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Targeting mitochondrial dysfunction in lung diseases:
emphasis on mitophagy
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During mild stressful conditions, cells activate a multitude of mechanisms in an attempt
to repair or re-establish homeostasis. One such mechanism is autophagic degradation of
mitochondria or mitophagy to dispose damaged mitochondria. However, if stress persists
beyond recovery then dysfunctional mitochondria can ignite cell death. This review
article summarizes recent studies highlighting the molecular pathways that facilitate
mitochondria to alter its morphological dynamics, coordinate stress responses, initiate
mitophagy and activate cell death in relevance to pulmonary pathologies. Thorough
understanding of how these signaling mechanisms get disrupted may aid in designing
new mitochondria-based therapies to combat lung diseases.
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INTRODUCTION
Mitochondria are commonly referred to as cellular power
centers and perform many biochemical functions ranging
from energy production to programmed cell death (Nunnari
and Suomalainen, 2012). Mitochondria are large biosyn-
thetic machines responsible for a variety of metabolic (both
catabolic and anabolic) reactions including amino acids, lipids
and ketone bodies. There are four mitochondrial compart-
ments: the outer mitochondrial membrane (OMM), intermem-
brane space (IMS), inner mitochondrial membrane (IMM)
and the matrix with inner membrane folds called cristae.
The most prominent role for mitochondria is to generate
NADH and ATP through the tricarboxylic acid cycle (TCA)
and oxidative phosphorylation (OXPHOS) (Dromparis and
Michelakis, 2013). Mitochondria regulate cellular homeostasis
through four factors (1) Membrane potential (2) Mitophagy
(3) making Acetyl CoA and (4) Reactive oxygen species (ROS)
generation.

Mitochondrial electron transport chain (ETC) comprises five
large protein complexes embedded across the IMM responsi-
ble for OXPHOS system. These ETC complexes are termed
the Complex I (NADH-Coenzyme Q oxidoreductase); Complex
II (succinate-Coenzyme Q oxidoreductase); Complex III (Q-
cytochrome c oxidoreductase); Complex IV (Cytochrome c oxi-
dase); Complex V (ATP synthase) respectively (Smeitink et al.,
2001). The oxidation of nutrients (simple sugars) occurs in a con-
certed series of subsequent reactions, so that the ATP generated,
resulting by the reduction in the electron potential energy, is grad-
ually released. During this process, protons are pumped from the
matrix into the IMS leading to the elevated negative charges in
the matrix. This is referred to as mitochondrial membrane poten-
tial (�ψm). The healthy pool of mitochondria is characterized by
high/intact �ψm. Conversely, an unhealthy pool of mitochondria
is characterized by low/lost �ψm (Nunnari and Suomalainen,
2012).

MITOCHONDRIA AND REDOX REGULATION
Jensen first observed the formation of hydrogen peroxide (H2O2;
ROS) in antimycin-insensitive NADH and succinate oxidation
reactions (Jensen, 1966). During OXPHOS, superoxide anion
radicals (O−

2 ) are produced predominantly at complex I and com-
plex III as by-products. These superoxide anions are converted
into H2O2 in the matrix with the action of Manganese superox-
ide dismutase (MnSOD). Superoxide anions, H2O2 and hydroxyl
radicals together constitute ROS (Glasauer and Chandel, 2013).
Mitochondria are the major sources and targets of ROS gen-
eration, the other being the NADPH oxidases. Abnormal levels
of ROS have been implicated in several diseases including but
not limited to pulmonary diseases, cardiovascular diseases and
gastro-intestinal diseases. However, low concentrations of ROS
are important determinants required for physiological signaling
of various developmental pathways (Rehman, 2010; Sena and
Chandel, 2012).

