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Epidemiological data have demonstrated an inverse association between serum vitamin
D3 levels, cancer incidence and related mortality. However, the effects of vitamin D on
prostate cancer biology and its utility for prevention of prostate cancer progression are
not as well-defined. The data are often conflicting: some reports suggest that vitamin D3
induces apoptosis in androgen dependent prostate cancer cell lines, while others suggest
that vitamin D3 only induces cell cycle arrest. Recent molecular studies have identified an
extensive synergistic crosstalk between the vitamin D- and androgen-mediated mRNA
and miRNA expression, adding an additional layer of post-transcriptional regulation to
the known VDR- and AR-regulated gene activation. The Warburg effect, the inefficient
metabolic pathway that converts glucose to lactate for rapid energy generation, is a
phenomenon common to many different types of cancer. This process supports cell
proliferation and promotes cancer progression via alteration of glucose, glutamine and
lipid metabolism. Prostate cancer is a notable exception to this general process since
the metabolic switch that occurs early during malignancy is the reverse of the Warburg
effect. This “anti-Warburg effect” is due to the unique biology of normal prostate cells that
harbor a truncated TCA cycle that is required to produce and secret citrate. In prostate
cancer cells, the TCA cycle activity is restored and citrate oxidation is used to produce
energy for cancer cell proliferation. 1,25(OH)2D3 and androgen together modulates the
TCA cycle via transcriptional regulation of zinc transporters, suggesting that 1,25(OH)2D3
and androgen maintain normal prostate metabolism by blocking citrate oxidation. These
data demonstrate the importance of androgens in the anti-proliferative effect of vitamin D
in prostate cancer and highlight the importance of understanding the crosstalk between
these two signaling pathways.
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OVERVIEW ON PROSTATE CANCER BIOLOGY
Prostate cancer is the most commonly diagnosed non-cutaneous
malignancy in males in North America (Altekruse et al., 2010).
This disease is usually considered to be an androgen depen-
dent cancer, since the normal prostate is clearly dependent on
androgens for its structure and function. Paradoxically, the age-
dependent incidence and associated mortality of prostate cancer
between 50 and 60 years of age increase after serum testosterone
levels start to decline significantly, particularly after age of 65
(Figure 1A) (Siegel et al., 2014). Prostate adenocarcinomas are
slow growing tumors that are characterized by low mitotic index
and a long natural history (McNeal, 1968). The progression from
normal prostate to prostatic intraepithelial neoplasia (PIN), and
eventually to localized adenocarcinoma takes place over several
decades (Figure 1B). Autopsy studies have shown that prostatic
adenocarcinoma and the pre-malignant PIN are evident in men
in their early and mid-thirties. The development of advanced,
locally invasive prostate cancer and metastatic disease is a rel-
atively late process for which there are limited treatments, and
hormone ablation therapy used at this late stage applies selec-
tive stress that probably is responsible for the development of
castration-resistant prostate cancer (CRPC).

VITAMIN D AND PROSTATE
There are many epidemiological studies that suggest high serum
vitamin D levels, usually measured as serum 25(OH)-vitamin
D3 (25(OH)D3) may be important in preventing various can-
cers, including breast, ovarian and colon cancer (Thorne and
Campbell, 2008; Giovannucci, 2009). The risk of developing and
dying of these cancers appears to be inversely correlated with sun
exposure, and/or vitamin D status, suggesting that vitamin D has
chemopreventive properties (Garland et al., 2009). Some studies
have also suggested that vitamin D may play a role in prostate can-
cer prevention (Tseng et al., 2004; Schwartz and Skinner, 2007),
but the data are less conclusive than in other cancers and sev-
eral recent meta-analyses have found weak or no associations
between 25(OH)D3 levels and prostate tumor incidence or pro-
gression (Yin et al., 2009; van der et al., 2009; Barnett et al.,
2010; Park et al., 2010; Holt et al., 2013). However, a recent
study of men diagnosed with prostate cancer showed that 72%
of men with recurrent disease and 68% with clinically localized
disease were insufficient or deficient in serum 25(OH)D3 levels,
less than 20 ng/mL (desirable levels >40 ng/mL) (Trump et al.,
2010). These data suggest that the majority of men with prostate
cancer have low circulating androgen and low 25(OH)D3 levels
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FIGURE 1 | Natural History of Prostate Cancer (A) Relationship

between serum free testosterone and incidence and mortality of

prostate cancer. Arrow indicates approximate age at which free
testosterone declines below 50% of the level seen in young adults.

