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Changes in vitamin D serum levels have been associated with inflammatory diseases,
such as inflammatory bowel disease (IBD), rheumatoid arthritis, systemic lupus
erythematosus, multiple sclerosis (MS), atherosclerosis, or asthma. Genome- and
transcriptome-wide studies indicate that vitamin D signaling modulates many
inflammatory responses on several levels. This includes (i) the regulation of the expression
of genes which generate pro-inflammatory mediators, such as cyclooxygenases or
5-lipoxygenase, (ii) the interference with transcription factors, such as NF-κB, which
regulate the expression of inflammatory genes and (iii) the activation of signaling
cascades, such as MAP kinases which mediate inflammatory responses. Vitamin D targets
various tissues and cell types, a number of which belong to the immune system, such
as monocytes/macrophages, dendritic cells (DCs) as well as B- and T cells, leading to
individual responses of each cell type. One hallmark of these specific vitamin D effects
is the cell-type specific regulation of genes involved in the regulation of inflammatory
processes and the interplay between vitamin D signaling and other signaling cascades
involved in inflammation. An important task in the near future will be the elucidation of
the regulatory mechanisms that are involved in the regulation of inflammatory responses
by vitamin D on the molecular level by the use of techniques such as chromatin
immunoprecipitation (ChIP), ChIP-seq, and FAIRE-seq.
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INTRODUCTION: 1α,25(OH)2D3 AND INFLAMMATORY
DISEASES
It is now well established that the physiological importance of
the vitamin D status extends far beyond the regulation of bone
metabolism. According to its manifold functions in immune
homeostasis, increasing evidence relates serum vitamin D lev-
els as well as polymorphisms in enzymes involved in vitamin D
metabolism to the incidence of chronic inflammatory diseases
like asthma, atherosclerosis and autoimmune diseases (Stojanovic
et al., 2011; Summerday et al., 2012; Szekely and Pataki, 2012).
However, whether vitamin D exerts a salutatory or deteriorat-
ing role in such diseases is still under debate. This review will
focus on the knowledge regarding the role of vitamin D in inflam-
matory diseases by the examples of asthma, atherosclerosis and
autoimmune diseases.

1α,25(OH)2D3 AND ASTHMA
According to the World Health Organization (WHO), asthma
is the most common chronic disease among children (http://
www.who.int/mediacentre/factsheets/fs307/en/index.html). In
this context, several studies addressed the interrelationship of the
maternal as well as infant vitamin D status and the prevalence
and severity of asthma. Three studies by Brehm et al. analyzed
the relationship between vitamin D levels and asthma severity
in Costa Rican, North American and Puerto Rican children,
respectively (Brehm et al., 2009, 2010, 2012). Collectively, they
found high prevalences of vitamin D insufficiency in asthmatic
children and vitamin D insufficiency was correlated with severe

asthma exacerbations. However, the prevalence of vitamin D
insufficiency was high in Puerto Rican children irrespective of the
indisposition from asthma, with roughly comparable percentages
between asthma patients and otherwise healthy children (Brehm
et al., 2012). Although few studies showed no correlation between
serum vitamin D levels and the presence of asthma (Menon et al.,
2012; Gergen et al., 2013), many studies state a higher prevalence
of vitamin D deficiency in asthmatic children (Freishtat et al.,
2010; Chinellato et al., 2011a,b; Ehlayel et al., 2011; Hollams
et al., 2011; Bener et al., 2012; Krobtrakulchai et al., 2013) and
adults (Li et al., 2011b). Additionally, in many cases a relation
between low vitamin D levels and reduced asthma control is
found. Furthermore, metabolomic analysis of breath condensates
revealed reduced levels of vitamin D metabolites in children
with asthma (Carraro et al., 2013). Similarly, enhanced vitamin
D binding protein levels were found in bronchoalveolar lavage
fluid of asthmatic children (Gupta et al., 2012b). Interestingly,
one study describes an age-dependent association between serum
vitamin D level and asthma prevalence in children (Van Oeffelen
et al., 2011).

A different relationship between the vitamin D status and
asthma has been brought up by a northern Finland birth cohort
study, which revealed an increased risk of asthma in adults who
received high dose vitamin D supplementation in their childhood
(Hypponen et al., 2004). In accordance with these findings, a
prospective study by Tolppanen et al. revealed an increased risk
of wheezing in association with higher vitamin D levels, but no
correlation of lower vitamin D levels to respiratory sicknesses
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(Tolppanen et al., 2013). Another study reinforces the finding of
increased susceptibility to asthma after vitamin D supplementa-
tion, yet only regarding supplementation of water soluble formu-
lations and not in connection with vitamin D supplementation in
peanut oil (Kull et al., 2006).

There is debate as to whether maternal vitamin D levels dur-
ing the pregnancy influence the susceptibility to asthma of the
progeny. Whereas some reports showed no correlation between
maternal or cord blood vitamin D levels and an increased risk
of childhood asthma (Camargo et al., 2011; Rothers et al., 2011;
Morales et al., 2012; Pike et al., 2012; Magnus et al., 2013), another
report indicates that high maternal vitamin D levels correlate with
enhanced probability of asthma development in children (Gale
et al., 2008). In contrast, some reports associate higher vitamin D
intake during pregnancy with reduced risk of childhood wheezing
and asthma (Camargo et al., 2007; Devereux et al., 2007; Erkkola
et al., 2009).

Mechanistically, vitamin D induced protection against airway
inflammation has been related to a modulated T cell response to
allergens as well as induction of the immunoglobulin-like anti-
inflammatory cell surface protein CD200 on T cells, that acts on
target immune cells which express the CD200 receptor (CD200R)
(Dimeloe et al., 2012; Gorman et al., 2012; Urry et al., 2012).
Many authors suggest that the beneficial effect of sufficient vita-
min D levels on asthma development results from the immune
enhancing effect of vitamin D and the simultaneous prevention
of respiratory infections (Ginde et al., 2009; Camargo et al., 2011;
Majak et al., 2011; Morales et al., 2012).

Furthermore, there is evidence that the serum vitamin D
level has also an influence on asthma therapy, as vitamin D has
been demonstrated to enhance glucocorticoid (GC) action and
lower serum vitamin D levels are associated with higher corticos-
teroid requirement, at least in children, or even therapy-resistance
(Searing et al., 2010; Goleva et al., 2012; Gupta et al., 2012a;
Wu et al., 2012). Additionally, the therapeutic effect of specific
allergen immunotherapy has been correlated to serum vitamin D
levels (Majak et al., 2012).

Besides serum vitamin D levels also polymorphisms of genes
of the vitamin D pathway such as the vitamin D receptor (VDR)
have been associated with asthma (Poon et al., 2004; Raby et al.,
2004; Saadi et al., 2009; Li et al., 2011a; Pillai et al., 2011;
Maalmi et al., 2013), yet, not all studies revealed a correla-
tion between vitamin D pathway polymorphisms and asthma
prevalence (Vollmert et al., 2004; Fang et al., 2009).

1α,25(OH)2D3 AND ATHEROSCLEROSIS
Another chronic inflammatory disease that is more prevalent
in the elderly population is atherosclerosis. Early studies on
atherosclerosis development in several animal models revealed
an accelerating effect of high doses of vitamin D. Vascular cal-
cification was observed in some of these studies, but not all
(Zemplenyi and Mrhova, 1965; Kudejko, 1968; Taura et al., 1979;
Kunitomo et al., 1981; Toda et al., 1983, 1985). Moreover, 1α,25-
dihydroxyvitamin D3, the active form of vitamin D, stimulated
vascular calcification by in vitro by reducing the expression of
parathyroid hormone-related peptide as well as stimulating alka-
line phosphatase activity in bovine vascular smooth muscle cells

(Jono et al., 1998). On the other hand, there is a large body of
research from clinical studies in humans indicating that low levels
of serum 25-hydroxy vitamin D are associated with atheroscle-
rosis (Reis et al., 2009; Carrelli et al., 2011; Shanker et al.,
2011; Cheraghi et al., 2012). In line with this, the incidence of
osteoporosis, a disease known to be related to vitamin D inade-
quacy, correlates with the incidence of atherosclerosis (Stojanovic
et al., 2011). Therefore, different mechanisms may account for
the promotion of atherogenesis by high and low vitamin D lev-
els, respectively, and calcification may be crucial in the case of
hypervitaminosis. Moreover, differences between the animal and
human system may account for the conflicting results.

With respect to atherogenesis, 1α,25-dihydroxyvitamin D3

has been demonstrated to reduce macrophage adhesion and
migration as well as foam cell formation in monocytes iso-
lated from type 2 diabetic patients (Oh et al., 2012; Riek et al.,
2013a,b). Mechanistic investigations in the context of these stud-
ies attributed the beneficial effects of vitamin D to a reduc-
tion of endoplasmatic reticulum stress in macrophages. This has
been investigated in two mouse models, where vitamin D defi-
ciency facilitated atherosclerosis, which could be reversed in the
course of macrophage endoplasmatic reticulum stress suppres-
sion (Weng et al., 2013). Further evidence on beneficial effects
of calcitriol treatment on atherosclerosis development has been
obtained from an investigation with apolipoprotein E knock-out
mice. In this study, oral calcitriol treatment decreased the produc-
tion of proinflammatory chemokines, led to a reduced amount of
inflammatory effector cells in atherosclerotic plaques and simul-
taneously increased amounts of regulatory T cells (Takeda et al.,
2010). A similar link between vitamin D, T cell modulation, and
atherosclerosis has also been established in humans with chronic
kidney disease (CKD) (Yadav et al., 2012).

The renin-angiotensin-system is known for its detrimental
effects on the cardiovascular system and has been shown to
play an important role in the development of atherosclerosis.
Interestingly, numerous studies in mice document that vitamin D
signaling suppresses the renin-angiotensin-system and that vita-
min D deficiency is associated with an increased activity of the
renin-angiotensin-system (Li et al., 2002; Zhou et al., 2008; Szeto
et al., 2012; Weng et al., 2013). Moreover, the inverse associations
which are described for vitamin D and the occurrence of inflam-
matory cytokines, C-reactive protein, and adhesion molecules
suggest a inhibitory role for vitamin D in the genesis of atheroscle-
rosis (Brewer et al., 2011). Additionally, there is experimental
evidence that vitamin D reduces the expression of matrix metallo-
proteinases that are involved in vascular calcification (Nakagawa
et al., 2005; Qin et al., 2006).