Mitochondria are typically viewed as oxygen sensors as they
respond to low and high concentrations of oxygen. In rele-
vance to this, ROS production determined by mitochondria can
be influenced by various oxygen concentrations (Sarsour et al.,
2009). ROS can cause cellular damage by oxidizing nearly all
the biomolecules including proteins, DNA (both nuclear and
mitochondria), lipids and carbohydrates (Handy and Loscalzo,
2012). Oxidative damage to mitochondrial DNA by ROS results
in the synthesis of defective ETC subunits, further resulting in
the abnormal emission of ROS (Harman, 1972; Miquel et al.,
1980). This reflects disturbances in the normal redox balance
and manifests the disparity between the prooxidants and antioxi-
dants inside the cell termed as oxidative stress. The overall redox
status of the cell is balanced by antioxidant enzymes includ-
ing glutathione peroxidase, MnSOD, catalase, peroxiredoxin and
thioredoxin systems (Li et al., 2013). In addition to these antioxi-
dant enzyme systems, redox status of the cell is further regulated
by �ψm and mitochondrial dynamics.
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MITOCHONDRIAL DYNAMICS
Mitochondria are dynamic intracellular organelles that con-
stantly change in shape, size, number and distribution through
constitutive cycles of fusion and fission (Westermann, 2010).
Mitochondrial dynamics are influenced through signaling
between the OMM and mitochondria-associated membranes
(Nunnari and Suomalainen, 2012). Understanding mitochon-
drial dynamics is essential to knowing underlying biology as
they regulate mitochondrial morphology, mitophagy, apoptosis
and other biological functions of mitochondria. Mitochondrial
fusion events are known to play a role in maintaining intact mito-
chondrial DNA copies, mitochondrial membrane components
and matrix metabolites (Berman et al., 2008; Twig and Shirihai,
2011). Coordination of double membrane mitochondrial fusion
mechanisms has not been fully understood. Multiple lines of
evidence suggest that mitochondrial fusion involves mitofusins
MFN1 and MFN 2 (OMM proteins) together with optic atrophy
protein 1 (OPA1; an IMM protein) (Hoppins et al., 2007). GTPase
activity is essential for these three proteins to mediate mitochon-
drial fusion events (Liesa et al., 2009). Opa1 protein, both short
and long isoforms were reported to participate in mitochondrial
fusion and protection from apoptosis (Arnoult et al., 2005; Song
et al., 2007).

Mitochondrial fission events are known to play role in seg-
regation of dysfunctional mitochondria from the pool of mito-
chondria (Twig and Shirihai, 2011). The most studied proteins
that regulate mitochondrial fission are dynamin-related protein
1 (DRP1) and fission protein 1 homolog (FIS1) (Liesa et al.,
2009). Mitochondrial-anchored protein ligase (MAPL) conju-
gates small ubiquitin-like modifier (SUMO) to DRP1 to activate
mitochondrial fission (Braschi et al., 2009). Mitochondrial fission
is regulated by DRP1 which translocates to mitochondria by an
adaptor protein mitochondrial fission factor (MFF) (Smirnova
et al., 1998).

In mammalian cells, preventing mitochondrial fusion or fis-
sion contributes to OXPHOS deficiencies, mitochondrial DNA
loss and significant generation of excessive ROS (Chen et al.,
2003; Chen and Chan, 2004; Meissner, 2007). When the �ψm
is low, mitochondrial fission prevails and daughter mitochondria
are more prone to mitophagy. Similarly, mitochondrial fission
is prevalent in diseased cells with subsequent elimination of
damaged mitochondria via mitophagy (Kubli and Gustafsson,
2012). Interestingly, mitochondrial fission occurs early both in
the mitophagic and apoptotic pathways. However, mitochondrial
fission is not completely required to trigger the downstream path-
ways. Conversely, it is well established that mitochondrial fusion
inhibits apoptotic cell death (Westermann, 2010). Therefore,
mitochondrial dynamics are intrinsically linked with the qual-
ity control mechanisms, mitophagy and cell death to maintain
mitochondrial homeostasis.