(B) Stepwise depiction of progression from normal disease to metastatic
disease. Castration resistant prostate cancer (CRPC) appears to emerge
after hormone therapy.(Figure adapted from SEER database and from
Framington Heart Study).

at the time of diagnosis. Based on many in vitro studies (Miller,
1998; Blutt et al., 2000; Peehl et al., 2003), preclinical and clinical
studies (Deeb et al., 2007), it has been suggested that vitamin D
can be used either as chemopreventative or as therapeutic agent
for prostate cancer. Despite extensive research, the importance of
vitamin D as a chemopreventive agent for prostate cancer is still
a matter of considerable controversy (van der et al., 2009; Park
et al., 2010), and the results from therapeutic intervention using
1,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active metabolite
of vitamin D3 or its less calcemic analogs, have been generally dis-
appointing (Vijayakumar et al., 2005; Beer and Myrthue, 2006;
Wagner et al., 2013). In low-risk prostate cancer patients who
enrolled in active surveillance, high dose of vitamin D3 supple-
mentation decreases Gleason score or the number of positive
cores in more than 50% of patient population (Marshall et al.,
2012), whereas 1,25(OH)2D3 supplementation at adjuvant set-
tings have provided mixed results in CRPC or recurrent diseases
(Flaig et al., 2006; Chan et al., 2008; Srinivas and Feldman, 2009;
Chadha et al., 2010; Scher et al., 2011; Shamseddine et al., 2013).

Various reports suggest that the action of vitamin D in
prostate cancer cells is androgen dependent (Esquenet et al.,
1995; Murthy et al., 2005; Weigel, 2007; Mordan-McCombs
et al., 2010). In Sprague–Dawley rats, 1,25(OH)2D3 administra-
tion decreases prostatic size in intact males, but not castrated

groups (Leman et al., 2003). Longitudinal studies have demon-
strated a positive correlation between 25(OH)D3 levels and the
production of androgen (Wehr et al., 2010; Pilz et al., 2011;
Nimptsch et al., 2012), which has been further validated in
vitro (Lundqvist et al., 2011). However, vitamin D also induces
CYP3A4 and CYP3A5 expression, enzymes that metabolize and
inactivate testosterone and androstanediol in prostate cells, sug-
gesting that vitamin D signaling may play a role in limiting
androgen levels in the prostate (Maguire et al., 2012). Previous
in vitro studies have shown that 1,25(OH)2D3 also induces
moderate increases in AR, PSA, and TMPRSS2 transcript lev-
els (Hsieh et al., 1996; Zhao et al., 1999; Krishnan et al., 2004;
Washington and Weigel, 2010), however this finding does not
translate into clinical setting where 1,25(OH)2D3 appears to
decrease the PSA velocity (Krishnan et al., 2003). Based on
these findings, serum vitamin D levels appear to have a signif-
icant impact on androgen-mediated signaling and the crosstalk
between androgen and vitamin D probably plays an important
role in prostate cancer biology. While there have been many
studies examining the effects of androgens or 1,25(OH)2D3 indi-
vidually on gene expression in prostate cancer cells, there have
been very few studies that explored the crosstalk between the
two signaling pathways and the biological consequences of this
crosstalk.
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GENOMIC OVERLAY OF VDR AND AR SIGNALING
The crosstalk between VDR- and AR-mediated gene expression
was first demonstrated in LNCaP cells (Qiao and Tuohimaa,
2004). Induction of FACL3 (long-chain fatty-acid CoA ligase 3) is
dependent on both vitamin D and androgen levels, and treatment
with bicalutamide inhibits 1,25(OH)2D3-induced FACL3 expres-
sion. This coordinated effect on gene expression has recently
been validated by a comprehensive microarray study using the
same in vitro model (Wang et al., 2011). 1,25(OH)2D3 and
androgen share many common targets and coordinately modu-
late these transcript levels in the same direction (Figures 2A,B).
More importantly, the combination of the two hormones reg-
ulates additional genes, including both mRNAs and miRNAs
that have not been previously identified. The significance of this
additional layer of transcriptional control is best illustrated by
bioinformatic analysis which demonstrates the coordinated effect
of 1,25(OH)2D3 and androgen on cellular processes, including
cell homeostasis, proliferation, differentiation and metabolism,
all of which have significant impact on prostate tumorigenesis
(Figure 2C). Most of these processes are more significantly reg-
ulated by 1,25(OH)2D3 and androgen together than by either
hormone alone, demonstrating the interaction between the two
signaling pathways. Several genes identified from the expression
microarray analysis are validated VDR and AR targets, contains
functional VDRE (within 10kb upstream and 5 kb downstream
of the structural gene) and ARE sites, and some genes exhibit
additive induction after testosterone and 1,25(OH)2D3 stimula-
tion. Both androgen and 1,25(OH)2D3 induces PSA mRNA levels
while addition of testosterone blunts the early vitamin D depen-
dent induction of Cyp24A1, the main enzyme involved in the
catabolism of 1,25(OH)2D3. This suggests that the half-life of
1,25(OH)2D3 is extended in the presence of exogenous androgen.

