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Heart failure (HF) is a chronic clinical syndrome characterized by the reduction in left
ventricular (LV) function and it represents one of the most important causes of morbidity
and mortality worldwide. Despite considerable advances in pharmacological treatment,
HF represents a severe clinical and social burden. Sympathetic outflow, characterized
by increased circulating catecholamines (CA) biosynthesis and secretion, is peculiar
in HF and sympatholytic treatments (as β-blockers) are presently being used for the
treatment of this disease. Adrenal gland secretes Epinephrine (80%) and Norepinephrine
(20%) in response to acetylcholine stimulation of nicotinic cholinergic receptors on
the chromaffin cell membranes. This process is regulated by adrenergic receptors
(ARs): α2ARs inhibit CA release through coupling to inhibitory Gi-proteins, and βARs
(mainly β2ARs) stimulate CA release through coupling to stimulatory Gs-proteins. All
ARs are G-protein-coupled receptors (GPCRs) and GPCR kinases (GRKs) regulate their
signaling and function. Adrenal GRK2-mediated α2AR desensitization and downregulation
are increased in HF and seem to be a fundamental regulator of CA secretion from
the adrenal gland. Consequently, restoration of adrenal α2AR signaling through the
inhibition of GRK2 is a fascinating sympatholytic therapeutic strategy for chronic HF. This
strategy could have several significant advantages over existing HF pharmacotherapies
minimizing side-effects on extra-cardiac tissues and reducing the chronic activation of
the renin–angiotensin–aldosterone and endothelin systems. The role of adrenal ARs in
regulation of sympathetic hyperactivity opens interesting perspectives in understanding
HF pathophysiology and in the identification of new therapeutic targets.
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BACKGROUND
The sympathetic nervous system (SNS) is part of the autonomic
nervous system and its activation was described by Cannon
as “the fight or flight response” (Cannon, 1963). In the clin-
ical setting, sympathetic nervous activity (SNA) can be eval-
uated by the analysis of plasmatic or urinary catecholamine
concentrations but this estimation is variable depending on
hormonal and other intra-individual adjustments, as well as
on several factors such as glycemia, physical or psychologi-
cal stress, and drugs. In recent years, many methods have
been proposed for the assessment of SNA and, among these,
microneurography and heart rate variability (HRV) are the most
commonly used. Microneurography allows for a direct evalu-
ation on electrical transmission in subcutaneous sympathetic
nerves but it is not applicable for studies of large number of
patients.

HRV analysis is spreading as a non-invasive technique for the
evaluation of the autonomic nervous system influence on heart
rate in various diseases and alterations in HRV have been shown
to represent an independent predictor of mortality after myocar-
dial infarction (Amadi et al., 1995). HRV gives an estimation
on how the cardiac equilibrium between parasympathetic and

sympathetic systems influences heart rate studying variations in
cardiac frequencies.

Sympathetic hyperactivity has been recognized as a pecu-
liar feature of several cardiovascular diseases as atherosclerosis,
heart failure (Leimbach et al., 1986; Lymperopoulos et al., 2013),
hypertension (Grassi, 1998), and syncope (Zysko et al., 2007).

Furthermore, sympathetic overdrive is associated also with
non-cardiovascular pathologies: hyperglycemia and diabetes mel-
litus (Huggett et al., 2003), obesity and metabolic syndrome (MS)
(Grassi et al., 2007), obstructive sleep apnea (Narkiewicz and
Somers, 1997), and renal disease (Masuo et al., 2010).

Therefore some authors hypothesized a close connection
between the components of the metabolic syndrome and aug-
mented sympathetic activity suggesting a role of this latter in
syndrome’s establishment or progression (Esler et al., 2006). It
is important to emphasize that most of SNA-related diseases,
including HF, MS, and hypertension are major causes of morbid-
ity and mortality worldwide. Sympathetic hyperactivity leads to
an increase in arterial blood pressure and it is known to cooperate
to the establishment and development of essential hypertension
(Smith et al., 2004) through alterations in structural components
of vessels and cardiac tissue with dysfunctional consequences.
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HF is a chronic clinical syndrome characterized by the reduc-
tion in left ventricular (LV) function with the inability to ade-
quately pump blood, maintain tissue perfusion, and support
physiological functions. This leading disease represents one of
the most important causes of morbidity and mortality worldwide
(Go et al., 2014). Despite considerable advances in pharma-
cological treatment, HF represents a severe clinical and social
burden.