MITOPHAGY
Mitochondrial autophagy (also referred as mitophagy) is an
evolutionarily conserved homeostatic process by which the
cell selectively degrades only damaged mitochondria within
autolysososmes (Youle and Narendra, 2011). It is well docu-
mented that mitophagy is generally inititated when �ψm is low

(Kubli and Gustafsson, 2012). Mitochondrial clearance is a highly
regulated process and intimately linked with mitochondrial fis-
sion and fusion proteins. However, to what extent mitochondrial
dynamics influence mitophagy is a subject of intensive research.

Autophagic vacuole formation with sequestrated mitochon-
dria was first examined in glucagon stimulated hepatocytes using
electron microscopy (Deter and De Duve, 1967). In a semi-
nal study, depolarized mitochondria were found to co-localize
with lysosomes in cultured rat hepatocytes treated with glucagon
in the absence of serum (Rodriguez-Enriquez et al., 2009).
Since then, considerable progress has been made to delineate
the molecular mechanisms of mitophagy. Recent studies sug-
gested that E3 ubiquitin ligase, Parkin/PARK2 and phosphatase
and tensin homolog (PTEN)-induced putative protein kinase 1
(PINK1) act as master regulators in the elimination of abnor-
mal mitochondria (Dagda et al., 2009; Chu, 2010; Gottlieb and
Gustafsson, 2011). In this process, Parkin ubiquinates OMM pro-
teins including MFN1, MFN2 (Chen et al., 2003; Gegg et al.,
2010), voltage dependent anion channel (VDAC) (Geisler et al.,
2010) and mitochondrial rho GTPase 1 (MIRO-1) (Wang et al.,
2011) resulting in autophagic degradation and subsequent alter-
ation of mitochondrial dynamics. When the �ψm is high i.e.,
under normal steady state conditions, PINK1 is cleaved and
imported by the mitochondrial preprotein translocases of the
outer membrane (TOM) complex and hence PINK1 is usu-
ally found at low levels on mitochondria. Whereas, when the
�ψm is low i.e., under stressful conditions, PINK1 accumu-
lates on the OMM and TOM complex loses the ability to recruit
Parkin (Lazarou et al., 2012). Furthermore, numerous lines of
evidence have demonstrated that accumulation of PINK1 is
essential for the translocation and activation of Parkin from
cytosol to mitochondria (Kubli and Gustafsson, 2012) (Figure 1).
An open question in this field is what regulators guide the
recruitment and activation of Parkin. A recent paper reported
that PINK1 phosphorylates MIRO-1 and activates proteoso-
mal degradation of MIRO-1 in a Parkin dependent manner
(Wang et al., 2011). In agreement with this, PINK1/Parkin path-
way sequesters the damaged mitochondria from the healthy
ones and thus maintains cellular homeostasis. A recent study
clearly demonstrated that Ras homolog enriched in brain protein
(Rheb), localizes to the OMM and contributes to mitochon-
drial degradation (Melser et al., 2013). The authors also showed
that Rheb regulates OXPHOS dependent mitophagy. In a recent
study, cardiolipin found in the IMM had LC3 binding sites, and
when these sites mutated, suppressed its contribution during
mitophagy. The authors also showed that cardiolipin is external-
ized in response to mitochondrial injury and serves as a molecular
pattern recognition signal where the autophagy machinery rec-
ognizes it and undergoes mitophagy (Chu et al., 2013). Taken
together, these studies suggest that cells have evolved different
mechanisms to eliminate malfunctioning mitochondria. Thus,
mitophagy prevents healthy cellular networks from mitochon-
drial dysfunction by sequestering the damaged mitochondria and
when this fails, mitophagy acts as a prelude to cell death. However,
there are still considerable gaps in understanding the molecu-
lar signaling of mitophagy in both developmental and diseased
conditions.
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FIGURE 1 | Diagrammatic representation showing the molecular events

of Parkin/PINK1 mediated mitophagy process. Low �ψm suppresses the
activity of TOM complex and leads to the accumulation of PINK1. This is followed
by translocation of Parkin from cytoplasm to mitochondria where it is activated
by PINK1. Subsequently, Parkin ubiquinates OMM proteins including but not

limited to MFN1, MFN2, VDAC, and MIRO-1. These ubquitinated proteins are
then recognized by autophagy proteins P62 and LC3 II where subsequent
degradation of damaged mitochondria occurs within the mitochondrial
membrane; IMS, Inter mitochondrial space; OMM, Outer mitochondrial
membrane. (For additional details and abbreviations, please see text).