More than 50% of the responsive genes found from microar-
ray data lack functional response elements in their promoters
when comparing to existing genome-wide screens for VDREs and
androgen responsive database (Wang et al., 2005; Jiang et al.,
2009), raising issues regarding the regulation of these genes, par-
ticularly genes that are only expressed if both hormones are
present.

The anti-neoplastic effect of vitamin D has been linked to
its regulation of miRNA levels. This include the repression of
miR-181ab expression (Wang et al., 2009) and the induction of
miR-100, miR-125b, and miR-22 levels by 1,25(OH)2D3 (Alvarez-
Diaz et al., 2012; Giangreco et al., 2013). Dysregulated miR-
106b expression, which is required for the 1,25(OH)2D3-induced
feed-forward loop regulating p21 expression in non-malignant
RWPE-1 cells, has also been implicated in prostate cancer biology
(Poliseno et al., 2010; Thorne et al., 2011). Microarray analysis
that interrogates the differential miRNA expression in LNCaP
cells after treatment with 1,25(OH)2D3 and testosterone, either
alone or in combination suggests that VDR plays a critical role in
miRNA regulation (Wang et al., 2011) and further highlights the
important interactions between VDR- and AR-mediated miRNA
expression. These include the additive induction of miR-22, miR-
29ab, miR-134, miR-371-5p, miR-663, and miR-1207-5p and the
synergistic down-regulation of the oncogenic miR-17/92 cluster
by testosterone and 1,25(OH)2D3. Both miR-22 and members