During HF, several neurohormonal mechanisms get trig-
gered in order to maintain cardiac output. The most impor-
tant among these neurohormonal mechanisms are the SNS
overdrive characterized by elevated circulating Catecholamines
(CAs) and the Renin-Angiotensin-Aldosterone System hyperac-
tivity. Consequently, sympatholytic drugs such as beta-blockers,
Angiotensin-converting enzyme inhibitors, Ang-II receptor
blockers and mineralcorticoid receptor antagonists are a corner-
stones for the treatment of HF disease by ameliorating cardiac
function (CIBIS-II Investigators and Committees, 1999; Von
Lueder and Krum, 2013). The increase in circulating levels of
Epinephrine (Epi) and Norepinephrine (NEpi) is initially needed
to compensate heart dysfunction, according to the fundamental
Frank-Starling law of cardiac function. However, if the cardiac
insult persists, this law can no longer work and the process pro-
gressively becomes maladaptive and conducts to decompensated
phase of HF, adversely impacting the clinical outcomes (Cohn
et al., 1984; Lymperopoulos, 2013).

Body’s major source of CAs is the adrenal medulla, the cen-
tral part of the adrenal gland, where the chromaffin cells secrete
approximately 20% NEpi and 80% Epi (Lymperopoulos et al.,
2007b). The adrenal gland obtains input from the SNS through
pre-ganglionic fibers and can be compared to a specialized sym-
pathetic ganglion but it has the peculiar characteristic to secrete
neurohormones directly into the blood. Chromaffin cells are
post-ganglionic sympathetic neurons that have lost part of their
peculiar characteristics as axons and dendrites and secrete their
hormones into the bloodstream by exocytosis (Haase et al., 2011).
The existing link between SNA and heart pathophysiology is very
inescapable and suggestive.

In particular, since 1984 it was clear that plasma concentration
of NEpi was negatively associated with survival in heart failure
patients and the augmented plasma concentrations led to higher
mortality (Cohn et al., 1984).

Furthermore, sympathetic overdrive in HF determines higher
risk of arrhythmias and left ventricular dysfunction contribut-
ing to worsen the prognosis of this disease (Kaye et al., 1995).
In addition, this linkage is more evident when evaluating car-
diac consequences in Pheochromocytoma (PCC). PCC is rare
neuroendocrine tumor of the adrenal glands medulla arising
from the chromaffin cells (in 20% from extra-adrenal abdominal
paraganglion tissue) and secreting high levels of catecholamines.
Pheochromocytoma is present in 0.1–1% of patients with hyper-
tension (Anderson et al., 1994) and it is present in phospho-
rylates of these tumors are mainly due to augmented CAs,
particularly NEpi: tachycardia and palpitations, hypertension,
acute myocardial infarction, angina, arrhythmias, left ventricu-
lar dysfunction, heart failure, and pulmonary edema. However,
some Epi- and Dopamine-secreting tumors can determinate

hypotension or cardiogenic shock (Bergland, 1989). Uncommon
cardiac manifestations are rhythm disturbances as ventricular
tachycardia, ST-segment elevation, prolongation of the QT inter-
val and T-wave modifications.

CAs bind to adrenergic receptors (ARs) that are the principal
mediators of SNS effects. So far, nine mammalian AR subtypes are
known: three α1-AR, three α2-AR, and three β-AR (Bylund et al.,
1994). ARs are part of the G-protein-coupled receptors (GPCRs)
superfamily, membrane receptors that activate heterotrimeric
G-proteins after their ligand binding. G-proteins typically stim-
ulate (Gs-proteins) or inhibit (Gi-proteins) the enzyme adenylyl
cyclase (AC) or activate (Gq-proteins) phospholipase C (PLC)
(Rengo et al., 2009a). These receptors are phosphorylated by the
family of GPCR kinases (GRKs) that regulates their pathway and
function (Davis and Johnson, 2011). Cardiac role of βARs is the
regulation of heart rate and contractility in response to CAs.

Stimulation of β1ARs (the primary subtype present on car-
diomyocytes) and partially of β2ARs has inotropic, dromotropic,
cronotropic, and lusitropic effects (Grossini et al., 2013).

