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Aging is associated with decreased vascular compliance and diminished neurovascular-
and hypercapnia-evoked cerebral blood flow (CBF) responses. However, the interplay
between arterial stiffness and reduced CBF responses is poorly understood. It was
hypothesized that increased cerebral arterial stiffness is associated with reduced evoked
responses to both, a flashing checkerboard visual stimulation (i.e., neurovascular coupling),
and hypercapnia. To test this hypothesis, 20 older (64 ± 8 year; mean ± SD) and 10
young (30 ± 5 year) subjects underwent a visual stimulation (VS) and a hypercapnic
test. Blood velocity through the posterior (PCA) and middle cerebral (MCA) arteries
was measured concurrently using transcranial Doppler ultrasound (TCD). Cerebral and
systemic vascular stiffness were calculated from the cerebral blood velocity and systemic
blood pressure waveforms, respectively. Cerebrovascular (MCA: young = 76 ± 15%,
older = 98 ± 19%, p = 0.004; PCA: young = 80 ± 16%, older = 106 ± 17%, p < 0.001)
and systemic (young = 59 ± 9% and older = 80 ± 9%, p < 0.001) augmentation indices
(AI) were higher in the older group. CBF responses to VS (PCA: p < 0.026) and hypercapnia
(PCA: p = 0.018; MCA: p = 0.042) were lower in the older group. A curvilinear model
fitted to cerebral AI and age showed AI increases until ∼60 years of age, after which the
increase levels off (PCA: R2 = 0.45, p < 0.001; MCA: R2 = 0.31, p < 0.001). Finally, MCA,
but not PCA, hypercapnic reactivity was inversely related to cerebral AI (MCA: R2

2
= 0.28,

p = 0.002; PCA: R = 0.10, p = 0.104). A similar inverse relationship was not observed
with the PCA blood flow response to VS (R2 = 0.06, p = 0.174). In conclusion,
older subjects had reduced neurovascular- and hypercapnia-mediated CBF responses.
Furthermore, lower hypercapnia-mediated blood flow responses through the MCA
were associated with increased vascular stiffness. These findings suggest the reduced
hypercapnia-evoked CBF responses through the MCA, in older individuals may be
secondary to vascular stiffening.
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INTRODUCTION
Age manifests in systemic decreases in vascular compliance lead-
ing to an increased risk of stroke, cerebral white matter lesions,
and cognitive decline (Mitchell et al., 2011; Laurent et al., 2012;
Poels et al., 2012; Xu et al., 2012). In the brain, decreased rest-
ing cerebral blood flow (CBF) and cerebrovascular reactivity to
neuronal activation and alterations in arterial blood gases are
also associated with an elevated risk of cerebrovascular disease
(Jennings et al., 2013) and occur with healthy aging (Nishiyama
et al., 1997; Fisher et al., 2013). Thus, the concurrent increase in
cerebrovascular stiffness with aging may impact cerebrovascular

responses (Fonck et al., 2009; Zhu et al., 2011) and thus con-
tribute to the decreased CBF responses to neuronal stimulation
and hypercapnia that occur with aging.

CBF is elevated in response to increased neural activity
(i.e., neurovascular coupling) and hypercapnia. Neural activa-
tion leads to local increases in CBF via functional hyperemia,
whereas hypercapnia produces a global increase in CBF, although
there is heterogeneity between brain regions (Noth et al., 2008).
With aging, resting CBF, neuronal-mediated increases in CBF,
and CBF responses to hypercapnia have all been reported to
decrease (Panczel et al., 1999; Niehaus et al., 2001; Fisher et al.,
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2013; Jennings et al., 2013), but this is not a consistent find-
ing with other studies reporting no change in neurovascular
coupling (Rosengarten et al., 2003) or reactivity to hypercapnia
(Schwertfeger et al., 2006; Galvin et al., 2010), and one study
even reporting greater hypercapnia reactivity with healthy aging
(Zhu et al., 2013). As such, the mechanisms regulating changes
in resting CBF and CBF reactivity in response to neuronal acti-
vation and hypercapnia with aging are incompletely understood.
Contributing mechanisms likely include brain atrophy, altered
neuronal activity, and decreased cerebral metabolism (Leenders
et al., 1990; Fisher et al., 2013), although endothelial and hemo-
dynamic alterations may also contribute (Secher et al., 2008; Zhu
et al., 2011; Fisher et al., 2013).

To assess neural-evoked increases in CBF, the approach of
monitoring blood flow through the posterior cerebral artery
(PCA) in response to a visual stimulus has been used extensively
(Aaslid, 1987; Sturzenegger et al., 1996; Spelsberg et al., 1998;
Panczel et al., 1999; Niehaus et al., 2001; Zaletel et al., 2004; Lisak
et al., 2005; Smith et al., 2008; Rey et al., 2010), as the PCA sup-
plies the majority of blood to the visual cortex (Edvinsson and
Krause, 2002). Moreover, concurrent monitoring of middle cere-
bral artery (MCA) blood flow can be used as a negative control to
confirm the locality of the visually-induced increase in blood flow
through the PCA during such challenges since the MCA blood
flow response to the same challenges is minimal (Aaslid, 1987;
Smith et al., 2008).

The cerebral circulation is exquisitely sensitive to changes in
the arterial partial pressure of carbon dioxide (PaCO2 ) (Berne
et al., 1981; Poulin and Robbins, 1996), increasing with hypercap-
nia and decreasing with hypocapnia. In humans, blood velocity
through both the PCA and MCA increase ∼3–5% per mmHg
increase in PaCO2 above resting values (Tominaga et al., 1976; Ide
et al., 2003), and thus reflect the global influence of hypercapnia
on CBF.