MITOPHAGY REGULATES ROS LEVELS
Apart from maintaining cellular homeostasis, mitophagy also
plays an important role in response to cellular stress (Kroemer
et al., 2010; Levine et al., 2011). Depending upon the require-
ment of levels of cellular ATP, mitophagy regulates mitochondrial
quantity. Furthermore, mitophagy regulates excessive mitochon-
drial ROS by separating toxic or damaged mitochondria from the
intracellular networks. Thereby, mitophagy balances the normal
redox state of the cell.

A recent paper described that moderate levels of ROS induces
mitophagy in a mitochondrial fission dependent manner (Frank
et al., 2012). The authors of this study also showed that
dominant-negative variant of the fission factor DRP1 inhibited
mitophagy. Therefore, it is conceivable that mitochondrial ROS
and mitophagy form a feedback loop mechanism whereby mito-
chondrial ROS and mitophagy regulate each other (Sena and
Chandel, 2012).

MITOCHONDRIA AND CELL DEATH
Failure in the balance of previously described processes triggers
mitochondrial dysfunction, and when not repaired, may lead to
cell death. Therefore, collapse of �ψm is considered as a cellular
death precursor. Numerous lines of evidence have demonstrated
that mitochondria regulate three forms of cell death. (1) Extrinsic
apoptosis (2) Intrinsic apoptosis (3) Necrosis.

Extrinsic apoptosis is initiated through ligation of death recep-
tors such as tumor necrosis factor receptor 1 (TNFR1) or Fas
resulting in the recruitment of a multiprotein complex with
caspase 8, receptor-interacting serine/threonine-protein kinase
1 (RIPKI) and Fas-associated death domain (FADD). This leads
to the dimerization and activation of caspase 8 inducing the
downstream apoptotic pathway. This extrinsic pathway is also
referred to as death receptor-induced apoptosis initiated by

Fas ligand (FasL), tumor necrosis factor (TNF) or TNF-related
apoptosis-inducing ligand (TRAIL) (Tait and Green, 2010).

Loss of integrity in the OMM is considered as a consequence
of DNA damage or endoplasmic reticulum stress. Intrinsic apop-
tosis is triggered by mitochondrial outer membrane permeabi-
lization. This is followed by the subsequent release of several
pro-apoptotic factors through mitochondrial permeability transi-
tion pores (mPTP). During this process, toxic proteins including
but not limited to cytochrome c, apoptosis inducing factor (AIF),
second mitochondria-derived activator of caspase/direct inhibitor
of apoptosis-binding protein with low pI (SMAC/DIABLO) acti-
vate caspase proteases in the cytoplasm leading to cell death
(Galluzzi et al., 2012).

In the absence of caspase activity, cell can still undergo death
via necrosis or necroptosis. Also ignited by TNFR1, necropto-
sis occurs through IMM. During this process, RIPK1 and RIPK3
interact with mixed lineage kinase domain-like (MLKL) to form
a necrososome. This necrosome is a multiprotein complex that
inhibits mitochondrial protein adenine nucleotide translocase
(ANT), by reducing glutaminolysis and thereby promoting mito-
chondrial fragmentation (Tait and Green, 2010). All the three
forms of cell death are tightly regulated by mitochondria high-
lighting a potential therapeutic target. The next section describes
mitochondrial dysfunction in various lung diseases.