However, there are also studies that found no evidence for an
association between low vitamin D and atherosclerosis in patients
suffering from different autoimmune diseases (Mok et al., 2012;
Sachs et al., 2013). Similarly, there was no evidence for an asso-
ciation of BsmI polymorphism, an intronic single nucleotide
variation of the VDR gene, with atherosclerosis (El-Shehaby et al.,
2013). Yet, it has been shown that atherosclerosis in monkeys is
associated with low levels of VDR expression in coronary arteries
even in the presence of higher plasma vitamin D concentrations
(Schnatz et al., 2012a,b). Moreover, the activation of vitamin D
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can occur locally in macrophages that infiltrate atherosclerotic
lesions and local vitamin D response might thus not necessarily
correlate with serum vitamin D levels (Richart et al., 2007).

1α,25(OH)2D3 AND AUTOIMMUNE DISEASES
It is well established that vitamin D plays an important role
in the regulation of immune functions (Schwalfenberg, 2011;
Zhang et al., 2013a). Accordingly, several inflammatory autoim-
mune diseases like rheumatic disorders and type 1 diabetes have
been associated with vitamin D deficiency (Adorini and Penna,
2008; Shapira et al., 2010). Inflammatory processes in the cen-
tral nervous system are a hallmark of the autoimmune disease
multiple sclerosis (MS) (Deckx et al., 2013). Several studies indi-
cate that MS patients have lower levels of vitamin D and that
higher vitamin D levels as well as vitamin D supplementation
have a protective effect against MS (Munger et al., 2004, 2006;
Ozgocmen et al., 2005). Moreover, vitamin D levels have been
shown to vary in concordance with MS exacerbations (Correale
et al., 2009) and it is possible that low vitamin D levels are rather a
consequence of the sun avoidance of MS patients and not a direct
cause of the disease (Munger et al., 2006). Regarding the effective-
ness of vitamin D supplementation in the course of MS treatment,
there are studies in mice and humans that suggest a beneficial
effect of treatment (Goldberg et al., 1986; Wingerchuk et al., 2005;
Pedersen et al., 2007; Burton et al., 2010). Interestingly, a gender
specific effect of vitamin D has been demonstrated in mice and
humans, which points to greater effects of vitamin D in females
(Spach and Hayes, 2005; Correale et al., 2010).

Overall, there have been only a few controlled trials document-
ing the outcome of vitamin D supplementation on disease activity
in rheumatic conditions, and the role of vitamin D in rheuma-
toid arthritis is therefore controversially discussed (Gatenby et al.,
2013). Yet, a metaanalysis of observational studies on the vitamin
D intake and vitamin D serum levels suggests an inverse associa-
tion with rheumatoid arthritis (Song et al., 2012). Additionally,
in vitro experiments with macrophages from healthy donors
and rheumatoid arthritis patients indicate an enhanced anti-
inflammatory potential of vitamin D in macrophages from the
latter group (Neve et al., 2013).

It has been shown that the onset of autoimmunity in type
1 diabetes is preceded by a proinflammatory metabolic serum
profile (Knip and Simell, 2012). Concurrently, a study in Italian
children revealed reduced vitamin D serum levels in children at
the onset of type 1 diabetes compared to children hospitalized
for other reasons (Franchi et al., 2013). In conformity with these
findings, metaanalyses suggest an association between vitamin D
intake in early life and susceptibility for type 1 diabetes (Zipitis
and Akobeng, 2008; Dong et al., 2013).

For inflammatory bowel disease (IBD), another autoimmune
disorder, similar associations to that described above regarding
vitamin D status and sunlight exposure have been reported (Garg
et al., 2012; Ananthakrishnan, 2013). Animal studies in vitamin
D deficient and VDR knockout (KO) mice reveal a dysregulation
of T cells that might be of importance in the pathogenesis of IBD
(Ooi et al., 2012).

In summary, there is considerable evidence for an associa-
tion between vitamin D deficiency and inflammatory diseases.

However, regarding the causality of this association and the
benefit of vitamin D supplementation, only limited information
is available and the existing data are still inconsistent.

INTERFERENCE OF 1α,25(OH)2D3 WITH
PRO-INFLAMMATORY TRANSCRIPTION FACTORS AND
SIGNALING PATHWAYS
Cell type specific up-regulation of proinflammatory genes and
down-regulation of anti-inflammatory genes is a hallmark of
the onset of an inflammatory reaction. Depending on the cell
type, up-regulation of certain cytokines or enzymes which gen-
erate mediators of inflammation can occur at the transcriptional
or posttranscriptional level. In addition, there is considerable
crosstalk between various pathways which allows adaptation of
the host defense reactions to the environment. According to
their functions, the regulators of inflammatory reactions can be
receptors such as toll like receptors, signal transducers as well as
transcription factors which translate the activation of certain sig-
nal cascades into gene transcription. Additionally, regulation of
gene expression during inflammatory processes can also occur on
posttranslational level which is not focus of this review.

At the level of intracellular signal transduction, MAP kinases
such as JNK or p38 have been identified as central signal trans-
ducers of inflammatory signals. Interestingly, it has been observed
that there is a cross talk between VDR/RXR and MAP kinase
signaling on many levels and the outcome, e.g., stimulation or
inhibition, depends on the stimulus, cell type and the response
(Miodovnik et al., 2012). Regarding inflammation, it has become
obvious that vitamin D inhibits production of proinflammatory
cytokines like IL-6 or TNFα in monocytes via the inhibition of
p38 MAP kinase (Zhang et al., 2012). Inhibition of p38 in mono-
cytes was found to be due to induction of MAPK phosphatase-1
(MKP1) which dephosphorylates p38 and thus reduces p38 acti-
vation (Figure 1). A similar mechanism was found in prostate
cells where induction of MKP5 by 1α,25(OH)2D3 was responsi-
ble for down-regulation of IL-6 mRNA expression (Nonn et al.,
2006). 1α,25(OH)2D3 increases MKP5 transcription by induction
of VDR/RXR binding to a VDRE in the MKP5 promoter. Beside
this indirect modulation of signaling cascades, 1α,25(OH)2D3

and its receptor complex VDR/RXR can interact with other tran-
scription factors such as NF-κB, nuclear factor of activated T-cells
(NFAT), or the glucocorticoid receptor (GCR) which leads to
anti-inflammatory effects (Figure 2). Activation of VDR inhibits
NF-κB activation and signaling. NFκB is a ubiquitously expressed
transcription factor which represents a heterodimer. In the inac-
tive state it interacts with IκB which keeps it in the cytosol
(Karin and Lin, 2002). Upon cell activation by proinflamma-
tory stimuli, IκB is phosphorylated and subsequently ubiqui-
tinylated, which leads to proteasomal degradation of the IκB
protein. Free NFκB translocates to the nucleus where it acti-
vates transcription of proinflammatory cytokines, antiapoptotic
factors as well as of enzymes involved in the generation of proin-
flammatory mediators such as COX-2 (Karin and Lin, 2002;
Tsatsanis et al., 2006). It has been shown that 1α,25(OH)2D3

down-regulates NF-κB levels in lymphocytes (Yu et al., 1995)
and that the vitamin D analog TX 527 prevents NF-κB activation
in monocytes (Stio et al., 2007). Inhibition of NFκB activation

www.frontiersin.org July 2014 | Volume 5 | Article 244 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Physiology/archive


Wöbke et al. Vitamin D in inflammatory diseases

MEKK

MKK3/6

p38

cell stress (UV-light, heat)
proinflammatory cytokines

growth factors

inflammation
apoptosis, cell growth

cell differentiation

cell membrane

MKP1

induction
VDR

1,25(OH) D2 3

IL-6, TNF expressionα

GCR

cortisol

Med14

FIGURE 1 | Inhibition of the p38 MAP kinase pathway by 1α,25(OH)2D3

and a mechanism for the synergistic anti-inflammatory effects of

1α,25(OH)2D3 and glucocorticoids. Proinflammatory stimuli lead to p38
MAP kinase phosphorylation and activation which subsequently induces
expression of many proinflammatory proteins such as IL-6 and TNFα.
1α,25(OH)2D3 induces MKP1 expression which dephosphorylates and
inactivates p38 MAP kinase. 1α,25(OH)2D3 stimulates glucocorticoid-
induced MKP1 expression via enhanced expression of Med14.

by 1α,25(OH)2D3-mediated up-regulation of IκB expression was
reported in human peritoneal macrophages (Cohen-Lahav et al.,
2006) (Figure 2). Additionally, interference of vitamin D sig-
naling with DNA binding of NFκB was found (Harant et al.,
1998). It was shown that 1α,25(OH)2D3 inhibits NF-κB activity
in human MRC-5 fibroblasts but not translocation of its sub-
units p50 and p65. The partial inhibition of NFκB DNA binding
by 1α,25(OH)2D3 was dependent on de novo protein synthesis,
suggesting that 1α,25(OH)2D3 may regulate expression of cellu-
lar factors which contribute to reduced DNA binding of NFκB
(Harant et al., 1998). Thus, it seems that vitamin D is able to
inhibit NFκB activation as well DNA binding (Figure 2).

Another interesting target for the anti-inflammatory signal-
ing of vitamin D is NFAT (Figure 2). This transcription factor
is activated by dephosphorylation by calcineurin which leads to
translocation of this protein and transcriptional activation of
proinflammatory genes such as interleukin 2 and cyclooxygenase-
2 (Duque et al., 2005; Muller and Rao, 2010). In T-lymphocytes,
it was shown for the interleukin 2 promoter that VDR-RXR
heterodimers bind to an NFAT binding site and thus inhibit
NFAT activity (Takeuchi et al., 1998). Similar data were obtained
for interleukin 17 where 1α,25(OH)2D3 blocked NFAT activity
which contributed to repression of interleukin17A expression in
inflammatory CD4+ T cells by the hormone (Joshi et al., 2011).