Transcranial Doppler ultrasound (TCD) is a useful non-
invasive technique to assess both neural- and hypercapnia-
mediated changes in CBF as well as cerebral hemodynamics
on a beat-to-beat basis because of its high temporal resolu-
tion. Changes in CBF are typically monitored via changes in
the peak velocity envelope averaged across a heartbeat while
cerebral hemodynamics may be assessed by examining specific
parameters of the peak blood velocity waveform (Robertson
et al., 2008). In turn, these variables can provide measures of
CBF reactivity to specific stimuli and cerebrovascular health,
respectively.

Analogs to examining the pulse pressure waveform (Wilkinson
et al., 1998), analysis of the TCD peak blood velocity waveform
can be exploited to obtain a measure of arterial stiffening via
calculation of a cerebral augmentation index (AI) (Kurji et al.,
2006; Robertson et al., 2008). The AI is based on wave reflections
throughout the vascular bed caused by vessel branching, changes
in vessel wall diameter and/or material properties (Mitchell et al.,
2011). The arrival of the reflected wave depends on the site of
reflection as well as on the stiffness of the respective vessel being
monitored. The stiffer the vessel, the higher the velocity of the
forward and backward travelling waves, which leads to an earlier
arrival of the reflected waves. The earlier arrival of the reflected

wave is superimposed on the forward travelling wave and con-
sequently higher velocity at the so-called reflective point of the
peak blood velocity waveform (Laurent et al., 2006). Thus, an
increase in AI is observed as vessels downstream of the monitored
artery become less distensible with increasing age (Benetos et al.,
1993).

Although mechanisms underlying neural- and hypercapnia-
mediated vasodilation are unique to each stimulus, as both may
be reduced with age, there is likely a common mechanism con-
tributing to the decrease observed in each with increasing age.
We speculate this common mechanism is age-related vascular
mechanical dysfunction (i.e., reduced distensibility). As such, it
was hypothesized that resting CBF and neural- and hypercapnia-
evoked increases in CBF would be attenuated with age, and atten-
uated neural- and hypercapnia-evoked CBF increases would be
associated with elevated arterial stiffness (i.e., AI) within the PCA
and MCA, respectively. To test this hypothesis, the relationship
between CBF responses to a visual stimulus and a hypercapnic
challenge with AI were examined and compared between young
and older humans.

METHODS
SUBJECTS
Thirty subjects, 20 older (12 men; 8 women) and 10 younger (4
men, 6 females) participated in this study (Table 1). Exclusion
criteria included age <55 y for the older group and age <18
or >55 y for the younger group, recent (<60 days) change in
blood pressure medication, uncontrolled hypertension, history
of stroke, neurological disease, or dementia [defined according
to the Diagnostic and Statistical Manual of Mental Disorders
(American Psychiatric Association, 2000)]. A neurologist (Eric
E. Smith) obtained clinical and medication histories, performed
a neurological examination, and administered the Mini-Mental
Status Examination (MMSE) cognitive test to all older volun-
teers (Folstein et al., 1975). Volunteers scoring <23 on the
MMSE were excluded. Prior to experimental testing, subjects
provided written and oral informed consent. The study was
approved by the University of Calgary Conjoint Health Research
Ethics Board.

INSTRUMENTATION
Bilateral TCD was used to measure PCA and MCA blood veloc-
ity simultaneously with subjects in a semi-supine position. The
P2 segment of the PCA was monitored on the ipsilateral side of
the dominant hand while the M2 segment of the MCA was moni-
tored on the contralateral side. TCD probes were held in position
by snug-fitting headgear (marc600, Spencer Technologies, Seattle,
WA). Heart rate was measured using a 3-lead ECG (Micromon
7142B, Kontron Medical, Milton Keynes, UK); continuous arte-
rial blood pressure was recorded non-invasively via finger photo-
plethysmography (Portapres, TPD Biomedical Instrumentation,
Amsterdam, Netherlands) and intermittently from the brachial
artery via an automated cuff (DINAMAP compact5, Critikon,
New Jersey, USA); and arterial oxyhemoglobin saturation was col-
lected via finger pulse oximetry (Datex-Ohmeda 3900, Helsinki,
Finland). End-tidal partial pressures of oxygen (PETO2 ) and car-
bon dioxide (PETCO2 ) were monitored via a nasal cannula while
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Table 1 | Demographics of the study cohort and resting end-tidal

partial pressures of O2 and CO2, and cerebral hemodynamic indices

in the posterior and middle cerebral arteries.

Young Older p-values

Age, years 30 ± 5 64 ± 8 p < 0.001

Height, cm 171 ± 9 169 ± 0 p = 0.552

Weight, kg 67 ± 13 77 ± 15 p = 0.084

SBP, mmHg 112 ± 9 120 ± 18 p = 0.188

DBP, mmHg 66 ± 6 68 ± 8 p = 0.571

MAP, mmHg 82 ± 6 85 ± 10 p = 0.383

Systemic AI, % 59.0 ± 9.4 80.3 ± 9.0 p < 0.001

PETO2 , Torr 85.3 ± 3.7 88.6 ± 6.4 p = 0.149

PETCO2 , Torr 35.2 ± 3.3 33.2 ± 3.3 p = 0.133

POSTERIOR CEREBRAL ARTERY

Sample size (n) 10 18

Vdia, cm/s 22.6 ± 5.0 21.3 ± 5.0 p = 0.514

Vsys, cm/s 53.3 ± 12.0 49.7 ± 8.4 p = 0.354

Vmean, cm/s 34.4 ± 7.5 33.7 ± 7.2 p = 0.829

Vrefl, cm/s 46.3 ± 9.4 51.6 ± 11.6 p = 0.224

Cerebral AI, % 80.5 ± 15.8 106.8 ± 16.8 p < 0.001

CVC, cm/s/mmHg 0.43 ± 0.11 0.41 ± 0.12 p = 0.694

MIDDLE CEREBRAL ARTERY

Sample size (n) 10 19

Vdia, cm/s 40.0 ± 5.2 28.4 ± 7.4 p < 0.001

Vsys, cm/s 94.2 ± 18.2 68.1 ± 11.8 p < 0.001

Vmean, cm/s 60.0 ± 8.8 44.5 ± 9.3 p < 0.001

Vrefl, cm/s 79.8 ± 13.7 66.8 ± 14.0 p = 0.024

Cerebral AI, % 76.1 ± 15.5 98.0 ± 19.0 p = 0.004

CVC, cm/s/mmHg 0.74 ± 0.15 0.54 ± 0.13 p < 0.001

Values are means ± SD.

SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial

blood pressure; systemic AI, systemic augmentation index; PETCO2 , end-tidal

partial pressure of CO2; PETO2 , end-tidal partial pressure of O2; Vdia, velocity

at diastole; Vsys, velocity at systole; Vmean, average velocity over cardiac cycle;

Vrefl , velocity at the reflected shoulder of peak systole; cerebral AI, cerebral aug-

mentation index; CVC, cerebrovascular conductance; p-values: older compared

to young. The bold p-values are to highlight the significant differences that were

observed.

subjects performed a visual stimulation test. Next, a euoxic hyper-
capnic test was administered using the technique of dynamic
end-tidal forcing (DEF) with the subject breathing through a
mouthpiece with their nose occluded (Ide et al., 2003). The DEF
system uses a negative feedback loop to control PETCO2 and
PETO2 at desired levels by adjusting the inspired fraction of CO2

(FICO2) and O2 (FIO2) on a breath-by-breath basis using cus-
tom designed, dedicated software (BreatheM, v2.38, University
Laboratory of Physiology, Oxford, UK) (Vantanajal et al., 2007;
Beaudin et al., 2011). The DEF system controls PETCO2 and PETO2

at desired levels independent of ventilatory frequency and depth.
Respired gases were sampled at 20 mL/min via a fine capillary
inserted into the nasal cannula during the visual stimulation test
or the mouthpiece during the euoxic hypercapnic test for contin-
uous analysis of FICO2 and FIO2 by mass spectrometry (AMIS
2000, Innovision, Odense, Denmark).

VISUAL STIMULATION
To assess the CBF response to visual stimulation, the subject
sat ∼50 cm from a 38.1 cm (i.e., 15 in) computer screen with their
eyes in line with its center when looking straight ahead (Smith
et al., 2008). Following instrumentation, the test started with a 2-
min baseline consisting of looking at a black cross (height and
width ∼1.5 cm) centered on a dark gray background. Baseline
was followed by either 10 cycles of 40 s blocks (n = 9 older sub-
jects) or 5 cycles of 80 s blocks (n = 11 older subjects and all
young subjects) involving the flashing of an alternating black and
white checkerboard stimulus for 20 or 40 s (ON), respectively.
The ON stage was followed by 20 or 40 s of rest (OFF) where the
screens display was the same as baseline conditions. The subject
was instructed to always focus their eyes on the computer screen
and their thoughts on the present task, and was monitored con-
tinuously to verify they were attending to the stimulus. All tests
were performed in a darkened room.

This visual stimulation paradigm was chosen to minimize par-
ticipant burden as it was also used with elderly stroke patients
(data not reported), some of whom had mild dementia (Peca
et al., 2013) and difficulty following relatively simple tasks.
Therefore, using the current visual stimulation paradigm simpli-
fied the task by removing the necessity of continuously instructing
subjects when to open and close their eyes.

EUOXIC HYPERCAPNIC TEST
The euoxic hypercapnic test began with 10 min of air breathing to
determine mean resting PETCO2 and PETO2 values. These mean
resting end-tidal values were used to create an individualized
hypercapnic protocol (Ide et al., 2003). The euoxic hypercapnic
test consisted of three 120 s steps: Baseline (PETCO2 = +1.5 Torr
above resting values), Hypercapnia (PETCO2 = +6.5 Torr above
resting values), and Recovery (PETCO2 = +1.5 Torr above resting
values). Throughout the entire hypercapnic test, PETO2 was main-
tained at 88 Torr (mean euoxic PETO2 for the altitude (1103 m
above sea level) at which the laboratory is located). Maintaining
PETCO2 at +1.5 Torr above air breathing resting values during the
Baseline and Recovery facilitates PETCO2 control (Ide et al., 2003)
and reduces breath-to-breath variability in CBF velocity (Harris
et al., 2006).

ANALYSIS
The peak velocity associated with the maximal Doppler frequency
shift was averaged over each heart beat (Vmean; cm/s) and utilized
as an index of CBF through the PCA and MCA.

Velocity waveform analysis was performed using a custom
written Matlab program (Robertson et al., 2008). Output param-
eters included the diastolic minimum velocity (Vdia), velocity at
systole (Vsys), velocity at the reflective shoulder (Vrefl), and mean
peak velocity (Vmean) (Figure 1). Next, the cerebral augmenta-
tion index (AI) was calculated (Kurji et al., 2006; Robertson et al.,
2008):

Cerebral AI = Vrefl − Vdia

Vsys − Vdia
× 100 (1)

Finally, utilizing mean arterial pressure (MAP), beat-to-beat PCA
and MCA cerebrovascular conductance (CVC) was calculated as:
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FIGURE 1 | Representative MCA blood velocity and finger blood

pressure waveforms of a young (age = 25 years) and older

(age = 66 years) volunteer at rest. Each plot shows the overlay

of individual cardiac cycles (gray lines) over 15 s, the composite (i.e.,
mean waveform; black line), and the location of the waveform
parameters.