of the miR-29 family are candidate tumor suppressors (Alvarez-
Diaz et al., 2012; Szczyrba et al., 2013; Wu et al., 2013) and their
induction is consistent with the anti-proliferative effect of vita-
min D in prostate cancer. In comparison, elevated miR-371-5p
and miR-663 expression have been correlated with cancer pro-
gression and miR-663 expression positively associates with the
Gleason score used to stage prostate cancer (Zhou et al., 2012;
Liu et al., 2013; Jiao et al., 2014). In contrast, the miR-17/92 clus-
ter is known to play an oncogenic role and its expression has
been linked to more advanced prostate cancer (He et al., 2005;
Volinia et al., 2006; Sylvestre et al., 2007; Yu et al., 2008; Diosdado
et al., 2009; Trompeter et al., 2011; Yang et al., 2013). In addi-
tion, this cluster is a well-validated target for c-Myc, which itself
is a direct target of VDR (Simpson et al., 1987; O’Donnell et al.,
2005), and a recent report has proposed a regulatory role for the
miR-17/92 cluster on PPARα levels, linking miR-17/92 to energy
metabolism in prostate cancer cells (Wang et al., 2013). This con-
current analysis of VDR- and AR-mediated mRNA and miRNA
expression reveals an extensive and complex transcription net-
work that interconnects c-Myc, PPARα and other transcription
factor-mediated signaling, which is only active when both andro-
gen and vitamin D are present. A recent comprehensive analysis
of 24 nuclear receptors and 14 transcription factors (TFs) in the
MCF-7 breast cancer cell line has demonstrated a similar find-
ing and has identified genomic regions enriched with nuclear
receptors and TFs binding sites, which generates extensive regula-
tory networks that may modulate target gene expression (Kittler
et al., 2013). Such functional interactions between nuclear recep-
tors and TFs, including the antagonistic interaction between
RARs and AR and PPARδ (Rivera-Gonzalez et al., 2012; Kittler
et al., 2013), and the agonistic interaction between VDR and
AR (Wang et al., 2011) provide valuable information that can
be used to improve cancer prevention and therapy. The func-
tional interactions between AR and VDR, as well as other nuclear
receptors and TFs may also be important for disease manage-
ment, especially now that nutritional intervention has become
more widely accepted as an effective approach to prevent cancer
progression. These experimental data suggest that 1,25(OH)2D3,
and androgens as well as other hormones and growth factors
trigger at least three mechanisms to modulate global gene expres-
sion. These include AR- and VDR-mediated gene transactivation;
miRNA-mediated mRNA degradation and translational repres-
sion; and transcription factor-mediated feed-forward signaling.
These mechanisms do not appear to be mutually exclusive and
act together to regulate many vitamin D- and androgen-mediated
cellular processes that have significant implication in prostate
carcinogenesis.

INTERMEDIATE METABOLISM: THE WARBURG EFFECT
A number of studies have suggested that vitamin D has a novel
role in regulating energy metabolism. The vitamin D receptor
knockout (VDRKO) and the Cyp27b1 knockout (Cyp27b1KO)
mice exhibit elevated energy expenditure with subsequent loss
of body fat over time (Narvaez et al., 2009; Wong et al.,
2011). In human adipocytes, 1,25(OH)2D3 inhibits uncoupling
protein-1 expression and alters Ca2+ homeostasis, suggesting
a regulatory role of vitamin D in thermogenesis and provides
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FIGURE 2 | The effect of T and 1,25(OH)2D3 on mRNA and miRNA

expression in LNCaP cells. (A) Venn diagram analysis of the gene
expression microarray data [Green: 1,25(OH)2D3-moduated, Orange:
androgen-modulated, Blue: synergistically modulated genes by androgen and
1,25(OH)2D3]. (B) Venn diagram analysis of the miRNA microarray data

[Green: 1,25(OH)2D3-modulated, Orange: androgen-modulated, Blue:
synergistically modulated genes by androgen and 1,25(OH)2D3]. (C) Gene set
enrichment analysis of representative gene sets identified as significantly
enriched after 1,25(OH)2D3 treatment in the presence or absence of
androgen in LNCaP cells. False discovery rate <5%.

rationale for the observed lean phenotype in VDRKO and
Cyp27b1KO mice (Xue et al., 1998; Shi et al., 2001, 2002).
Similarly, both 25(OH)D3 and 1,25(OH)2D3 promotes lipoge-
nesis in primary human preadipocytes, adipocyte and adipose-
derived mesenchymal progenitor cells, which is associated with
increased expression of differentiation markers C/EBPα and
PPARγ (Nimitphong et al., 2012; Narvaez et al., 2013). However,
this effect may be cell type and lineage specific since 1,25(OH)2D3

inhibits lipid accumulation in mouse 3T3-L1 preadipocytes
and prevents high fat diet-induced fatty liver syndrome in
Sprague–Dawley male rats (Rayalam et al., 2008; Yin et al.,
2012).

