac myosin binding 152.5 Da (doubly charged b ions). Inset figure shows the modified precursor
protein C as a target for S-glutathionylation. The same site, along with 2 other  ion (m/z 781.043*) mass spectrum. Note: The peptide sequences in both
sites, was also identified in 5mM GSSG treated myofibrils. (A), MS/MS of figures demonstrate all the b and y ions that were discovered; MS/MS
unmodified peptide showing several key b ions (solid boxes); inset figure spectrum shown is scaled (~750-1250 m/z) to show key ions.

modifications and phosphorylation. Whether the existence of a
S-glutathionylated form has any relevance in a variety of car-
diac disorders needs to be further explored. Our findings may
also relate to the use of serum levels of MyBP-C as a biomarker

for acute myocardial function (Jacquet et al., 2009; Sadayappan,
2012). We also acknowledge that the general significance of our
findings must await demonstration of altered S-glutathionylation
in other disorders of the heart.
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FIGURE 6 | Myosin binding protein C (MyBP-C) interactions in the
overlap region of the sarcomere. The illustration depicts a relaxed state
with troponins (TnC, TnT, Tnl) and tropomyosin (TM) blocking the
actin-cross-bridge reaction. Myosin light chain 2 (MLC2) and MyBP-C
contribute to radial movements of the myosin heads relative to the thick
filament backbone (as indicated by the double headed arrow). MyBP-C has
interaction sites via the M domain with the neck region of myosin (S2) and
with titin via C-terminal domains C8, C9 and C10. MyBP-C may also interact
directly with the thin filament. See text and results for details.
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