β1ARs and β2ARs activates both Gs proteins (stimulatory G
proteins); however, β2AR can switch its signaling from Gs to Gi
proteins when is phosphorylated by PKA. In addition, β1AR stim-
ulation determinates cardiomyocyte apoptosis while β2AR has
antiapoptotic cardiac effects in the heart (Rengo et al., 2012c;
Lymperopoulos, 2013; Lymperopoulos et al., 2013; Salazar et al.,
2013).

High CAs levels determinate structural alterations in the
heart: focal myocardium necrosis and monocytic inflammation,
increased collagen deposition and consequent interstitial fibrosis
in the arterial wall and in the myocardium (Roghi et al., 2011).
Norepinephrine can increase cardiac oxygen consumption and
myocytes apoptosis with consequent left ventricular alteration
and dilated cardiomyopathy (Prejbisz et al., 2011). CAs con-
duct to cardiomyopathy by GRK2-mediated downregulation of
β-adrenergic receptors in the heart (β-AR) and augmented intra-
cellular calcium concentrations resulting in decreased cardiac
contraction (Kassim et al., 2008).

Accordingly, it was shown that cardiac GRK2 levels and activity
were increased in end-stage human HF and heterozygous GRK2
knockout mice have augmented cardiac contractility and function
(Iaccarino et al., 1998, 1999; Iaccarino and Koch, 1999; Rengo
et al., 2012b). Furthermore, transgenic mice overexpressing car-
diac GRK2, have decreased cardiac function due to an excessive
βAR dysfunction and oppositely mice with cardioselective expres-
sion of βARKct showed improved cardiac contractility at baseline
and isoprotenerol-induced (Koch et al., 1995). GRK2 enhance-
ment determinates cell death in ischemic cardiomyocytes, and its
inhibition by an inhibitory peptide (βARKct) is cardioprotective.
Recently, it has been demonstrated that GRK2 is able to localize
in mitochondria but his role is controversial. Koch et al. recently
showed that GRK2 has a cardiac pro-death function by mitochon-
drial localization in myocytes after ischemic stress while Fusco
et al. demonstrated that mitochondrial GRK2 plays a protective
role regulating ATP production (Fusco et al., 2012; Chen et al.,
2013).

Elevated circulating CAs can determinate myocardial dam-
age by enhancing the cardiac oxygen request and by increasing
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peroxidative and lipoperoxidative metabolism and consequent
free radicals production (Radtke et al., 1975). Severe LV dysfunc-
tion occurs in few patients and it seems to be secondary to genetic
polymorphisms of the β-adrenergic receptors that increase the
propensity to develop cardiomyopathy (higher sensitivity to cate-
cholamines) (Small et al., 2002).

α2-ADRENOCEPTORS
The α2-ARs are inhibitory autoreceptors that inhibit further
release of CAs in adrenergic nerves in the central and in the SNS,
including the adrenal gland.

The predominant inhibitory role of α2ARs in the adrenal gland
results clear when considering that PC12, a rat pheochromocy-
toma cell line typically used as neuronal cell model, does not
express these receptors and secretes abnormal CAs quantity.

However, it has been discovered that different α-AR sub-
types explicate their main action in diverse organs (Brede et al.,
2003). Due to the absence of selective drugs for the three α2-ARs
subtypes, gene deletion in animals or cells lacking α2-AR sub-
types have been necessary to understand the real function of
these different subtypes. α2A-AR and α2C-AR perform their
role as autoreceptors on neurons of peripheral nerve terminals
and in the heart, inhibiting NEpi release. In particular, α2A-AR
inhibits hormones release at high stimulation frequencies whereas
the α2C-subtype plays his role at lower levels of nerve activity.
Anyway low- and high-frequency stimulations are both impor-
tant for synapse regulation (Hein et al., 1999). α2C-ARs is also
implicated in some brain functions as vigilance, attention, stress
reaction, gait, and locomotion (Sallinen et al., 1999) and some
renal functions as well as tonic renal vasoconstriction and inhibi-
tion of renin release (Michel and Rump, 1996). α2B-AR subtype is
mainly expressed in the central SNS and in vascular smooth (role
of vasoconstriction) cells (Link et al., 1996) and it is involved in
embryonic growth probably because of his function in placental
angiogenesis (Macdonald et al., 1997). Moreover, the discrepancy
in secretion (noradrenergic and adrenergic) in different groups
of chromaffin cells should be (Hein et al., 1999) connected to
different α2-AR subtypes expression.