In T47D breast cancer cells, 1,25(OH)2D3 induces lipid syn-
thesis, which has been associated with its effect on cell differ-
entiation and reduced cell growth (Lazzaro et al., 2000). This
lipogenic effect of 1,25(OH)2D3 is recapitulated in LNCaP cells
and is enhanced in the presence of androgen (Esquenet et al.,
1997; Wang et al., 2013), highlighting the coordinated effect
of AR and VDR signaling. Increase in PPARα expression and
its associated lipogenic gene signature, including the elevation
of fatty acid synthase (FASN) expression, accounts for vita-
min D- and androgen-induced lipid production. However, this
occurs without significant changes in nuclear sterol regulatory
element-binding protein (SREBP-1) levels. Nuclear activation of
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SREBP-1 has been implicated in de novo lipogenesis in more
aggressive cancers, including prostate cancer (Menendez and
Lupu, 2007; Huang et al., 2012). A recent comprehensive par-
allel analysis of various genomic studies using prostate can-
cer cell lines has uncovered a critical regulatory role of AR
in the energy metabolic network, with lipid synthesis being
the predominate AR-regulated process. These data suggest that
altered AR signaling and its effects on the downstream targets
of calcium/calmodulin-dependent protein kinase kinase 2, beta
(CAMKK2), which regulates the activity of a key energy sensor
AMP-activated protein kinase (AMPK), promotes the metabolic
switch that provides the energy for prostate cancer growth and
progression (Massie et al., 2011). These data suggest a divergent
role of lipid production in prostate tumors: SREBP-1 depen-
dent up-regulation of fatty acids production for phospholipid and
membrane synthesis and signaling molecules that are essential for
tumor progression (Currie et al., 2013; Soga, 2013); or SREBP-1-
independent elevation of neutral and inactive lipid accumulation
which restricts energy expenditure and limits tumor growth.

In addition to the modulation of lipid metabolism by vita-
min D and androgen, qPCR analysis has suggested a regulatory
role of these two hormones on the TCA cycle in prostate cancer
cells. In most normal cells, the TCA cycle is utilized to gener-
ate energy for normal cellular functions. This process is relatively
slow and ATP production does not meet the demand for highly
proliferative cancer cells. As a result, cancer cells often disen-
gage mitochondrial oxidative phosphorylation from glycolysis for
rapid ATP production by employing the fermentation process,
a process referred as the Warburg effect (Warburg et al., 1927;
Warburg, 1956; Soga, 2013). Prostate cancer cells are a notable
exception, and the metabolic switch that occurs is more appro-
priately regarded as an “anti-Warburg” effect. The prostate gland
normally secrets high levels of citrate into the seminal fluid,
a function that is supported by a truncated TCA cycle activ-
ity. The prostate has the highest levels of intracellular zinc of
any tissue in the body. This high level of zinc inactivates m-
aconitase 2 activity, the enzyme that converts citrate to isocitrate
in the mitochondria. In prostate cancer cells, zinc transporters
are down-regulated, which leads to lower intracellular zinc levels.
This restores m-aconitase 2 function and the conversion of cit-
rate to isocitrate for ATP production via the TCA cycle (Costello
and Franklin, 1991a,b). This is supported by both clinical and
in vitro data, demonstrating a minimal reliance of prostate can-
cer cells on glycolysis for proliferation especially during the early
phases of tumor progression. This precludes the usage of fluorine-
18-labeled 2-deoxy-2-fluoro-D-glucose (FDG-PET) for prostate
cancer detection and diagnosis (Hofer et al., 1999; Jadvar, 2011).
In comparison, androgen stimulates glucose usage to facilitate cit-
rate accumulation in normal prostate epithelial cells (Harkonen,
1981; Harkonen et al., 1982) and this androgenic effect is main-
tained in androgen responsive prostate cancer cells, although in
these cells, elevated citrate is funneled for the production of lipid
(Moon et al., 2011).