CVC = Vmean

MAP
(2)

Visual waveform analysis was performed using the final 60 s of
baseline and the final 30 s of a minimum of three ON phases
(15 s for 40 s blocks). For the hypercapnic test, the final 60 s of
the baseline and hypercapnic stage were analyzed to determine
hypercapnic responses. Absolute blood flow changes in response
to visual stimulation and hypercapnia were calculated by sub-
tracting the baseline values from the ON phase and hypercapnia
values, respectively. In addition, the relative (i.e., percent) change
in blood flow from the preceding baseline in response to the visual
stimulation and hypercapnia were calculated. Subsequently, PCA
and MCA reactivity to hypercapnia was quantified in absolute
(cm/s/Torr) and relative (%/Torr) units by dividing the respec-
tive increases in PCA and MCA blood velocity by the change in
PETCO2 from baseline into hypercapnia.

Systemic pressure waveform parameters were analyzed using
the same automated algorithms implemented in Matlab used to

analyze the velocity waveforms. Systemic AI was calculated ana-
logically to the cerebral AI using systolic blood pressure (Psys),
diastolic blood pressure (Pdia) and blood pressure at the reflective
shoulder (Prefl).

Systemic AI = Prefl − Pdia

Psys − Pdia
× 100 (3)

STATISTICAL ANALYSIS
All measured parameters had a normal distribution as assessed
by the Kolmogorov-Smirnov Test. Differences in subject demo-
graphics and resting cerebrovascular hemodynamic parame-
ters were compared using independent Student T-Tests. Next,
within- and between-subject differences in responses to the visual
stimulation and euoxic hypercapnia tests were assessed using 2-
by-2 mixed factor repeated measures analyses of variance (RM
ANOVA). The within-subject factor for the visual stimulation test
was Visual Stimulation Stages (OFF and ON) and the within-
subject factor for the hypercapnic test was Hypercapnic Test
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Stages (Baseline and Hypercapnia). The between-subject factor
was Age Groups (Young and Older). If there was a significant
main effect of Visual Stimulation Stages or Hypercapnic Stages,
post-hoc within-subject differences in cerebral blood velocity and
waveform parameters between the OFF and ON or the Baseline
and Hypercapnic stages (irrespective of Age Groups) were com-
pared using paired Student T-Tests. If the interaction between
the Visual Stimulation Stages or Hypercapnic Test Stages and Age
Groups was significant [or showed a trend to be significant (i.e.,
0.05 ≤ p ≤ 0.100)], the magnitude of the response (i.e., abso-
lute and relative delta values) for each age group were compared
using independent 1-tailed Student T-Tests. All post-hoc analyses
incorporated a Bonferroni correction for multiple comparisons.

Based upon previously published reports showing a curvilin-
ear relationship between systemic AI and age (Kelly et al., 1989;
Mitchell et al., 2004; McEniery et al., 2005), a similar relationship
was plotted between cerebral AI and age. Alpha was set a priori at
p ≤ 0.05. Finally, the Pearson product-moment correlation was
used to examine relationships between cerebral and systemic AI,
changes in PCA blood velocity in response to the visual stimula-
tion and cerebral AI, and hypercapnic reactivity for the PCA and
MCA and cerebral AI. Statistical analyses were performed using
SAS Enterprise Guide (4.3, SAS Institute Inc., Cary, NC, USA).

RESULTS
All study subjects (n = 30) completed the study. The TCD sig-
nal was of insufficient quality for analysis of PCA blood velocity
in two older volunteers and of MCA blood velocity in one older
volunteer. Subject demographics, resting blood pressure, resting
PETO2 and PETCO2 , and cerebral blood velocity parameters are
presented in Table 1. Briefly, the young and older subjects were of
similar height (p = 0.552) and weight (p = 0.084) and had simi-
lar systolic (SBP), diastolic (DBP) and mean arterial (MAP) blood
pressures (p ≥ 0.188). Additionally, resting, air breathing PETO2

and PETCO2 were similar between the two age groups (p ≥ 0.133).
In contrast, the older group had a significantly higher systemic AI
(p < 0.001).

RESTING CEREBROVASCULAR HEMODYNAMIC PARAMETERS
At rest, while the subjects were breathing room air, PCA diastolic
(Vdia), systolic (Vsys), mean (Vmean), and reflected (Vrefl) blood
velocities, as well as CVC, were similar between the young and
older subjects (p ≥ 0.224). Oppositely, PCA cerebral AI was lower
in the young group (p < 0.001). For the MCA, all blood velocity
waveform parameters (i.e., Vdia, Vsys, Vmean, and Vrefl) and CVC
were higher (p ≤ 0.024), and cerebral AI was lower in the young
group (p = 0.004).

RESPONSES TO VISUAL STIMULATION
There was no effect of the Visual Stimulation Stages and the
interaction between the Visual Stimulation Stages and Age
Groups main effects were not significant for PETO2 (p ≥ 0.347),
PETCO2 (p ≥ 0.518), or MAP (p ≥ 0.107). Thus, there was no
change in PETO2 , PETCO2 , and MAP in response to the visual
stimulation, irrespective of age, and any changes in PETO2 ,
PETCO2 , and MAP that occurred within each age group were
similar (Table 2).