Another interesting finding was that vitamin D enhances
the anti-inflammatory activities of GCs (Figure 1). The strong
anti-inflammatory activities of GCs are mediated by the
GCR. It belongs to the nuclear receptor family. Upon ligand

binding the receptor dimerizes and translocates into the nucleus
where it binds to GC-responsive elements (GRE) and modu-
lates gene expression (Barnes, 1998). In general, GCs down-
regulate expression of pro-inflammatory genes and up-regulate
anti-inflammatory genes. It was found in asthmatics that
dexamethasone-induced MKP-1 expression as a marker for GC
responsiveness is significantly increased when serum vitamin
D levels increase suggesting that vitamin D may enhance GC
responsiveness (Sutherland et al., 2010). It is interesting to note
that MKP-1 is also a vitamin D target gene as mentioned above
(Zhang et al., 2012). Vitamin D enhancement of GC-induction
of MKP1 was abolished both in purified CD14+ and CD14−
cells and it was found that the synergism depends on vitamin
D-induced GM-CSF release from CD14− cells and GM-CSF-
dependent MED14 induction in CD14+ cells (Zhang et al.,
2013b). MED14 is part of the mediator complex involved in the
regulation of transcriptional initiation and it was found to form
a complex with VDR and mediate ligand-dependent enhance-
ment of transcription by the VDR (Rachez et al., 1999) (Figure 1).
Interestingly, MED14 also enhances gene activation by the GCR
in a gene-specific manner (Chen et al., 2006). For MKP1 it
was found in human monocytes that VDR and GCR bind to
a corresponding VDRE and two GREs after ligand stimulation
(Figure 1). After GM-CSF treatment, MED14 was recruited to the
promoter after addition of 1α,25(OH)2D3 but not dexametha-
sone indicating that MED14 recruitment depends on the VDR
(Zhang et al., 2013b). 1α,25(OH)2D3 enhanced the binding of the
GCR to the GRE in close proximity to the VDRE in the presence
of GM-CSF and ChIP analysis suggest a MED14-VDR-GCR com-
plex at the MKP1 promoter with bridges the crosstalk between
vitamin D and GCs (Zhang et al., 2013b). The data from single
gene analyses such as MKP1 suggest that the VDR interacts with
other signaling pathways.

At present there are genome-wide data available from immor-
talized lymphoblastoid cell lines (Ramagopalan et al., 2010),
undifferentiated and LPS stimulated THP-1 cells (Heikkinen
et al., 2011; Tuoresmäki et al., 2014), LS180 colorectal cancer
cells (Meyer et al., 2012) and LX2 hepatic stellate cells (Ding
et al., 2013). These six ChIP-seq data sets showed 21,776 non-
overlapping VDR binding sites whereas only 54 sites were com-
mon in all six data sets. The data suggest that, apart from a few
sites, VDR binding is strongly cell and stimulus specific. In the
non-overlapping binding sites, only 17.5% contain a DR3-type
VDRE whereas the percentage of DR3-type response elements
is enriched in highly ligand-responsive loci. All these data sug-
gest that the VDR interacts with other transcription factors and
that these interactions might only be in part ligand dependent.
Regarding inflammation, the genome-wide effects of LPS on
VDR location in THP-1 cells are of special interest (Tuoresmäki
et al., 2014). From the 805 VDR binding sites, only 462 overlap
in untreated and LPS-treated THP cells which were stimulated
with 1α,25(OH)2D3. Thus, LPS treatment leads to a considerable
change in VDR location. In THP-1 cells, bioinformatic searches
for shared binding sites revealed motifs for CEBP1, PU.1 in stim-
ulated THP-1 cells whereas NFYA, LHX3-like and NANOG were
found for unstimulated cells but no transcription factor has been
identified in conjunction with LPS treatment. Of note, binding
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FIGURE 2 | SMAD, NFAT and NFκB signaling and modulation of these

signaling pathways by 1α,25(OH)2D3, respective VDR/RXR. IκB
phosphorylation after various cell stress signals leads to its ubiquitinylation
and subsequent proteosomal degradation. After IκB degradation, NFκB is
released and translocates into the nucleus where it binds to DNA and
modulates gene expression. Activation of NFAT is mediated by the protein
phosphatase calcineurin which dephosphorylates NFAT. After
dephosphorylation, NFAT translocates into the nucleus, interacts with a

variety of other transcription factors and modulates gene expression.
Activation of TGFβ receptors leads to phosphorylation of SMAD2 and
SMAD3 as well as subsequent translocation into the nucleus. SMAD3 forms
a complex with SMAD4 and modulates gene expression of its target genes.
After activation by 1α,25(OH)2D3 the VDR/RXR heterodimer can inhibit NFκB
signaling either by induction of IκB or by interference with NFκB DNA
binding. Also, inhibition of NFAT signaling was reported by prevention of
NFAT binding to its response elements.

sites for JUN, a component of the AP1 transcription factor, were
found to be enriched at VDR loci in LX2 hepatic stellate cells.
This is of interest regarding inflammation as AP1 is known to be a
transcription factor that regulates expression of many proinflam-
matory genes. At present, there are many data available on single
gene levels but there is still a missing link between these data
and the genome-wide observations. Since VDR signaling seems
to be strongly cell type and stimulus-dependent, more genome-
wide data with different cell types and stimuli are required to
understand the mechanisms how 1α,25(OH)2D3 modulates gene
expression under inflammatory conditions.

REGULATION OF THE EXPRESSION OF PROINFLAMMATORY
ENZYMES BY 1α,25(OH)2D3

Arachidonic acid derived eicosanoids which comprise
prostaglandins and leukotrienes play an important role in
inflammatory processes (Harizi et al., 2008). Of the enzymes
involved in prostaglandin synthesis, cyclooxygenase-2 (COX-2)
and microsomal prostaglandin E synthase 1 (mPGES-1) have
been shown to be induced in many inflammatory conditions
(Tomasoni et al., 1998; Murakami et al., 2000; Cipollone and
Fazia, 2006; Petrovic et al., 2006) and inhibition of both enzymes
is a common approach in the treatment of inflammatory diseases
(Fahmi, 2004; Ramalho et al., 2009; Dallaporta et al., 2010).

In prostate cancer cells it has been demonstrated that
1α,25(OH)2D3 inhibits the expression of COX-2 on mRNA and
protein level as well as the expression of prostaglandin receptors
on mRNA level and simultaneously upregulates prostaglandin
catabolism via 15-hydroxyprostaglandin dehydrogenase (Moreno
et al., 2005). In addition, the combination of calcitriol with
COX-inhibitors led to synergistic growth inhibition (Moreno

et al., 2005). Similar results were obtained with the combination
of 1α,25(OH)2D3 and COX-inhibitors in different leukemia
cells (Jamshidi et al., 2008). In accordance with the previous
findings, treatment with the vitamin D analog elocalcitol resulted
in decreased COX-2 expression and diminished PGE2 synthesis
in prostate cells (Penna et al., 2009). The COX-2/PGE2-pathway
was also identified as the mediator of the growth inhibitory
effect of calcitriol in breast cancer cells (Yuan et al., 2012).
Furthermore, COX-2 upregulation in placental trophoblasts in
response to oxidative stress and in myometrial cells in response to
interleukin-1β was inhibited by 1α,25(OH)2D3 (Sun et al., 2013;
Thota et al., 2013).

Thill et al. found correlations between VDR expression and
expression of COX-2 as well as 15-hydroxy PG dehydrogenase
in malignant breast cells and in cells from female reproductive
tissues (Thill et al., 2009, 2010, 2012).

In human lung fibroblasts inhibition of PGE2-production
by vitamin D was found which was not due to altered COX-
expression. Yet, vitamin D inhibited IL-1β-induced mPGES-1
expression and simultaneously stimulated 15-hydroxy PG dehy-
drogenase (Liu et al., 2014).

5-lipoxygenase (5-LO) accounts for the first two steps in
leukotriene biosynthesis. Leukotrienes exert potent proinflam-
matory actions and have been associated with several chronic
inflammatory diseases (Haeggstrom and Funk, 2011).

In the myeloid cell line HL-60, treatment with 1α,25(OH)2D3

triggers differentiation into monocytic cells. Simultaneously,
1α,25(OH)2D3 has been shown to induce 5-LO expression on
mRNA and protein level as well as to increase 5-LO enzyme
activity (Bennett et al., 1993; Brungs et al., 1994). A similar
effect was also observed in the monocytic cell line Mono Mac
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6. Additionally, this effect was strongly enhanced by the com-
bination of 1α,25(OH)2D3 with transforming growth factor β

(TGF-β) (Brungs et al., 1995; Harle et al., 1998). Mechanistically,
the effect of 1α,25(OH)2D3 on 5-LO expression was related to
VDR binding sites in the 5-LO promoter and distal parts of the
5-LO gene (Sorg et al., 2006; Stoffers et al., 2010) and is due to
stimulation of 5-LO transcript elongation (Stoffers et al., 2010).

Previous results suggest a modulatory role of vitamin D in
the inflammatory response of cells of the monocyte/macrophage
lineage, which is again modulated by TGF-β. In this context,
it is interesting that macrophages contain 1α-hydroxylase and
therefore are capable of autocrine or paracrine activation of
vitamin D (Lagishetty et al., 2011). Moreover, in keratinocytes
autocrine TGF-β production is induced by vitamin D (Kim
et al., 1992). Crucial participation of monocytes/macrophages in
diverse inflammatory processes has been demonstrated (Cutolo,
1999; Yoon and Jun, 1999; Moore et al., 2013). Besides induction
of 5-lipoxygenase, the combination of TGF-β and 1α,25(OH)2D3

has been shown to induce the differentiation antigen CD69 in
monocytic cells (Wobke et al., 2013). Overexpression of CD69
again, has been shown in the context of local dermal inflam-
mation, systemic lupus erythematosus, hyperthyroid Graves’
disease and autoimmune thyroiditis (Fernandez-Herrera et al.,
1996; Portales-Perez et al., 1997; Crispin et al., 1998; Gessl and
Waldhausl, 1998).