MITOCHONDRIAL DYSFUNCTION IN NEONATAL LUNG
DISEASES
Mitochondria are one of the main organelles that are signifi-
cantly impacted by the clinical procedures for the resuscitation
of premature infants (Berkelhamer et al., 2013). In this regard,
there are recent studies suggesting that mitochondrial dysfunc-
tion is considered among the pathogenic factors in the scenario
of both mechanical ventilation and hyperoxia exposure (Morton
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et al., 1998; Ratner et al., 2009, 2013). Multiple lines of evi-
dence suggest that hyperoxia increases the levels of ROS within
the mitochondria of lung both in vitro and in vivo (Freeman and
Crapo, 1981; Farrow et al., 2010, 2012) (Figure 2). Of note, both
hyperoxia and mechanical ventilation are considered as major risk
factors that are associated with developmental alveolar and vas-
cular impairment—the hallmarks of BPD in premature infants
(Bhandari and Bhandari, 2007). In a BPD model, mitochondrial
aconitase activity was significantly decreased after exposure to
100% oxygen for 6–10 days in the lungs of premature baboons
(Morton et al., 1998). BPD is also mediated by the exaggerated
increase in the pro-inflammatory cytokines such as interleukin-
1β and TNF-α in the bronchoalveolar lavage fluid (Ambalavanan
et al., 2009; Sun et al., 2013). In response to hyperoxic exposure,
mitochondria showed significantly lowered enzymatic activity of
Complex I indicating impaired OXPHOS in newborn mice lungs
(Ratner et al., 2009). The data presented in these studies indicate
that there is a cross talk between mitochondrial dysfunction and
inflammation.

In a recent study, mitochondrial DNA defects caused by hyper-
oxia dictated the impaired branching morphogenesis and reduced
surfactant C expression in fetal rat lung explants (Gebb et al.,
2013). Another study reported that reduced levels of MnSOD
expression and activity led to endothelial dysfunction caused
by oxidative stress in persistent pulmonary hypertension of the
newborn in the lamb model (Afolayan et al., 2012). These data
indicate that the impaired scavenging of ROS by low activity of

antioxidants results in impaired vasodilation in the pathogen-
esis of pulmonary hypertension. In an elegant study, the ratio
of mitochondrial matrix oxidative stress to antioxidant enzymes
was noted to be more in neonatal lung slices as compared with
adult lung slices with hyperoxia exposure. Further to this, they
demonstrated that nicotinamide adenine dinucleotide phosphate
dependent oxidase 1 (NOX1) expression was increased in the
postnatal day 7 lungs compared with adult lungs during acute
hyperoxia (Berkelhamer et al., 2013). These studies reinforce the
notion that malfunctioning mitochondria in conjunction with
excessive ROS may play a key role in neonatal lung diseases.

MITOCHONDRIAL DYSFUNCTION IN CHRONIC
OBSTRUCTIVE PULMONARY DISEASE (COPD)
COPD is linked with increased mitochondrial ROS production,
decreased anti-oxidant capacity, impaired OXPHOS and reduced
mitochondrial number (Kirkham and Barnes, 2013; Meyer et al.,
2013). Since the first evidence demonstrating mitochondrial dys-
function in diaphragmatic muscles of COPD patients, multiple
lines of evidence suggested that significant skeletal muscle mito-
chondrial dysfunction occurred among COPD patients (Lloreta
et al., 1996; Meyer et al., 2013). Thus, abnormal mitochondria
emerged as key players in limb and skeletal muscle impairment in
COPD patients.