In the older group, visually evoked increases in PCA blood
velocity were similar between those who performed 10 cycles
of 40 s blocks and those who performed 5 cycles of 80 s blocks
(p = 0.172). Thus, responses were grouped to provide a single
group mean. The mean change in absolute, and relative, visually
evoked changes in PCA and MCA mean blood velocities (Vmean)
and CVC for both the young and older groups are shown in
Figure 2. The Visual Stimulation Stages main effect was signif-
icant for both PCA (p < 0.001), and MCA, Vmean (p = 0.041)
with Vmean, being higher during the ON stage for both arteries
(p ≤ 0.041) regardless of age. The increase in PCA Vmean was
3.4 ± 2.5 cm/s (10.3 ± 7.6%), which was greater (p ≤ 0.001)
than the increase in MCA Vmean of 1.1 ± 2.4 cm/s (2.6 ± 5.7%).
Moreover, the interaction between the Visual Stimulation Stages
and Age Groups main effects was significant for PCA Vmean (p =
0.037) as a result of a greater increase in absolute (and relative)
PCA Vmean in the young group (p ≤ 0.026; Figure 2A). The non-
significant interaction between Visual Stimulation Stages and Age
Groups for the MCA Vmean signifies the increase in MCA Vmean

was similar between the two age groups (Figure 2A).
There was a significant effect of the Visual Stimulation Stages

on PCA CVC (p ≤ 0.001), but not MCA CVC (p = 0.381).
Regardless of age, PCA CVC was higher during the ON stage of
the visual stimulation test (p ≤ 0.001). In addition, there was a
trend for the interaction between the Visual Stimulation Stages
and Age Groups main effects to be significant for PCA CVC (p =
0.067) while the interaction was not significant for MCA CVC
(p = 0.187; Figure 2B). Although the interaction term showed
only a trend, post-hoc 1-tailed comparisons of the change in PCA
CVC (absolute and relative) showed the increase in CVC was
greater in the young group (p ≤ 0.034; Figure 2B).

Finally, the Visual Stimulation Stages main effect was signif-
icant for PCA Vdia, Vsys, and Vrefl (p ≤ 0.001) as all velocities
were elevated in response to the visual stimuli within the young
and older groups. In contrast, the Visual Stimulation Stages main
effect was significant for only MCA Vdia (p = 0.015) with it being
elevated in response to the visual stimuli (Table 2). Additionally,
there was a significant interaction between the Visual Stimulation
Stages and Age Groups main effects for PCA Vdia (p = 0.032) and
Vsys (p = 0.028) with the young subjects having a greater increase
in the two velocities in response to the visual stimuli (Table 2).
The interaction was not significant for MCA Vdia, Vsys, and Vrefl

(p ≥ 0.187).

RESPONSES TO EUOXIC HYPERCAPNIA
Baseline PETO2 and PETCO2 were 87.8 ± 2.4 Torr and 37.3 ± 3.0
Torr for the young group and 87.8 ± 1.8 Torr and 35.6 ± 3.3 Torr
in the older group (p ≥ 0.172). Subsequently, PETO2 and PETCO2

during the hypercapnic stage were 87.5 ± 2.0 Torr and 41.8 ±
3.2 Torr in the young group and 87.3 ± 1.8 Torr and 40.5 ±
3.0 Torr in the older group (p ≥ 0.277). There was no interac-
tion between the Hypercapnic Stages and Age Groups for either
PETO2 or PETCO2 (p ≥ 0.326). Thus, PETO2 and the increase in
PETCO2 , with hypercapnia were similar between young and older
subjects (p ≥ 0.728; Table 2). For MAP, there was a significant
effect the Hypercapnic Stages (p < 0.001) as MAP was increased
with hypercapnia irrespective of age. The interaction between the
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Table 2 | Changes in PETCO2
, PETO2

, MAP, and absolute and relative (i.e., percent) changes in cerebral waveform parameters for the posterior

and middle cerebral arteries in response to the visual stimulation and CO2 test in the young and older groups.

Visual stimulation CO2 Test

Young Older p-values Young Older p-values

�PETCO2 (Torr) 0.2 ± 1.0 0.1 ± 1.1 p = 0.681 4.5 ± 1.0 4.7 ± 1.6 p = 0.728

�PETO2 (Torr) −1.0 ± 2.7 −0.3 ± 3.5 p = 0.585 −0.4 ± 2.4 −0.4 ± 2.4 p = 0.970

�MAP −2.2 ± 2.8 1.42 ± 6.5 p = 0.107 4.3 ± 4.2 3.6 ± 4.9 p = 0.712

POSTERIOR CEREBRAL ARTERY

Sample size (n) 10 18 10 18

�Vdia, cm/s 3.6 ± 1.6 2.2 ± 1.6 p = 0.016 6.2 ± 1.3 3.4 ± 2.0 p < 0.001

�Vdia, % 16.6 ± 7.7 11.3 ± 8.8 p = 0.059 24.0 ± 7.5 15.7 ± 8.6 p = 0.009

�Vsys, cm/s 5.3 ± 3.6 2.7 ± 2.5 p = 0.014 7.5 ± 4.6 4.7 ± 3.2 p = 0.035

�Vsys, % 10.5 ± 7.1 5.6 ± 4.9 p = 0.019 13.7 ± 7.5 10.1 ± 6.2 p = 0.088

�Vrefl, cm/s 5.7 ± 3.1 3.6 ± 3.2 p = 0.047 9.0 ± 3.3 5.9 ± 3.3 p = 0.012

�Vrefl, % 12.8 ± 7.0 7.2 ± 6.6 p = 0.022 17.1 ± 7.1 11.9 ± 7.3 p = 0.041

MIDDLE CEREBRAL ARTERY

Sample size (n) 10 19 10 19

�Vdia, cm/s 0.6 ± 1.9 1.3 ± 1.9 p = 0.174 10.9 ± 3.2 5.6 ± 2.4 p < 0.001

�Vdia, % 1.7 ± 5.2 5.8 ± 9.6 p = 0.110 23.6 ± 6.4 18.2 ± 6.8 p = 0.024

�Vsys, cm/s −0.3 ± 4.4 1.4 ± 2.3 p = 0.093 11.6 ± 5.2 7.9 ± 5.0 p = 0.034

�Vsys, % −0.2 ± 4.7 2.2 ± 3.4 p = 0.061 12.0 ± 4.5 11.7 ± 7.4 p = 0.465

�Vrefl, cm/s 0.9 ± 3.7 1.6 ± 3.5 p = 0.299 15.7 ± 3.8 10.3 ± 4.8 p = 0.002

�Vrefl, % 1.2 ± 4.9 2.7 ± 6.3 p = 0.263 17.7 ± 3.9 14.9 ± 7.5 p = 0.150

Values are means ± SD.