1α,25(OH)2D3 AS REGULATOR OF CYTOKINE GENE
EXPRESSION, PROTEIN PRODUCTION/RELEASE AND
SIGNALING
TGF-β AND Smad SIGNALING IN INFLAMMATION AND THE INFLUENCE
OF 1α, 25(OH)2D3

TGF-β is a pleiotropic cytokine with a broad range of biologic
effects, which is involved in the regulation of inflammatory pro-
cesses on several levels. A main mechanism in this respect is
the maintenance of T cell tolerance to self or innocuous anti-
gens (Li and Flavell, 2008). In cancer-associated inflammation,
TGF-β suppresses the anti-tumor activity of diverse immune cells,
including T-cells, natural killer (NK) cells, neutrophils, mono-
cytes and macrophages (Bierie and Moses, 2010). A great number
of studies focused on the role of TGF-β in fibrosis and associated
inflammation. In these diseases, TGF-β regulates influx and acti-
vation of immune cells, as well as the actual fibrotic process, and
thus the delicate balance between an appropriate inflammatory
response and the development of pathologic fibrosis (Flanders,
2004; Sheppard, 2006; Lan, 2011). Several mechanistic links
between inflammation and fibrosis are known, but the complete
picture remains to be established (Lee and Kalluri, 2010). TGF-β
signaling in these processes has been attributed both to canonical
TGF-β signaling via the Smad proteins (signal-dependent tran-
scription factors) as well as non-Smad signaling pathways (e.g.,
via MAPK pathways) (Figure 2).

Independent of inflammatory model systems, 1α,25(OH)2D3

and TGF-β/Smad signaling pathways have been found to be inter-
related through three mechanisms: (i) the existence of a common
regulator protein, the oncoprotein Ski, which can repress both
pathways (Ueki and Hayman, 2003), (ii) the possibility of joint
gene regulation via VDR and Smad recognition elements that are

located in close proximity to a target promoter (Subramaniam
et al., 2001) (Figure 2) or (ii) direct interaction of Smad3 and
vitamin D signaling, whereby Smad acts as a coregulator specific
for ligand-induced VDR transactivation (Yanagisawa et al., 1999).

The influence of vitamin D on inflammation-related signaling
via TGF-β and Smad has mainly been investigated in mod-
els of fibrosis, and distinct mechanisms have been elucidated.
Activation of 1α,25(OH)2D3 signaling by the natural ligand itself
or its synthetic analogs reduces TGF-β expression (Kim et al.,
2013) and interferes with the downstream signaling. The latter
occurs via several mechanisms: downregulation of phosphory-
lated activatory Smads (Smad2/3 and 4) accompanied by upreg-
ulation of inhibitory Smad6 (Kim et al., 2013) (Figure 2); an
inhibitory interaction between 1α,25(OH)2D3-bound VDR and
Smad3 (Ito et al., 2013) or inhibition of Smad2 phosphorylation
and nuclear translocation of Smad2/3, coincident with inhibited
protein expression from TGF-β target genes (Halder et al., 2011).
Similar findings have been made in studies with nephropathy
models where suppression of TGF-β and p-Smad2/3 expression
(Xiao et al., 2009) or a decrease in Smad2 and an increase in
inhibitory Smad7 (Hullett et al., 2005) have been detected. In
a large-scale study using hepatic stellate cells, TGF-β has been
shown to cause chromatin remodeling events that led to a redis-
tribution of genome-wide VDR binding sites (the VDR cistrome)
with a shift toward VDR binding to Smad3-dependent, profi-
brotic target genes. In this study, VDR ligands led to a reduced
Smad3 occupancy at these genes and thus antifibrotic effects
(Ding et al., 2013). Although hepatic stellate cells do not belong
to the immune system, and the interplay between VDR and
TGF-β/Smad signaling may be dependent on the cell type, key
aspects of this elaborate study deserve mention. More than 104

genomic sites were found to be co-occupied by both VDR and
SMAD3 in these cells, and an analysis of the spatial relationships
between the two transcription factors revealed that the respec-
tive response elements were located within a range of 200 base
pairs (one nucleosomal window). Mechanistically, TGF-β signal-
ing seems to deplete nucleosomes from the co-occupied sites and
thus allow access of VDR to these sites. Vitamin D signaling
on the other hand seems to limit TGF-β activation by inhib-
ited coactivator recruitment. Spatiotemporal analysis revealed
that 1α,25(OH)2D3/TGF-β-induced VDR and SMAD3 binding to
the co-occupied sites were inversely correlated. The maximum of
SMAD3 binding occurred 1 h after treatment and was reduced by
70% after 4 h, when VDR binding was maximal. Therefore, TGF-
β signaling seems to change the chromatin architecture in a way
in which liganded VDR can reverse Smad activation.

THE INFLUENCE OF 1α,25(OH)2D3 ON INTERLEUKIN (IL) GENE
EXPRESSION AND SIGNALING
The finding that 1α,25(OH)2D3 interacts with the production of
interleukins (Tsoukas et al., 1984) is of certain interest in the his-
tory of vitamin D research, as a crucial finding that expanded
the view to roles beyond calcium homeostasis and crucially con-
tributed to establish an immunoregulatory function of vitamin D
(Tsoukas et al., 1984).

The interleukins are a large group of cytokines of central
importance for the intercellular communication between the
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different cells generally involved in inflammatory responses.
These cells mainly encompass the leukocytes in their various
stages of differentiation (distinct T-cells subsets, monocytes,
macrophages, dendritic cells (DCs), granulocytes and B-
lymphocytes) and cells of the connective tissue and vasculature
(fibroblasts, endothelial cells). Furthermore, in specific organ-
related diseases with inflammatory components (psoriasis, CKD,
placental infection/inflammation, obesity, and others), further
cell types are involved, e.g., keratinocytes, endothelial cells, tro-
phoblasts, and adipocytes. All of them are capable of synthesizing
interleukins, and the influence of 1α,25(OH)2D3 on IL gene
expression has been investigated. The influence of 1α,25(OH)2D3

on IL gene expression and signaling in the different cell types will
be outlined in the following.

Leukocytes
Several studies, especially the early ones, included ex vivo exper-
iments with cellular samples from healthy individuals, mainly
with PBMC (Rigby et al., 1984; Tsoukas et al., 1984; Saggese
et al., 1989; Muller and Bendtzen, 1992), (partly) isolated T-cells
(Bhalla et al., 1986), (partly) isolated monocytes (Bhalla et al.,
1986; Muller et al., 1992; Zarrabeitia et al., 1992; Lemire et al.,
1995; Lyakh et al., 2005), or cocultures of T-cells and monocytes
(Tsoukas et al., 1989).

PBMC and T-cells
In stimulated PBMC, as a preparation that includes different
cell types, 1α,25(OH)2D3 caused suppression of IL-2 produc-
tion (Rigby et al., 1984; Tsoukas et al., 1984; Saggese et al., 1989)
and reduced release of IL-1β, IL-6, and IL-10 (Joshi et al., 2011).
Furthermore, the vitamin D analog paracalcitol led to reduced
IL-8 production in stimulated PBMC (Eleftheriadis et al., 2010).

In more cell specific experiments with (partly) isolated T-
cells, 1α,25(OH)2D3-mediated inhibition of IL-2 mRNA syn-
thesis induced by lectin/phorbol ester (Matsui et al., 1986) or
protein production induced by lectin (Bhalla et al., 1986), was
confirmed. This was also observed for the two subsets of CD4+
and CD8+ T-cells (Jordan et al., 1989), which however displayed

stimulus-dependency for IL-2 protein production. In a more
detailed analysis, IL production by CD4+ and CD8+ cells was
studied by flow cytometry on single cell level. In both popu-
lations, a decrease in IL-2 production was found. Conversely,
regarding other IL class members analyzed in the same study,
1α,25(OH)2D3 increased the low percentage of IL-13-producing
cells in both subsets and IL-6 producing CD4+ and CD8+ T-
cells could only be detected after incubation with 1α,25(OH)2D3

(Willheim et al., 1999) (Figure 3).
The finding that IL-2 gene expression is reduced by

1α,25(OH)2D3 in T-cells has moreover been confirmed in two
studies using the human T-cell line Jurkat, and the mecha-
nisms have been studied. It has been found that the VDR seems
to cause direct transcriptional repression of IL-2 gene expres-
sion via blockage of a positive regulatory element recognized by
the transcription factor NFAT within the IL-2 promoter (Alroy
et al., 1995). In a later study, the repression has been kinetically
classified as a primary response to 1α,25(OH)2D3, and ligand-
dependent VDR binding at the IL-2 gene locus was detected
using ChIP assays (Matilainen et al., 2010b) (Figure 2). It has to
be mentioned, however, that long term pretreatment of Jurkat
cells with 1α,25(OH)2D3 before stimulation with mitogen and
phorbol ester seems to enhance IL-2 mRNA expression (Prehn
and Jordan, 1989). Studies using T-cells from other species con-
firmed the inhibitory effect of 1α,25(OH)2D3 on IL-2 production
(Hodler et al., 1985).

Similar findings as for IL-2 have been made regarding the inhi-
bition of IL-17 production by 1α,25(OH)2D3 from T-cells in a
more recent report. It has been found that (i) the VDR com-
petes for binding with NFAT and recruits histone deacetylase
(HDAC) to the human IL-17 promoter, thus inhibiting its acti-
vation, (ii) binding of the activatory transcription factor Runx1
to the mouse IL-17A promoter was inhibited through seques-
tration of Runx1 by the VDR in the presence of 1α,25(OH)2D3

and (iii) 1α,25(OH)2D3 induced the IL-17 inhibiting transcrip-
tion factor Foxp3 (Joshi et al., 2011). Other studies suggest a
post-transcriptional mechanism of IL-17 inhibition by VDR via
induction of the translation inhibitor C/EBP homologous protein
(CHOP) (Chang et al., 2010).