It is generally acknowledged that cigarette smoke is the major
risk factor for COPD. Cigarette smoke extract increases oxida-
tive stress due to impaired mitochondria structure and function

FIGURE 2 | Hypothetical mechanism illustrating the mitochondrial function in normoxia and mitochondrial dysfunction in hyperoxia exposed lungs

of premature infants.
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in both proximal and distal parts of lung in COPD patients.
(van der Toorn et al., 2007, 2009). Expression of higher oxidative
stress proteins in concert with decreased expression of antiox-
idant proteins may thus reflect a state of redox imbalance in
COPD. This is caused by the presence of a large number of oxi-
dants (approximately 4700 chemicals) in cigarette smoke. In line
with this, multiple lines of evidence showed increased superox-
ide anion production contributing to skeletal muscle loss and
dysfunction in COPD patients, as compared to healthy sub-
jects (Marin-Corral et al., 2009; Barreiro et al., 2010). Another
noteworthy observation is that significantly decreased expres-
sion of prohibitins namely PHB1, but not PHB2, in COPD
and non-COPD smokers as compared to non-smokers corre-
lates with mitochondria dysfunction. This indicated that PHB1
is a fundamentally important membrane protein for maintain-
ing mitochondrial protein stability and function (Soulitzis et al.,
2012). A recent study demonstrated mitochondrial fragmentation
in cigarette smoke induced COPD model systems in vivo (Hara
et al., 2013). Taken together, these studies suggest that mitochon-
drial dysfunction is a key contributor to the pathophysiology of
COPD.

MITOCHONDRIAL DYSFUNCTION IN LUNG CANCER
Mitochondrial DNA (mtDNA) instability has been reported in
various human cancers including lung cancer (Chatterjee et al.,
2006; Yang Ai et al., 2013). In a recent study, increased mtDNA
copy number suggested an elevated risk of lung carcinogenesis.
In another study, presence of significant high copy number of
mtDNA mutations in respiratory complex-I of OXPHOS system
in “never smokers,” as compared to current smokers, lung cancer
patients was reported. Furthermore, mtDNA mutation content
was significantly associated with epidermal growth factor recep-
tor (EGFR) gene mutation (exons 19 and 21) in “never smokers”
lung cancer patients (Dasgupta et al., 2012). In parallel, tumor
suppressor genes such as p53, Ras, and Myc are known to be
highly sensitive to mitochondrial ROS resulting in their activation
and ultimately guide the progression of inflammation associated
cancer. These studies suggest that both mtDNA mutations and
nuclear DNA mutations signal through mitochondrial dysfunc-
tion and contribute to the progression of lung cancer (Kamp et al.,
2011).

MITOCHONDRIAL DYSFUNCTION IN ASTHMA
Asthma is a heterogeneous chronic inflammatory disease char-
acterized by variable airway obstruction, airway remodeling and
bronchial hyper-responsiveness (Reddy, 2011; Lambrecht and
Hammad, 2012). Some initial studies suggested airway epithe-
lial cells play a crucial role in the defense against pathogens
and allergens (Xiao et al., 2011). In a recent study, the authors
demonstrated significantly reduced mitochondrial glucocorticoid
and estrogen receptors in lung tissue, particularly in human
bronchial epithelial cells of fatal asthma patients. These data indi-
cate that excessive ROS released by mitochondria in inflammatory
cells might be involved in epithelial cell apoptosis in asthma
(Simoes et al., 2012). In line with this, other studies improved
our understanding of the role of airway epithelial cells influ-
encing innate immune cells in asthma (Hammad et al., 2009;

Rate et al., 2009). Inflammatory cell infiltration plays an inte-
gral role in the progression of asthma. Inflammatory cell influx
includes the presence of CD4+ T helper 2 (Th2) and the CD8+
(T cytotoxic) cells along with Th2-associated cytokines. Other
cells include eosinophils, macrophages and basophils (Hamid
et al., 2003; Locksley, 2010). These studies suggest that finding
therapeutic targets that reduces excessive ROS in the immune
cells activated by bronchial epithelial cells may prove beneficial.
In relevance to mtDNA in asthma, there is no strong evidence
to demonstrate the presence of mtDNA mutations in asthma
(Raby et al., 2007). However, there are few studies suggesting a
connecting link between asthma and mitochondrial abnormali-
ties (Heinzmann et al., 2003; Jones et al., 2004). Taken together,
more detailed studies are required to understand the role of
mitochondrial dysfunction in the pathogenesis of asthma.