PETCO2 , end-tidal partial pressure of carbon dioxide; PETO2 , end-tidal partial pressure of oxygen; MAP, mean arterial pressure; Vdia, velocity at diastole; Vsys, velocity

at systole; Vrefl , velocity at the reflected shoulder of peak systole; cerebral AI, cerebral augmentation index; CVC, cerebrovascular conductance.

P-values within table are for older vs. young comparisons. The bold p-values are to highlight the significant differences that were observed.

Hypercapnic Stages and Age Groups main effects was not signif-
icant (p = 0.712) as the increase in MAP was similar between
young and older subjects (Table 2).

Absolute and relative increases in PCA and MCA Vmean,
and CVC with hypercapnia are shown in Figure 3. There was
a significant interaction between the Hypercapnic Stages and
Age Groups main effects for both PCA (p = 0.004) and MCA
(p < 0.001) Vmean. In addition, the interaction between the
Hypercapnic Stages and Age Groups was significant for CVC in
both arteries (PCA: p = 0.039; MCA: p = 0.007). Post-hoc com-
parisons showed the absolute, and relative, increases in PCA
Vmean were significantly lower in older subjects (p ≤ 0.031) while
the absolute increase in MCA Vmean was lower in the older
subjects (p ≤ 0.001) and the relative increase in MCA Vmean

showed a trend to be lower in the older group (p = 0.097).
Also, the absolute increase in CVC with hypercapnia was lower
in the older group for both the PCA (p = 0.025), and MCA
(p = 0.005), but the relative increase in CVC showed only a
trend to be lower in the older group for the PCA (p = 0.057)
while MCA CVC was similar between the two groups (p =
0.237). The interaction between the Hypercapnic Stages and
Age Groups main effects was significant for PCA and MCA
Vdia (p ≤ 0.001) and Vrefl (p ≤ 0.024), but not Vsys (p ≥ 0.068).
Table 2 shows the results of post-hoc age group comparisons
of the change in PCA and MCA Vdia, Vsys, and Vrefl with
hypercapnia.

The smaller absolute, and relative, increases in PCA Vmean

within the older group translated into lower absolute (i.e.,
cm/s/Torr) and relative (i.e., %/Torr) reactivities to hypercapnia
(p ≤ 0.018) compared to the young group (Figure 4). Similarly,
absolute, and relative, MCA hypercapnia reactivity was lower in
the older group (p ≤ 0.042). Relative PCA and MCA hypercap-
nic reactivity values for the older group have been previously
reported in comparison to a patient population (Peca et al., 2013).

VISUALLY-EVOKED AND HYPERCAPNIC CBF RESPONSES: RELATION TO
ARTERIAL STIFFNESS
Cerebral AI for both the PCA and the MCA was highly corre-
lated (p < 0.001) with systemic AI (Figure 5A). Furthermore, the
curvilinear model fitted to the cerebral AI and age relationship
was significant for both arteries (p < 0.001; Figure 5B). Figure 6
shows the relationships between responses in PCA Vmean to the
visual stimulation and cerebral AI as well as the relationships
between PCA and MCA hypercapnia reactivities and cerebral AI.
The change in PCA Vmean (relative and absolute) in response to
the visual stimulation was not related cerebral AI (p ≥ 0.128).
Similarly, the correlations between absolute, and relative, PCA
hypercapnia reactivity and cerebral AI were not significant (p ≥
103). In contrast, there was a significant negative correlation
between relative, and absolute, measures of MCA hypercapnia
reactivities and cerebral AI (p ≤ 0.013) with lower reactivity at
higher cerebral AIs.
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FIGURE 2 | Absolute (cm/s) and relative (%) changes (�) in posterior

(PCA) and middle cerebral artery (MCA) blood velocity (A) and

cerebrovascular conductance (B) in response to visual stimulation.

P-values provided for comparison between young and older volunteers.

DISCUSSION
In this study we assessed age-related changes in resting CBF
through two cerebral arteries (PCA and MCA), as well as changes
in CBF through the PCA and MCA in response to neuronal acti-
vation (via a visual stimulus) and hypercapnia in young and older
healthy humans. The main findings were (1) resting PCA blood
flow was not reduced with age, but resting MCA blood flow was
lower in older subjects, (2) CBF responses to visual stimulation
and hypercapnia were lower in older subjects; (3) cerebral and
systemic AI increased with age and were highly correlated; and
(4) cerebrovascular reactivity to hypercapnia through the MCA
was inversely related to cerebral AI.

Resting CBF has been reported to decrease with advancing age
(Kety, 1956; Leenders et al., 1990), but this is not a consistent find-
ing (Yamaguchi et al., 1986). Reduced cerebral metabolism and
brain atrophy are likely primary contributors to the age-related
reduction in CBF (Leenders et al., 1990), but hemodynamic alter-
ations such as increased arterial stiffness may also be involved
(Zhu et al., 2011). In the current study, resting PCA blood flow
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FIGURE 3 | Absolute (cm/s) and relative (%) changes (�) in posterior

(PCA) and middle cerebral artery (MCA) blood velocity (A) and

cerebrovascular conductance (B) in response to euoxic hypercapnic

test. P-values provided for comparison between young and older
volunteers.