FIGURE 3 | The influence of 1α,25(OH)2D3 on the expression of

interleukins, TNFα and IFNγ in monocytes, dendritic cells, and

different T-cell subsets. Blue arrows indicate IL signaling between the
different cell types and red arrows indicate differentiation processes. IL-12
and IL-23 expression is downregulated in monocytes and dendritic cells
by 1α,25(OH)2D3. In contrast, IL-10 expression is enhanced. A shift from

a Th1 profile toward the Th2 type and a decrease in Th17 responses is
to be anticipated from these changes. Inhibition of T-cell autoregulation
by 1α,25(OH)2D3-mediated suppression of IL-2 expression is not shown.
Abbreviations and symbols: APC, antigen presenting cell; M�,
macrophage; DC, dendritic cell; ↑, upregulation; ↓, downregulation; -, no
changes.
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Apart from studies with PBMC or T-cells from healthy indi-
viduals or experiments with cell lines, a few studies exist with
cell samples from patients suffering from inflammatory diseases.
In contrast to the findings with cells from healthy individuals
after 1α,25(OH)2D3 treatment, PBMC isolated from hemodialy-
sis patients responded to treatment with 1α(OH)D3 by enhanced
IL-2 protein production, however, starting from a significantly
lower level of IL-2 production compared to healthy controls
(Tabata et al., 1988). The capacity of PBMC from Crohn’s dis-
ease patients to produce IL-6 has been elevated by 1α,25(OH)2D3

treatment of the patients (Bendix-Struve et al., 2010). IL-6 and
IL-8 production and mRNA expression have been found to be
decreased by 1α,25(OH)2D3 in stimulated PBMC of psoriatic
patients (Inoue et al., 1998). In PBMC from treatment-naive
patients with early rheumatoid arthritis (RA), reduced IL-17A
and increased IL-4 levels have been observed in the presence of
1α,25(OH)2D3. In the FACS-separated subpopulation of memory
T-cells (CD45RO+), 1α,25(OH)2D3 suppressed IL-17A, IL-17F
and IL-22 (Colin et al., 2010) (Figure 3).

Monocytes
In an early report, IL-1 production by human mono-
cytes/macrophages enriched from PBMC has been found to be
elevated by single 1α,25(OH)2D3 treatment (Bhalla et al., 1986).
In subsequent studies with stimulated, monocyte-enriched cul-
tures from PBMC, either no 1α,25(OH)2D3 effect has been
detected (Zarrabeitia et al., 1992) or a reduction of IL-1 (and
IL-6) production has been found, which seemed to be based on
post-transcriptional events (Muller et al., 1992). The decrease in
IL-1 production has been confirmed for co-cultures of T-cells and
monocyte-enriched PBMC (Tsoukas et al., 1989). However, it has
to be pointed out that different stimuli to elicit IL-1 production
had been used in these studies. In human monocytic cell lines,
(U937, HL-60 or THP-1), no induction (THP-1), or upregula-
tion of IL-1β mRNA (U937, HL-60) by 1α,25(OH)2D3 has been
detected, which varied with the presence or absence and the type
of the co-stimulus that was used (phorbol ester, lipopolysaccha-
ride) (Bhalla et al., 1991; Blifeld et al., 1991; Fagan et al., 1991).
Further it is noteworthy that conflicting data exist for studies with
U937 cells regarding the actual secretion of IL-1β protein (Blifeld
et al., 1991; Fagan et al., 1991; Taimi et al., 1993). In THP-1 cells
stimulated with agonists for Toll-like receptor 8, IL-1β mRNA
was induced and could be suppressed by 1α,25(OH)2D3 (Li et al.,
2013).

In a more recent study, expression of IL-1 and IL-6 mRNA
in freshly isolated monocytes and macrophages cultured for 7
days has been investigated. Interestingly, IL-1 and IL-6 gene
expression has been regulated differently in these two dis-
tinct stages of monocyte/macrophage maturation. In the mono-
cytes, basal IL-1 and IL-6 mRNA expression has been found
to be slightly upregulated by 1α,25(OH)2D3 treatment com-
pared to untreated controls. For 1α,25(OH)2D3 treated mono-
cytes that were additionally stimulated with LPS or TNFα,
no or only marginal differences have been found compared
to LPS or TNFα treatment without 1α,25(OH)2D3 preincuba-
tion. In contrast, 1α,25(OH)2D3 treatment reduced basal IL-
1 and IL-6 levels in macrophages. In 1α,25(OH)2D3 treated

macrophages that were additionally stimulated with LPS or
TNFα, only TNFα-stimulated IL-6 mRNA expression was influ-
enced, whereas no significant changes were observed for IL-1 and
IL-6 after 1α,25(OH)2D3/LPS-treatment. These findings show
that in monocytes/macrophages, the influence of 1α,25(OH)2D3

on IL expression depends on the type of IL under consideration,
the degree of maturation, and the stimulus that is employed (Di
Rosa et al., 2012). In a second recent investigation, significant
inhibition of IL-6 mRNA expression and protein secretion was
observed in PBMC, and subsequent FACS-based analysis revealed
a concomitant decrease in CD14+ IL-6-producing monocytes
(Zhang et al., 2012) (Figure 3).

Apart from the two prominent monokines IL-1 and IL-
6, the synthesis of IL-3 has been found to be influenced by
1α,25(OH)2D3 in the murine monocytic cell line WEHI-3.
However, whereas one report describes dose-dependent inhibi-
tion of IL-3 production in this cell line (Abe et al., 1986), the
second finds concentration-dependent stimulation or inhibition
of IL-3 production (Hodler et al., 1985). Furthermore, the inter-
leukin family members IL-8, IL10, and IL-12 have been studied
more intensely on mechanistic level.

IL-10 and IL-12-production by stimulated primary human
monocytes has been found to be negatively regulated by
1α,25(OH)2D3 (Lemire et al., 1995; Lyakh et al., 2005). These
two genes have been identified as primary 1α,25(OH)2D3 tar-
get genes as judged by rapid VDR recruitment detected via ChIP
assays in the monocytic cell line THP-1 (Matilainen et al., 2010b).
Further studies with this cell line include extensive mechanistic
analyses regarding the influence of 1α,25(OH)2D3 on the expres-
sion of IL-8, IL-10, and IL-12B. The IL-8 gene has been shown
to be an up-regulated, primary target gene, located within an
insulated cluster of CXC motif ligand (CXCL) genes. IL-8 and
its neighboring genes CXCL1 and CXCL6 seem to be under
the control of a consensus VDR binding motif located 22 kb
downstream of the IL-8 transcription start site, which mediates
1α,25(OH)2D3–dependent chromatin opening (Ryynanen and
Carlberg, 2013). As discussed in this report, this finding is seem-
ingly in contradiction with other studies (e.g., Di Rosa et al.,
2012). These studies used different cells and foremost, cells were
stimulated with agents like LPS that activate transcription factors,
e.g., NF-κB, that are themselves regulated by 1α,25(OH)2D3. As
described above, NF-κB activity is inhibited by 1α,25(OH)2D3

(Harant et al., 1998) (Figure 2). It has been put forward that
1α,25(OH)2D3 may have a dual effect: primary up-regulation of
genes like IL-8, which supports the inflammatory response in the
early phase of inflammation, e.g., by IL-8 production, and sec-
ondary effects which would help to shut down the inflammatory
process, e.g., by inhibition of NF-κB-mediated pro-inflammatory
responses (Ryynanen and Carlberg, 2013). This could explain that
in another study in which THP-1 cells were used, no signifi-
cant effect of 1α,25(OH)2D3 on IL-8 expression was found on
protein level. In this study, the cells have been stimulated with
LPS after only 2 h of 1α,25(OH)2D3 treatment before IL-8 pro-
tein was analyzed after 24 and 48 h (Kuo et al., 2010). Similarly,
U937 cells exposed to high glucose (a condition which leads
to different stress responses like NF-κB or MAPK activation)
(Stan et al., 2011; Yang et al., 2013) showed lower IL-8 secretion
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after pretreatment with 1α,25(OH)2D3 (Jain and Micinski, 2013).
Therefore, the interference of 1α,25(OH)2D3 with cell signaling
pathways of inflammatory or cell stress responses, like NF-κB or
MAPK activation, and differences in treatment schedules may
explain the different findings. In contrast to IL-8 as an up-
regulated gene, the primary effect of 1α,25(OH)2D3 on IL-10
expression is down-regulation, followed by up-regulation at a
later stage (Figure 3). Cyclic binding of VDR to a distal pro-
moter region with conserved VDREs, that loops 1α,25(OH)2D3-
dependently to the transcription start site and induces epigenetic
changes and chromatin remodeling, was detected (Matilainen
et al., 2010a,b). IL-12B has been identified as a 1α,25(OH)2D3-
dependently down-regulated gene in LPS-treated THP-1 cells.
The gene harbors two VDR binding sites within ∼6 kb upstream
of the transcription start site to which the VDR and its part-
ner retinoid receptor (RXR) recruit co-repressors and conse-
quently induce epigenetic changes associated with gene repres-
sion (Matilainen et al., 2010b; Gynther et al., 2011). An earlier
report attributed the down-regulation of IL-12 via interference of
1α,25(OH)2D3/VDR with NF-κB binding to proximal IL-12 pro-
moter regions (D’Ambrosio et al., 1998). It has been suggested
in the more recent report that this suppression of proximal sites
is due to epigenetic changes at that location via the distal VDRE
binding sites identified in the more recent study (Gynther et al.,
2011) (Figure 3).

In addition to data from experiments with monocytes,
macrophages, and DCs as differentiated members of the mono-
cytic lineage have been investigated.