MITOCHONDRIAL DYSFUNCTION IN CYSTIC FIBROSIS
Cystic Fibrosis (CF) is a lethal autosomal recessive disease where
mutation �F508 (loss of phenylalanine residue at position 508) in
the gene encoding Cystic Fibrosis Transmembrane Conductance
Regulator (CFTR) is responsible for the abnormal mucus secre-
tions (Rowe et al., 2005). There are some studies describing the
link between mitochondrial defects, calcium uptake and cys-
tic fibrosis (Feigal and Shapiro, 1979; Shapiro, 1988). In rele-
vance to this, alterations in the pH of mitochondrial complex
I were observed in CF patients (Shapiro et al., 1979). On the
other hand, downregulation of MT-ND4 expression was observed
in CF indicating decreased mitochondrial complex I activity
(Chomyn, 2001). Furthermore, air borne particulate matters
exposure showed decreased �ψm, elevated ROS generation and
increased epithelial cell apoptosis in CF bronchial epithelium
(Kamdar et al., 2008). These studies suggest that mitochondrial
dysfunction is a direct consequence of CFTR failure.

MITOCHONDRIAL DYSFUNCTION IN PULMONARY ARTERIAL
HYPERTENSION
Pulmonary arterial hypertension (PAH) is a vascular disease
caused by hyperproliferation of vascular cells that eventually
eliminate the pulmonary arterial lumen and leads to right
ventricular failure and premature death. It is interesting to
note that mitochondria are hyperpolarized in pulmonary artery
smooth muscle cells (PASMCs). So, PASMC mitochondria may
serve as possible therapeutic targets for PAH. In one study,
silencing MFN2 and a mitochondrial biogenesis marker per-
oxisome proliferator-activated receptor gamma coactivator 1-
alpha (PGC1α) contributed to mitochondrial fragmentation,
increased proliferation and impaired apoptosis. Furthermore,
overexpression of MFN2 using an adenoviral vector showed
increased fusion, reduced proliferation, and increased apoptosis
in human PAH (Ryan et al., 2013). In a couple of elegant studies,
dichloroacetic acid and malonyl-CoA decarboxylase null mutant
mice demonstrated reversal of pulmonary artery modeling and
showed complete resistance to the development of PAH induced
by hypoxia or monocrotaline in rats and mice models respectively.
(McMurtry et al., 2004; Sutendra et al., 2010). These observations
indicate that mitochondrial dysfunction plays a key role in the
diathesis of PAH.
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CONCLUSIONS
The literature discussed in this review article reemphasizes the
complexity of mitochondrial biology especially in relation to lung
diseases. Undoubtedly, healthy maintenance of mitochondrial
structure and function is central to normal human physiology.
In the past few decades, mitochondrial structure and morphol-
ogy in normal physiology have been extensively studied. However,
mitochondrial biology in relevance to lung diseases is poorly
understood. Furthermore, mitochondrial dysfunction caused by
aberrant mitochondrial dynamics together with excessive mito-
chondrial ROS is observed to be an early-onset marker in many
lung diseases. Thus, mitochondria play a critical role in coordina-
tion between life and death signaling pathways of lung diseases.

It is believed that aberrant mitochondrial dynamics linked
with abnormal or compromised mitophagy results in excessive
production of mitochondrial ROS inside the cell. This accumu-
lation of dysfunctional mitochondria may lead to apoptosis or
necrosis and therefore, contribute to the pathogenesis of lung
diseases. In hindsight, lowering mitochondrial ROS to physio-
logical concentrations both in aging and non-aging related lung
diseases could result in the cessation of unwarranted down-
stream signaling pathways. Future studies utilizing humanized
mice models that mimic mitochondrial dysfunction are neces-
sary to accelerate the basic biology seeking to understand the
pathophysiological mechanisms of lung diseases. Investigating
approaches that reverse oxidative modification and inactivation
of mitochondrial proteins and maintains mitochondria quality
control mechanisms may have significant therapeutic potential
for lung diseases.
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