was similar between the young and older groups, while the MCA
blood flow was significantly lower in the older group. The lower
resting MCA blood flow is consistent with prior studies utilizing
TCD (Nishiyama et al., 1997; Ainslie et al., 2008; Secher et al.,
2008; Galvin et al., 2010; Zhu et al., 2013), but the maintained
resting PCA blood flow in the older group is in contrast to two
previous studies that reported concurrent decreases in both PCA,
and MCA, blood flow with aging (Muller and Schimrigk, 1994;
Demirkaya et al., 2008). However, in the study by Muller and
Schimrigk (1994) the age-related decline was more pronounced
for the MCA than the PCA—29 vs. 17%. Oppositely, Demirkaya
et al. (2008) reported a ∼20% decrease in both MCA and PCA
blood flow with increasing age. In conjunction with the findings
by Muller and Schimrigk (1994), the observation of a maintained
resting PCA blood flow, but a lower resting MCA blood flow,
reflect potential regional differences in cerebrovascular changes
with aging. These contrasting changes in PCA and MCA blood
flow may be the result of the PCA being a smaller artery with,
generally, lower blood flow compared to the MCA. As a result,
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FIGURE 4 | Absolute (i.e., cm/s/Torr; A) and relative (i.e., %/Torr, B)

reactivity for posterior (PCA) and middle cerebral artery (MCA) blood

velocity in response to the hypercapnic test. P-values provided for
comparison between young and older volunteers.

the PCA likely has a reduced capacity to decrease flow (i.e., floor
effect) in comparison to the MCA. An additional explanation of
why aging may affect the PCA and MCA differently, is that the
PCA and MCA bifurcate from different arteries (basilar artery
vs. internal carotid artery, respectively) and perfuse differing vol-
umes of brain tissue. The degree of atrophy with healthy aging
varies across brain regions with the visual cortex being the most
stable across the lifespan (Raz et al., 2005). However, the reduc-
tion in CBF with aging has been reported not to be related to
brain atrophy (Chen et al., 2011). Interestingly, cerebral AI val-
ues were increased for both the MCA, and PCA, in the older
group, but resting CBF was not related to AI for either artery
(PCA: R2 = 0.08, p = 0.138; MCA: R2 = 0.04, p = 0.290; data
not shown). Therefore, arterial stiffness does not appear to be
involved in age-related changes in resting blood flow through
these two arteries.

Although visual-evoked increases in blood flow were observed
in both the PCA and MCA, the response observed in the PCA
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FIGURE 5 | Relationships between the cerebral augmentation index
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was much greater in both age groups. In young subjects, PCA
blood flow increased ∼14% while blood flow through the MCA
increased only ∼1%. Similarly, in older subjects, PCA blood flow
increased ∼8 vs. a ∼3% increase in MCA blood flow. In contrast,
hypercapnia caused similar relative increases in CBF through both
the PCA and MCA (18% in the young group and ∼14% in the
older group). These contrary responses between the PCA and
MCA to these two stimuli reflect the respective local and global
responses evoked by the visual stimulation and hypercapnic tests
(Tominaga et al., 1976; Aaslid, 1987).

The lower PCA blood flow response to the visual stimulation
in the older group is similar to previous studies reporting aging-
related declines in PCA blood flow responses to a visual stimulus

Frontiers in Physiology | Integrative Physiology February 2014 | Volume 5 | Article 49 | 8

http://www.frontiersin.org/Integrative_Physiology
http://www.frontiersin.org/Integrative_Physiology
http://www.frontiersin.org/Integrative_Physiology/archive


Flück et al. Cerebrovascular reactivity, aging and arterial stiffness

FIGURE 6 | Relationships between the absolute (cm/s) and relative

(%) changes in PCA mean blood velocity (�Vmean) in response

to the visual stimulation and cerebral AI (A,B); and the

relationships between the absolute (cm/s/Torr) and relative

(%/Torr) reactivities to CO2 for the PCA and MCA with cerebral

AI (C,D).

(Niehaus et al., 2001; Zheng et al., 2003), but in contrast to other
studies reporting no change with increasing age (Panczel et al.,
1999; Rosengarten et al., 2003). The mechanism(s) underlying
visually evoked blood flow responses is incompletely defined, but
include a critical role of the neurovascular unit (i.e., astrocytes
in combination with the neurons and blood vessels), as summa-
rized in recent reviews (Iadecola, 2004; Drake and Iadecola, 2007;
Iadecola and Nedergaard, 2007; Lok et al., 2007; Koehler et al.,
2009). Thus, the observed decrease in PCA blood flow responses
with aging may reflect a disruption of the neurovascular unit with
aging resulting from neuronal loss and/or vascular remodeling
(Panczel et al., 1999).

For cerebrovascular reactivity to hypercapnia, reports are also
inconsistent regarding age-related alterations with studies report-
ing decreased (Nishiyama et al., 1997; Bakker et al., 2004), main-
tained (Kastrup et al., 1998; Ito et al., 2002; Galvin et al., 2010) and
even enhanced hypercapnia reactivity with advancing age (Zhu
et al., 2013). The lower PCA and MCA hypercapnic reactivity
in the older group observed in the current study are in agree-
ment with the prior studies reporting cerebrovascular reactivity
to hypercapnia is decreased with advancing age.

A novel aspect of the current study is the observed decrease
in both PCA and MCA reactivity to hypercapnia. Prior studies
investigating changes in cerebrovascular reactivity to hypercap-
nia with aging via TCD have monitored only changes in MCA
reactivity (Nishiyama et al., 1997; Kastrup et al., 1998; Ito et al.,
2002; Bakker et al., 2004; Galvin et al., 2010; Zhu et al., 2013), thus
ignoring potential regional differences that may occur. Therefore,

the lower PCA and MCA hypercapnic reactivity in the older group
signifies that, in contrast to the regional differences observed in
age-related changes in resting CBF, the decreased cerebrovascu-
lar reactivity to hypercapnia is a global cerebral phenomenon.
The mechanism responsible for the vascular responses to hyper-
capnia is thought to be the increase in H+ concentration in the
cerebrospinal fluid which leads to relaxation of the smooth mus-
cle around the cerebral vessels (Gotoh et al., 1961; Kontos et al.,
1977a,b; Berne et al., 1981). As a result, the decline in hypercapnic
reactivity in both the PCA and MCA reflect a homogenous decline
in the capacity of the cerebrovasculature to dilate in response to
hypercapnia.