In macrophages from vitamin D-deficient mice, IL-1, and IL-
6 production (evaluated as biological activity) was significantly
reduced relative to control mice. Notably, this was paralleled by
a decrease in macrophage cytotoxicity. Furthermore, the vita-
min D deficient mice had reduced serum levels of IL-1 and
IL-6 after challenge with LPS (Kankova et al., 1991). In human
monocyte-derived macrophages and PMA-differentiated U937
cells, which were stimulated with LPS or PMA, IL-1β produc-
tion was strongly stimulated by 1α,25(OH)2D3. This effect was
ascribed to increased IL-1β transcription, but not by RNA sta-
bilization, and seemed to be mediated by Erk1/2. Moreover,
1α,25(OH)2D3 induced the expression and phosphorylation of
CCAAT enhancer-binding protein β as a known IL-1 β-regulating
transcription factor (Lee et al., 2011). The upregulation of IL-1β

by 1α,25(OH)2D3 is also relevant for infection-induced inflam-
mation, as in THP-1 cells or primary human macrophages
infected with Mycobacterium tuberculosis (as well as in non-
infected controls), 1α,25(OH)2D3 increased the expression of
IL-1β mRNA. IL-1β is a critical factor for host defense in this
disease. Notably, mature intracellular IL-1β protein was only
detected in infected, 1α,25(OH)2D3 treated THP-1 cells, which
represents a further level of gene expression control exerted by
1α,25(OH)2D3. Secretion of IL-1β was only seen in infected cells,
and significantly enhanced by 1α,25(OH)2D3. With respect to the
mechanism, the study revealed 1α,25(OH)2D3–dependent bind-
ing of VDR to a promoter-proximal consensus VDRE, which was
paralleled by upregulated VDR-expression, and recruitment of
RNA polymerase II to the transcription start site (Verway et al.,
2013).

In a further study with mouse macrophages, 1α,25(OH)2D3

led to reduced mRNA expression of the IL-12 subunit p40 in
response to LPS/interferon gamma (IFNγ) stimulation (Korf
et al., 2012), which is in line with the effects seen in monocytes, as
described above (Figure 3). Stimulation of the macrophages with
1α,25(OH)2D3 was accompanied by upregulation of VDR and the
1α,25(OH)2D3–catabolic enzyme CYP24. Further changes con-
cerned the potential to stimulate T-cells, as assessed by co-culture
experiments including FACS analysis of surface markers. These
effects could not be observed with IL-10 deficient macrophages.
Notably, the effects on IL-12 p40 expression and T-cell stimula-
tion also occurred in monocytes/macrophages from non-obese
diabetic (NOD) mice, which have a background of inflammatory
features seen in type 1 diabetes (Korf et al., 2012).

Analogous studies have been conducted for DCs from NOD
mice or non- obese diabetes-resistant (NOR) control mice. In
both cases, 1α,25(OH)2D3 altered the phenotype of DCs and
inhibited the LPS/IFNγ–induced mRNA expression and protein
secretion of IL-10 and IL-12 (Van Etten et al., 2004). In gen-
eral, it has been shown that 1α,25(OH)2D3 prevents in vitro
differentiation of human monocytes into immature DCs, asso-
ciated with decreased capacity to activate T-cells. Furthermore,
1α,25(OH)2D3 inhibits maturation of DCs. In maturating DCs,
1α,25(OH)2D3 reduces IL-12p70 and enhances IL-10 secretion
upon stimulation of the DCs by CD40-crosslinking (Penna
and Adorini, 2000). This has been independently confirmed
for IL-12p70 production upon LPS stimulation (Sochorova
et al., 2009). Additionally, these findings are in line with a
study on the generation of regulatory DCs for therapeutic use
from human monocytes, which were differentiated in the pres-
ence of 1α,25(OH)2D3. Apart from reduced LPS-induced IL-12
and enhanced IL-10 secretion of the maturating cells, a major
characteristic of these 1α,25(OH)2D3–treated DCs is their low
level of IL-23 secretion, which was apparent with or with-
out stimulation with LPS (Pedersen et al., 2009) (Figure 3). A
further recent investigation used monocyte-derived DCs from
Crohn’s disease patients. When the cells were cultured in the
presence of 25(OH)D3 or 1α,25(OH)2D3 and matured with
LPS, they exhibited significantly increased IL-6 production, and
non-significant reductions in and IL-10 and IL-12p70. IL-1β

and Il-8 levels were not affected in this study (Bartels et al.,
2013).

B-cells and neutrophils
B-cells and neutrophils have been less intensively studied, but
the available data show that IL gene expression in these cells is
also targeted by 1α,25(OH)2D3. In isolated human peripheral B-
cells, IL-10 secretion can be induced by stimulation (cross-linking
of B-cell receptor/CD40 antibody/IL-4). This production can be
enhanced by 1α,25(OH)2D3. Besides the influence on IL gene
expression, 1α,25(OH)2D3 induces the expression of VDR and
Cyp24 mRNA in the stimulated B-cells. These activated cells also
express Cyp27b1 mRNA and are able to produce 1α,25(OH)2D3

from 25(OH)D3. Binding of VDR to a VDRE in the proximal
IL-10 promoter has been shown by ChIP assay, and binding of
RNA-polymerase II could only be detected in IL-10 secreting
B-cells (Heine et al., 2008).
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Neutrophils respond to 1α,25(OH)2D3 by a slight reduction of
IL-1β mRNA expression. Notably, the abundance of VDR mRNA
in neutrophils has been found to be comparable with monocytes
(Takahashi et al., 2002).

Fibroblasts, keratinocytes, endothelial cells
In a first study where these cell types were used, IL-1-stimulated
normal human dermal fibroblasts, normal human keratinocytes
and normal human endothelial cells were investigated regarding
changes of IL-8 mRNA and protein expression in dependence
of 1α,25(OH)2D3 treatment. IL-8 expression was reduced by
1α,25(OH)2D3 on both levels of gene expression for fibrob-
lasts and keratinocytes, but not for endothelial cells, where no
significant changes have been found (Larsen et al., 1991).

For IL-8, and also for IL-6 protein production, this result
has been confirmed in studies using phorbol ester stimulated
human fibroblast cell lines (Srviastava et al., 1994), and in exper-
iments employing TNF-α-stimulated human dermal fibroblasts
(Fukuoka et al., 1998). Similar results have been obtained with
fibroblast cultures obtained from surgery of patients suffering
from nasal polyposis, which is defined as a chronic inflamma-
tory process. However, rather high concentrations (10–100 μM)
of 1α,25(OH)2D3 were necessary to significantly reduce IL-6 and
IL-8 production in these cells (Rostkowska-Nadolska et al., 2010).

In cultured normal human keratinocytes, only minor effects
were observed for IL-1α and IL-8 production, when the influ-
ence of 1α,25(OH)2D3 was investigated for otherwise untreated
cells. However, TNF-α-stimulation led to slightly enhanced IL-1α

and markedly increased IL-8 secretion, which could be reduced
by 1α,25(OH)2D3 (Zhang et al., 1994). This was confirmed for
IL-8 (Koizumi et al., 1997). On the other hand, stimulation
with phorbol ester plus LPS caused a rise in IL-8 production,
but a decrease in IL-1α. 1α,25(OH)2D3 inhibited IL-8 secretion
and restored IL-1α production (Zhang et al., 1994). Stimulation
of normal human keratinocytes with IL-17A resulted in a pro-
nounced increase in IL-6 mRNA and IL-8 protein secretion,
which could be effectively blocked by 1α,25(OH)2D3 treatment
(Peric et al., 2008). In a mechanistically insightful study, the
effect of 1α,25(OH)2D3 on the expression of IL-1α, the intracel-
lular IL-1 receptor antagonist (icIL-1Ra) and IL-18 was studied
in mouse primary keratinocytes. Treatment with 1α,25(OH)2D3

induced IL-1α and icIL-1Ra mRNA and protein, however, the
ratio of icIL-1Ra to IL-1, which determines the effect on IL-1
activity, was markedly increased, and indeed reduced IL-1 activity
could be detected. The use of keratinocytes from VDR−/− mice
confirmed that the effect was mediated by VDR. Regarding the
mechanism of gene regulation, increased IL-1α mRNA stability
was observed and enhanced icIL-1Ra gene transcription via a sec-
ondary mechanism have been suggested to account for the effects
on these gene. 1α,25(OH)2D3 markedly suppressed IL-18 mRNA
expression, and the effect was dependent on VDR, as no effect
of 1α,25(OH)2D3 was seen in VDR−/− mice. These mice exhibit
markedly elevated basal levels of IL-18 mRNA and protein, and
expression of human VDR in these mice could restore basal levels
(Kong et al., 2006).

A further cell type involved in inflammatory responses,
especially in infection-mediated inflammation, are epithelial

cells. Treatment of human microvessel endothelial cells with
1α,25(OH)2D3 suppresses LPS-induced IL-6 and IL-8 release,
whereas 1α,25(OH)2D3 alone does not affect IL production.
As assessed by reporter gene assay, this seems to be based on
inhibition of LPS-induced NF-κB activation. This activation usu-
ally occurs via the MyD88-dependent branch of TLR4-signaling.
In contrast, 1α,25(OH)2D3 did not influence the activity of
interferon-β-promoter constructs, which has been determined as
a measure of MyD88-independent LPS/TLR4 signaling (Equils
et al., 2006). Reduced IL-6 and IL-8 production was also
seen in 1α,25(OH)2D3-treated cystic fibrosis respiratory epithe-
lial cell lines challenged with LPS. With respect to NF-κB-
signaling, reduced IκBα phosphorylation and increased total
cellular IκBα upon 1α,25(OH)2D3 treatment have been found
in this study (McNally et al., 2011) (Figure 2). Similar find-
ings have been made for human umbilical vein cord endothelial
cells (HUVEC) incubated cultured in a CKD-like environ-
ment (hypocalcemia, advanced glycation end products, parathy-
roid hormone) and 1α,25(OH)2D3. This environment provoked
enhanced IL-6 expression and secretion, increased DNA-binding
of NF-κB-p65 and decreased IκBα expression. These changes were
counteracted by 1α,25(OH)2D3 (Talmor-Barkan et al., 2011).
In TNFα-stimulated human coronary arterial cells, a slight, but
significant reduction of IL-8 production has been observed for
1α,25(OH)2D3 treatment in certain concentrations, but IL-6
production could not be influenced (Kudo et al., 2012). An inter-
esting novel mechanism for interference of 1α,25(OH)2D3 and
LPS-stimulated IL-8 production from epithelial cells has been
proposed in a recent study, where a vitamin D3 derivative have
been found to increase the release of the soluble form of CD14
(sCD14) via ERK1/2 activation. Neutralization of LPS by sCD14
could account for the effect of the vitamin D analog (Hidaka et al.,
2013).