In addition, α2-AR subtypes seem to play a part in neu-
ronal differentiation. For this purpose Taraviras et al. stud-
ied the cellular modifications after Epi stimulation in PC12
cells expressing only one of the different α2-AR subtypes.
They found that Epi can induce a diverse neuronal differenti-
ation in a subtype-dependent way. Particularly, PC12α2B- and
PC12α2C-transfected cells presented evident Epi-induced differ-
entiation showing neurofilaments typical of differentiated neu-
rons while PC12α2A-transfected cells didn’t need Epi for their
differentiation. Furthermore, they have shown that mitogen-
activated protein kinase (MAPK) and Akt activation are needed
for α2-AR–dependent neuronal differentiation (Taraviras et al.,
2002). All these findings suggest that α2-AR subtypes differen-
tial expression in neuronal or neuron-like cells can influence not
only organ tissue-specificity but also embryonic evolution and
cellular differentiation. Moreover, α2-ARs could exert their neu-
rogenic effects via the NF-kB pathway. NF-kB phosphorylation
and consequent degradation of IkBα is under β-arrestins (β-arrs)
control opening new interesting scenarios (Luttrell and Lefkowitz,

2002; Bathgate-Siryk et al., 2014). The specific subtypes of
α2-ARs prevailing in the adrenal glands are still unknown and it
seems there could be a species-specificity. Particularly in mice’s
adrenal gland α2C-AR subtype is the most important, while
α2A-AR seems to be the most represented in rats (Lymperopoulos
et al., 2007a). Thus, different expression of α2-AR subtypes
reflects diverse neurotransmitter secretion in peripheral nerves
and adrenal gland.

It is known that the major source for plasma NEpi are periph-
eral sympathetic nerve terminals while for Epi is the adrenal
gland. The role of α2-AR in this story was clear when Brede et al
showed that mice lacking the α2C-AR have twice plasmatic Epi
levels compared to wild-type, whereas mice lacking the α2A-AR
subtype presented higher NEpi levels of NEpi than wild-type
(Brede et al., 2003).

In human adrenal the situation is controversial: α2A-AR is
the most expressed but some authors reported that α2C-AR is
present, too (Berkowitz et al., 1994). It is important to emphasize
that human α2-AR subtypes dysfunction/deletion can influence
SNS activation and heart function.

Patients with heart failure carrying a variant of the
α2C-adrenoceptor with less function (α2C-Del322–325)
showed reduced cardiac function (measured by echocardio-
graphy and cardiac catheterization) than patients with intact
α2-adrenoceptor (Brede et al., 2002). Moreover, α2C-Del322–
325 polymorphism in healthy people led to increased SNA and
circulating CAs levels during supine rest and an augmented
pharmacologically-induced NEpi and Epi secretion. On the
other hand, human α2B-Del301–303 (consisting in a deletion of
three glutamic acids) led to impaired agonist-promoted receptor
phosphorylation and desensitization. Nguyen et al, showed
that in α2B-transfected PC12 cells, this deletion produces an
increased inhibitory function against nicotine-induced CAs
secretion suggesting that some polymorphisms can confer a
favorable phenotype in increased SNA–associated diseases as HF
and hypertension (Nguyen et al., 2011).

Hence, further studies on α2-AR subtypes should help
researchers to better understand pathophysiology of major car-
diovascular diseases and then personalize their therapy.