As the mechanisms underlying the regulation of vascular
responses to visual stimulation and hypercapnia are different,
but both responses are decreased with age, there is a likely com-
mon factor that is altered with age contributing to the reduced
evoked responses. The mechanical function of the vasculature is
involved in both mechanisms and thus, is a likely candidate con-
tributing to the two decreased evoked responses. Furthermore,
Zhu et al. (2011) who applied a transfer function method to esti-
mate cerebrovascular impedance, suggested arterial stiffness may
contribute to attenuations in CBF with age. With aging, systemic
arterial stiffening has been reported to increase in a curvilinear
fashion with the greatest increase occurring between 30 and 60
years of age (Kelly et al., 1989; Mitchell et al., 2004; McEniery
et al., 2005). Mitchell et al. (2004) reported a leveling off and
even a slight decrease of the reflected pressure wave in individ-
uals 50 years of age or older that was explained by an impedance
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matching due to marked increases in aortic stiffness compared
to only slight increases in the periphery and, thus a reduction
of wave reflection. PCA and MCA cerebral AIs were strongly
correlated with systemic AI, and increased reflected waves were
observed in both the velocity (i.e., cerebral), and pressure (i.e.,
systemic) waveforms within both arteries. This high degree of cor-
relation between cerebral and system AI is similar to the studies
by Kwater et al. (2009) and Xu et al. (2012) reporting significant
correlations between MCA and systemic arterial stiffness indices.
Based upon the observed high correlation between cerebral and
systemic AI, a curvilinear function was fitted to the cerebral AI
and age relationship. Although additional data is needed to fully
support a curvilinear relationship between cerebral AI and age
due to the gap of ∼2 decades between our young and older
groups, the curvilinear relationships plotted had moderate coeffi-
cients of determination (i.e., R2) for the PCA (0.45) and MCA
(0.31). Moreover, consistent with the systemic arterial stiffness
and age relationship (Kelly et al., 1989; Mitchell et al., 2004;
McEniery et al., 2005) the greatest increase in cerebral AI occurred
between 20 and 60 years of age. Hence, cerebral and system
arterial stiffness may increase in parallel with healthy aging.

Although the negative relationship between the increase in
PCA blood flow with visual stimulation and cerebral AI is in
agreement with our hypothesis (i.e., increased arterial stiffness
contributes to decreased blood flow responses), the relationship
was not significant. Similarly, the negative relationship between
the PCA hypercapnic reactivity and cerebral AI was not sig-
nificant. In contrast, a lower MCA hypercapnic reactivity was
related to an increased cerebral AI. These divergent findings for
the hypercapnic reactivity between the PCA and MCA suggest
MCA reactivity is more susceptible to arterial stiffening. The non-
significant relationship between PCA blood flow responses to the
visual and hypercapnic stimuli and cerebral AI may have resulted
from the greater variability in the PCA response to hypercapnia
and/or the PCA AI having a smaller distribution compared to
the MCA AI. Another potential explanation is that AI magnitude
is dependent upon wave reflections throughout the vascular bed
resulting from vessel branching, changes in vessel wall diameter
and/or material properties (Mitchell et al., 2011). Thus, changes
in vascular morphology with aging will impact on the relation-
ship between vascular reactivity and cerebral AI. With aging, there
is a decrease in the number of downstream blood vessels from the
PCA and MCA with a greater decline occurring within the MCA
circulation (Bullitt et al., 2010). In contrast, there is a greater
increase in vessel tortuosity within the MCA circulation com-
pared to the PCA circulation with advancing age (Bullitt et al.,
2010). As a result, the stronger relationship between vascular reac-
tivity through the MCA and cerebral AI may be driven by an
increase in vessel tortuosity that occurs with healthy aging.

Lastly, this study has some limitations, which need to be
acknowledged. First, TCD measures blood velocity through the
insonated artery and not absolute blood flow. However, the two
are highly correlated (Brauer et al., 1998). Moreover, the diame-
ter of the PCA during visual stimulation does not change (Aaslid,
1987), and the diameter of both, the PCA, and MCA, has been
shown not to change significantly in response to moderate hyper-
capnia as employed in this study (Giller et al., 1993; Poulin and

Robbins, 1996; Serrador et al., 2000; Willie et al., 2012). Thus, in
this situation, changes in blood velocity will lead to a correspond-
ing increase in absolute blood flow. As such, assessment of blood
velocity through the PCA and MCA with TCD has been accepted
as a reliable index of CBF. Secondly, the gold standard to assess
vessel stiffness is pulse wave velocity measurement (Tomlinson,
2012). AI is straightforward to measure, by monitoring blood
pressure or blood velocity waveforms; however wave reflections
are not only dependent on arterial stiffness but also on the site
of reflection. In addition, blood pressure is said to influence the
vessel wall properties due to the distending pressure (Chirinos,
2012). However, subjects in the present study were assessed at rest
and the chosen time periods used for AI calculations was assured
to be as stable as possible.

In conclusion, CBF responses to both visual stimulation and
hypercapnia decreased with advancing age with a concomitant
increase in cerebrovascular stiffness. The decreases in PCA reac-
tivity to a visual stimulus and hypercapnia were not related to
increased cerebrovascular stiffness, whereas MCA hypercapnia
reactivity decreased as cerebrovascular stiffness increased. Finally,
analysis of the cerebral blood velocity waveform offers a non-
invasive approach to assess vascular health and provide an index
of arterial stiffness.
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