Trophoblasts, endometrial cells, myometrial cells
Placental inflammation including release of interleukins is
associated with preeclampsia, preterm labor, and abortion.
Therefore, cell types involved in this inflammatory condition
have been investigated regarding the influence of 1α,25(OH)2D3

on IL secretion. In cultured human trophoblasts, 1α,25(OH)2D3

reduced TNFα-induced IL-6 mRNA expression and protein secre-
tion (Diaz et al., 2009). Mechanistic evidence regarding the
influence of vitamin D signaling on IL gene expression in pla-
cental tissue was presented in a study with for Cyp27b1−/−
(vitamin D-activating 1α-hydroxylase) mice and VDR−/− mice.
In these mice, basal expression of IL-10 mRNA was decreased
relative to wildtype placentas, and LPS stimulation resulted in
higher levels of IL-6 mRNA in the −/− placentas compared to
wildtype. PCR array analysis of LPS-stimulated placental tissue
from Cyp27b1−/− mice revealed enhanced expression of IL-4,
IL-15, and IL-18 mRNA relative to WT and the same experi-
ments with VDR−/− mice yielded higher IL-1α and IL-6 mRNA
levels. Further experiments with LPS-stimulated placentas from
WT mice showed that treatment with 25(OH)D3 as the sub-
strate of CYP27B1 reduces IL-6 mRNA expression. Moreover, LPS
challenge of pregnant WT mice led to enhanced expression of
Cyp27b1 and VDR. Apart from the mechanistic conclusion that
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VDR signaling is a factor that controls IL gene expression, these
results show that pro-inflammatory stimuli are able to enhance
the expression of crucial vitamin D signaling components which
are able to mediate anti-inflammatory responses (Liu et al., 2011).

In line with these findings, experiments using human endome-
trial cells from women with unexplained recurrent spontaneous
abortion (URSA) or in controls, significant down-regulation of
IL-6 by 1,25(OH)2D3 was observed in two cell types (whole
endometrial cells and endometrial stromal cells), but for IL-8,
opposed effects were observed for the two cell types in URSA sam-
ples, which highlights the complexity of these responses given the
fact that several cell types are involved in inflammatory processes
(Tavakoli et al., 2011).

Adipocytes
Obesity is a disease condition which is strongly associated with
low-grade inflammation, therefore adipocytes have been used as a
further model system regarding the interplay of vitamin D signal-
ing and IL gene expression/production. In a recent report, human
adipocytes from biopsies and from differentiated human mes-
enchymal stromal cells were studied with respect to IL-6 gene
expression/release depending on the presence of 1α,25(OH)2D3.
LPS-induced IL-6 mRNA and protein were reduced in both sys-
tems by cotreatment with 1α,25(OH)2D3. Regarding the underly-
ing signal transduction events, it was shown that 1α,25(OH)2D3

inhibited IκB phosphorylation and thus NF-κB translocation into
the nucleus (Figure 2). DNA binding of NF-κB complexes upon
LPS stimulation was significantly reduced in 1α,25(OH)2D3-
pretreated cells compared to controls (Mutt et al., 2012). A further
recent investigation addressed the influence of in vitro and in vivo
administered 1α,25(OH)2D3 on IL-6 and IL-8 gene expression
from IL-1β-stimulated human adipose tissue. The adipose tissue
samples have been either (i) treated in vitro with 1α,25(OH)2D3

or have been (ii) obtained from obese subjects with low plasma
levels of 25(OH)D3 after in vivo (oral) treatment with high-dose
1α,25(OH)2D3 or placebo. In the in vitro study, reduced mRNA
levels of IL-6 and IL-8 and reduced IL-6 and IL-8 protein (signif-
icance only shown for IL-8) have been found. However, although
the in vivo treatment led to a small decrease of IL-6 and IL-8
mRNA expression in the adipose tissue, there were no significant
differences between the 1α,25(OH)2D3–treated and the control
group. Oral treatment with 1α,25(OH)2D3 did also not signifi-
cantly change circulating levels of IL protein in the subjects pre-
and post-treatment(Wamberg et al., 2013). These findings urge
caution about the extrapolation of in vitro findings to the in vivo
situation.

Apart from studies with primary cells, cultures of adipocyte-
like murine 3T3-L1 cells have been used, but contradictory results
have been reported e.g., regarding IL-6 gene expression (Sun and
Zemel, 2008; Marcotorchino et al., 2012).

VDR GENE VARIANTS, VDR GENE SILENCING, AND IL GENE
EXPRESSION/PRODUCTION
A further aspect that underscores the importance of vitamin
D signal transduction on IL biosynthesis is the effect of the
VDR receptor gene variants on IL gene expression. The single-
nucleotide polymorphism FokI, which comprises a shorter VDR

protein of 424 aa or the long isoform with 427 aa, influences IL-
12 expression. In human monocytes and DCs, presence of the
short VDR isoform leads to a higher expression of IL-12 com-
pared to the long isoform, a result which was reflected by results
from reporter gene assays with IL-12 promoter fragments (Van
Etten et al., 2007). Moreover, VDR gene promoter variants have
an impact on the expression of IL-10 in blood mononuclear cells
(Selvaraj et al., 2008).

Changes in IL production can be observed in VDR KO mice.
VDR KO considerably facilitates development of IL-17 secret-
ing T-cells (Th17 cells) in response to respective in vitro stimuli.
Further, enhanced IL-17 production was observed in these Th17
cells compared to wildtype. Conversely, a reduction in regulatory
T-cells and tolerogenic DCs was observed. Moreover, IBD can be
induced experimentally in these mice by transfer of naive T-cells
that develop into specific, IBD-inducing subsets. The severity of
IBD was strongly enhanced in VDR KO mice compared to con-
trol animals, which was ascribed to the increased propensity for
development into Th17 cells (Bruce et al., 2011).

INFLUENCE OF 1α,25(OH)2D3 ON IL RECEPTOR EXPRESSION
Apart from induction of IL gene expression/protein release,
1α,25(OH)2D3 may also modulate IL signaling via regulation of
IL receptor expression. In early reports, moderate downregula-
tion (Matsui et al., 1986) or no changes (Jordan et al., 1989)
were found regarding IL-2 receptor expression in 1α,25(OH)2D3

treated, mitogen-stimulated PBMC, or mitogen/phorbol ester-
stimulated T-cells, respectively. However, IL-2 mediated expres-
sion of IL-2 receptor units was superinduced by 1α,25(OH)2D3

in mitogen-stimulated PBMC (Rigby et al., 1990). The vita-
min D3 upregulated protein 1 (VDUP1), which is expressed in
a 1α,25(OH)2D3-dependent manner, has been found to inhibit
the activity of the IL-3 receptor promoter (Han et al., 2003).
On the other hand, IL-1 and IL-4 receptor densities seem to
be upregulated by 1α,25(OH)2D3 on a murine T-cell line and a
murine osteoblast cell line, respectively (Lacey et al., 1993a,b).
Furthermore, downregulated IL-22 mRNA and protein levels
have been detected in cultured epidermis tissue treated with
calcipotriol, a vitamin D analog (Moniaga et al., 2013).

THE INFLUENCE OF 1α,25(OH)2D3 ON TNFα mRNA AND PROTEIN
EXPRESSION AND RELEASE
The impact of 1α,25(OH)2D3 on TNFα gene expression was
primarily studied in PBMC, primary monocytes/macrophages
or in monocytic cell lines. Expression was investigated both on
mRNA level and/or on the level of protein production, and was
sometimes reported in terms of protein release as a secondary
readout.

In general, in vitro or in vivo treatment with 1α,25(OH)2D3 of
PBMC caused a decrease in TNFα gene expression and/or TNFα

production. This was the case for PBMC from healthy donors that
were stimulated with different agents (LPS, Muller et al., 1992;
Panichi et al., 1998; Rausch-Fan et al., 2002); live Mycobacterium
tuberculosis (Prabhu Anand et al., 2009), as well as for PBMC from
patients suffering from diseases with inflammatory features [renal
disease (Riancho et al., 1993; Panichi et al., 1998); pulmonary
tuberculosis (Prabhu Anand et al., 2009)]. Analogous findings
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were obtained with monocyte-enriched PBMC after stimulation
with LPS (Muller et al., 1992), IFNγ or phorbol ester (Zarrabeitia
et al., 1992) (however, not with LPS in this particular report). In
one of the latter studies, nuclear run-off analysis did not indi-
cate that TNFα gene transcription was affected by 1α,25(OH)2D3

(Muller et al., 1992).
In contrast to the findings with PBMC or monocyte-enriched

PBMC, studies that used human primary monocytes or
macrophages often found increased TNFα expression/secretion
after 1α,25(OH)2D3 exposure, either regarding basal levels
(human monocyte-derived macrophages; Bermudez et al., 1990)
or with respect to stimulus-induced mRNA or protein lev-
els (murine alveolar macrophages/LPS- or PMA-stimulation,
Higashimoto et al., 1995; peritoneal macrophages from con-
tinuous peritoneal dialysis patients/LPS-stimulation, Cohen
et al., 2001). In line with this, murine bone-marrow derived
macrophages (BMMs) responded to 1α,25(OH)2D3 with an
increase in TNFα mRNA abundance, which was synergistically
enhanced by LPS stimulation. This study also addressed molecu-
lar mechanisms. Treatment with 1α,25(OH)2D3 and stimulation
with LPS did not influence TNFα mRNA stability, but the data
suggested that 1α,25(OH)2D3 regulates the TNFα gene on tran-
scriptional level, as a VDR-binding sequence could be identified
in the TNFα promoter region using electrophoretic mobility shift
assays (Hakim and Bar-Shavit, 2003).