In LNCaP cells, 1,25(OH)2D3 and androgen together down-
regulate mitochondrial thiamine pyrophosphate (TPP) carrier
(SLC25A19) and up-regulates two zinc transporters, (SLC39A1
and SLC39A11) (supplemental data to Wang et al., 2011). Low

expression of SLC39A1 in adenocarcinomatous glands and PIN
foci has been documented and linked to depleted zinc lev-
els (Franklin et al., 2005). In comparison, SLC39A11 is less
well-characterized, but studies have shown that it is abundantly
expressed in murine testes and digestive system, and is asso-
ciated with zinc import (Yu et al., 2013). This suggests that
vitamin D and androgen cooperate to reset zinc levels, inhibit-
ing m-aconitase activity in prostate cancer cells. In comparison,
down-regulation of the TPP carrier, SLC25A19 (Lindhurst et al.,
2006; Kang and Samuels, 2008) affects mitochondrial coenzyme
TPP levels, leading to decreased activities of pyruvate dehydro-
genase (PDH) and alpha-ketoglutarate dehydrogenase (OGDH)
activities. In comparison, in vivo studies have shown that admin-
istration of testosterone up-regulates the expression and activ-
ities of PDH and mitochondrial aspartate aminotransferase to
increase the substrate pools for citrate synthesis, acetyl-CoA and
oxaloacetate (Costello and Franklin, 1993; Qian et al., 1993). This
suggests that vitamin D and androgen supplementation facilitate
the reversion of the metabolic switch that occurs during prostate
carcinogenesis by preventing citrate oxidation, partially restor-
ing the normal prostatic function and shunting citrate into the
cytoplasm for secretion and lipid synthesis (Figure 3). This is
supported by the observation that LNCaP cells retain the sensi-
tivity to androgen-induced citrate production and accumulation
(Franklin et al., 1995). This suggests that vitamin D facilitates
and maintains this differentiated phenotype, rendering prostate
cancer cells less aggressive. This also suggests that maintaining or
restoring adequate levels of androgen, accompanied by vitamin D
supplement will significantly delay prostate cancer progression in
aging men.

To further highlight the impact of vitamin D and androgen
on resetting cancer cell metabolism, 1,25(OH)2D3 and andro-
gen also down-regulate c-Myc levels, whose many functions
include metabolic reprogramming to drive tumor progression,
including the induction of glycolysis and glutaminolysis (Shim
et al., 1998; Wise et al., 2008; Soga, 2013; Zirath et al., 2013).
While there is good evidence suggesting a positive correlation
between serum glutamate levels and more aggressive prostate
cancer (Koochekpour et al., 2012), the dependence of prostate
cancer on glutaminolysis for energy generation and progression
is not well-studied. Nevertheless, it is reasonable to suggest that
in response to vitamin D and androgen stimulation, prostate can-
cer cells reverse or block the metabolic switch that occurs early
in the course of the disease and further blocks c-Myc-mediated
metabolic reprogramming, which may occur independently of
the initial metabolic switch.

CONCLUSION
Recent studies have shown a complex relationship between
vitamin D3- and androgen-mediated signaling in the normal
prostate and prostate cancer through their coordinated effect on
mRNA and miRNA transcription, cell proliferation and cancer
metabolism. These data suggest that the effect of vitamin D3 on
global gene expression is dependent on the activity of androgen
and their combined effect on miRNA transcription and other
TFs. Phenotypically, the two hormones maintain normal pro-
static metabolism to prevent de-differentiation of prostate cancer
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FIGURE 3 | Proposed model of T- and 1,25(OH)2D3-mediated prostate

cancer metabolism. The VDR and AR axes modulate the expression of
SLC25A19 and SLC39A11, leading to elevated intracellular zinc levels and
deplete mitochondrial TPP pool, resulting in a truncated TCA cycle. Citrate
is shunted into lipid synthesis and storage instead of phospholipid and

membrane synthesis, which prevents cancer cell proliferation. In addition,
VDR and AR repress c-Myc levels and associated metabolic
reprogramming to maintain prostate cancer cells in a more differentiated
state. (dashed line: transcriptional regulation; green: inhibition; magenta:
stimulation).

cells into more aggressive phenotype. These newly emerging data
provide a explanation for the discrepancies observed from epi-
demiological and experimental studies of vitamin D3 in prostate
cancer since these studies do not take the synergistic interactions
between the two pathways into account. These data also suggest
that maintenance of adequate levels of vitamin D3 and androgen
will slow or halt prostate cancer progression especially for patients
diagnosed with early stage, locally confined disease. Case-control
clinical studies will be needed to fully evaluate the risk and benefit
of combining these two hormones in prostate cancer patients.
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