When human monocytic cell lines were studied, heteroge-
neous results were obtained, and the outcome seems to depend on
the differentiation status of the cells (e.g., Bhalla et al., 1991). For
the three cell lines that were mainly employed, the order of their
stage of maturation is known. HL-60 cells are myelomonocytic
stem-cells and thus are the least mature cell line; U937 are char-
acterized as monoblasts, and represent an intermediate stage; and
THP-1 cells are regarded as promonocytic cells and are therefore
the most mature cell line (Frankenberger et al., 1994).

In HL-60 cells, 1α,25(OH)2D3 had no influence on PMA-
induced TNFα mRNA expression, but enhanced it in U937 cells
(Bhalla et al., 1991). In a second study, 1α,25(OH)2D3 prein-
cubation of U937 cells accelerated LPS-induced TNFα mRNA
expression and led to higher steady-state mRNA levels which were
associated with enhanced TNFα protein production. Mechanistic
analysis pointed to a secondary effect since 1α,25(OH)2D3

pretreatment was needed for more than 6 h in order to
achieve enhanced TNFα protein synthesis. The requirement of
1α,25(OH)2D3-driven expression of the LPS co-receptor CD14,
was suggested to be the mechanistic basis of his secondary effect
(Prehn et al., 1992). In a further investigation, differentiation
by 1α,25(OH)2D3 enhanced LPS-induced TNFα secretion in
U937 and THP-1 cells. Concomitant increase in TNFα mRNA
was confirmed for U937 cells (Taimi et al., 1993). In con-
trast, 1α,25(OH)2D3 was reported to significantly suppress TNFα

release in LPS-stimulated THP-1 cells and human primary mono-
cytes (Kuo et al., 2010), and a further study reported reduced
TNFα production and secretion from 1α,25(OH)2D3-treated,
IFNγ-activated THP-1 cells (Villaggio et al., 2012).

In one report, TNFα mRNA levels of 1α,25(OH)2D3–treated
human PBMC, U937 and THP-1 cells, that were stimulated either
with LPS or with phytohemagglutinin (PHA), were compared.

Differences occurred between the two sample types and the two
stimuli. In PBMC, LPS had no influence on TNFα expression in
the presence of 1α,25(OH)2D3, whereas upon PHA-stimulation,
reduced TNFα mRNA levels were observed. In contrast, U937
cells (but not THP-1 cells) responded by an increase in TNFα

mRNA expression (Blifeld et al., 1991).
Taken together, several studies report an increase in TNFα

mRNA and protein expression in 1α,25(OH)2D3-treated, subse-
quently stimulated U937 cells, but equivocal effects were found
with the more mature THP-1 cells. In monocyte-derived DCs
from patients that suffer from Crohn’s disease, TNFα production
was decreased when the cells were differentiated with LPS in the
presence of 1α,25(OH)2D3 (Bartels et al., 2013).

T-cells have not been intensively studied, but regulation of
TNFα-expression by 1α,25(OH)2D3 has been analyzed in T-cell
subsets obtained from normal healthy subjects and pulmonary
tuberculosis patients. Here, 1α,25(OH)2D3 reduced the percent-
age of TNFα-expressing T-cell subsets (CD3+, CD3+CD4+,
CD3+CD8+) (Prabhu Anand et al., 2009) (Figure 3).

Other cell types that were analyzed are prostate cancer lines,
where 1α,25(OH)2D3 reduced basal TNFα mRNA expression
(Golovko et al., 2005), or 1α,25(OH)2D3/IL-1β-stimulated syn-
oviocytes, where TNFα mRNA was decreased (Feng et al., 2013).

In summary, 1α,25(OH)2D3-mediated downregulation of
TNFα gene expression has been found in cell preparations
which contain a high percentage of T-cells (PBMC or monocyte-
enriched PBMC). In monocytic cells, upregulation has been
reported for cell lines that represent an intermediate monocytic
differentiation state, whereas for more mature cells, heteroge-
neous results have been found. Regarding the mechanism, it
has been suggested that primary effects may play a role for
1α,25(OH)2D3 regulation of TNFα gene expression, since a VDR
binding element has been found in the TNFα promoter region
(Hakim and Bar-Shavit, 2003). On the other hand, kinetic analy-
sis pointed to a secondary effect, where the expression of CD14
could play a role, at least for LPS-induced TNFα expression
(Prehn et al., 1992). It has to be noted, however, that cell-type spe-
cific mechanisms have been found for T-cell specific expression of
the TNFα gene. Cell type-specific DNA-protein-interactions have
been identified for the TNFα gene when T-cells and monocytic
cells were compared. A highly conserved region in intron 3 seems
to be responsible for cell specificity, as this sequence induces spe-
cific activity of a TNFα-reporter plasmid in Jurkat T-cells, but not
THP-1 cells (Barthel and Goldfeld, 2003). Possibly, cell specific
protein complexes within this region interact with 1α,25(OH)2D3

signaling components in T-cells.

THE INFLUENCE OF 1α,25(OH)2D3 ON INTERFERON γ GENE
EXPRESSION
IFNγ is a well-established effector in anti-infectious host reac-
tions, autoimmune diseases and inflammation. IFNγ is mainly
produced by NK and T-cells. Inhibition of IFNγ mRNA and
protein secretion has been described for 1α,25(OH)2D3-treated
human PBMC, peripheral blood lymphocytes or T-cells that
were stimulated with phytohemagglutinin and phorbol ester
(Matsui et al., 1986; Reichel et al., 1987; Rigby et al., 1987;
Inoue et al., 1998) (Figure 3). Mechanistic insights exist from
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experiments using transient transfection of IFNγ promoter con-
structs in Jurkat T-cells. Here, it could be concluded that two
VDR binding regions, one around −200 bp from the transcrip-
tion start site and the second directly around the transcription
start site, are involved in the regulation of IFNγ gene expression
by 1α,25(OH)2D3 (Cippitelli and Santoni, 1998).

CONCLUSIONS
It is well established that 1α,25(OH)2D3 influences cytokine gene
expression and signaling in several different cell types. Firstly,
this is the case for the pleiotropic mediator TGF-β, for which it
has been shown that either the expression of the cytokine itself
or expression of associated signaling components is downregu-
lated by 1α,25(OH)2D3. In hepatocytes, 1α,25(OH)2D3 has been
found to influence TGF-β signaling in a genome wide scale by
directing binding of Smad proteins to target genes. These actions
of 1α,25(OH)2D3 on TGF-β expression or signaling were able to
inhibit fibrosis and associated inflammation. Second, the inter-
leukins are a vast group of inflammatory cytokines that are clearly
regulated by 1α,25(OH)2D3 in a cell-specific manner. However,
for several members of this family (e.g., IL-1, IL-6, and IL-8),
both positive or negative regulation by 1α,25(OH)2D3 has been
observed. A closer look at the parameters that determine the out-
come of 1α,25(OH)2D3 action on the expression of these genes is
warranted. This applies in particular to the time-scale of changes
in gene expression, as different responses may occur during sep-
arate stages of 1α,25(OH)2D3 action. Regarding the mechanisms,
recruitment of VDR to the respective genomic regions, as well
as interaction of 1α,25(OH)2D3 signaling with other transcrip-
tion factors involved in IL expression (NFAT, NF-κB, Runx1),
seem to occur. Concerning the p38 MAP kinase phosphatase
MKP1, it was found that GCR and VDR/RXR act in a synergistic
manner to induce MKP1 expression in monocytes. This results
in reduced p38 activation and reduced formation of proinflam-
matory cytokines. As a further cytokine, the proinflammatory
mediator TNFα has been identified as a 1α,25(OH)2D3 target
gene. Also in this case, the vitamin D effects are cell-specific: With
cell samples that mainly contain T-cells, downregulation of TNFα

has been observed, whereas for monocytic cells, either positive
or negative regulation occurred depending on the differentiation
state. Finally, gene expression of the proinflammatory mediator
IFNγ has been described to be suppressed by 1α,25(OH)2D3 in
T-cells. Altogether, the influence of 1α,25(OH)2D3 on the expres-
sion of interleukins, TNFα, and IFNγ by different cell types, and
the consequences for the cellular interplay that are to be antici-
pated, amounts to a complex picture. In Figure 3, the influence
of 1α,25(OH)2D3 on the expression of these cytokines is summa-
rized for the major immune cells (monocytes, DCs, and different
T-cell subsets). The resulting pattern supports a shift of T-cell
responses from a Th1 type toward Th2 reactions and a suppres-
sion of Th17 responses. The effect of 1α,25(OH)2D3 on cytokine
expression in antigen presenting cells (monocytes, DCs) remains
unclear and seems to depend on the time of stimulation, the
differentiation state and other factors.

PERSPECTIVES
Modulation of GCR, NFκB, NFAT as well as SMAD signal-
ing plays a central role in the immunomodulatory activities of

1α,25(OH)2D3. Mechanistic studies on individual genes gave
some mechanistic insights into the mechanisms involved in the
interaction between VDR/RXR and the above mentioned tran-
scription factors. These mechanisms include competitive binding
as well as a crosstalk between the signaling pathways on multi-
ple levels including the promoter level. However, by using ChIP
seq and other techniques which allow a genome-wide view, we are
just starting to understand the signaling network which is respon-
sible for cell-type-specific and locus-dependent gene activation
by ligand-regulated transcription factors such as VDR/RXR. For
example, intersecting VDR/SMAD regulatory circuits have just
been unraveled and it was shown that TGFβ signaling facil-
itates VDR binding to certain gene loci. More such data are
required to increase our understanding of the complex gene reg-
ulatory network that is affected by 1α,25(OH)2D3. Especially,
genome-wide data on VDR loci in conjunction with analyses of
other, inflammation-related key transcription factors in differ-
ent cell types and various stimuli are necessary to understand the
complex regulation of gene transcription during inflammation.
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