CATECHOLAMINES SECRETION IN ADRENAL GLAND
The adrenal medulla is mainly constituted of groups of adren-
ergic and noradrenergic chromaffin cells and in minor part of
ganglionic neurons. CAs derive from the amino acid tyrosine
and are the principal hormones underlying the fight-or-flight
response. Catecholamines from chromaffin cells are secreted after
acetylcholine stimuli (from sympathetic ganglia) and their exo-
cytosis is regulated by numerous membrane receptors (Becherer
et al., 2012). Most of these receptors are GPCRs (G-Protein cou-
pled receptor) comprehending ARs that exert their function as
autoreceptors. In particular, βARs (primarily β2 subtype) stim-
ulate CAs secretion (facilitatory autoreceptors) while the α2ARs
inhibit CA secretion (inhibitory autoreceptors) (Foucart et al.,
1988). ARs signaling and function are regulated by the family of
GPCR kinases (GRKs), whose role has been well studied in HF
(Rengo et al., 2009b, 2012b, 2014; Lymperopoulos et al., 2012;
Salazar et al., 2013).
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Circulating CAs originate from two major sources in the
body: the sympathetic nerve endings, which secrete NEpi, and
the chromaffin cells of the adrenal medulla, that liberate Epi
(principally) and NEpi after acetylcholine stimulation of the nico-
tinic cholinergic receptors (nAChRs). Chromaffin cells act as a
post-ganglionic sympathetic neuron and secrete different quan-
tity of CAs in basal or stress conditions. However, circulating
CAs levels have significant intraindividual and interindividual
variations particularly after stressors as surgery (Sager et al.,
1988). Basal percentages of adrenal CAs production are: 80% Epi
(adrenal gland medulla is the chief source of Epi) o and 20%
NEpi (Lymperopoulos et al., 2007a). Thus, we can summarize
that cardiac β-ARs were bound by either Epi—deriving from the
adrenal gland—than NEpi—from local sympathetic nerve termi-
nals and in minor part from adrenal medulla. Anyway, in adrenal
medulla there are other receptors that promote CAs secretion:
muscarinic cholinergic receptors (mAChRs) (Zaika et al., 2004),
angiotensin II receptors (Armando et al., 2004), and histamin-
ergic receptors (Wallace et al., 2002). Furthermore, it has been
shown that adenosine receptors act as inhibitory autoreceptors,
though their real role and expression are not completely clarified
(Tseng et al., 2001). ARs, including α2-AR and β-AR, undergo
agonist-dependent desensitization and downregulation. These
processes imply reduced receptor response and increased inter-
nalization due to constant or repetitive agonist binding (Reiter
and Lefkowitz, 2006).

In particular, after ligand stimulation, receptor is phosphory-
lated by GPCR kinases (GRKs), with the subsequent binding of
β-arrs to the GRK-phosphorylated receptor. Consequently, β-arrs
uncouple the receptor from its related G-proteins, preventing
its further binding to G-proteins and leading to downregula-
tion (Reiter and Lefkowitz, 2006; Lymperopoulos et al., 2009,
2011).

To date, GRK2, GRK3, and GRK5 are the most significant
members among the GRKs because they are present ubiquitously
in mammalian body (particularly in brain and cardiac tissue) and
phosphorylate most of the GPCRs. Notably, GRK2 is upregulated
in the heart and adrenal glands in HF and in vascular tissue during
hypertension; strategies that inhibit or inactivate GRK2 in these
diseases are very interesting for future human therapy (Gurevich
et al., 2012).

It has been shown that human β1- and β2-ARs (in vivo and
in vitro) and α2A- and α2B-ARs (in vitro) are phosphorylated by
GRK2 but it isn’t clear if α2C-AR is a GRK2 substrate, yet (Jewell-
Motz and Liggett, 1996; Rengo et al., 2012c).

Besides, the role of GRK2 on α2C-ARs phosphorylation
has been demonstrated in other species, prompting to simi-
lar hypothesis in humans (Lembo et al., 1999). Recently Cortez
et al. showed that β1-, β2-, and β3-ARs are expressed in cultured
human adrenal chromaffin cells and in particular β2- and β3-ARs
stimulation determinate CAs release and β2- and β3-antagonists
counteract nicotine-induced CAs secretion (Cortez et al., 2012).
CAs secretion by chromaffin cells is also strongly regulated by
adrenal gland cortex. In the whole adrenal gland, the medulla and
the cortex, though with a diverse embryological development, are
strictly linked and crosstalk in anatomical and functional ways,
influencing each other.

In particular, Glucocorticoids (GCCs), among the steroids
secreted by the adrenal cortex, determinate a multitude of
effects on medullary chromaffin cells. The steroids, binding
their nuclear receptors, activate some transcriptional factors that
increase CAs production and release, upregulate Tyrosine hydrox-
ylase and activate an alternative splicing of phenylethanolamine
N-methyltransferase, a key enzyme in the transformation of NEpi
in Epi. Moreover, GCCs influence chromaffin cell differentiation
and characterization, determining the acquirement of adrenergic
phenotype, particularly for the cell groups adjacent to adrenal
cortex (Hodel, 2001). In addition, recent studies on knockout
mice (in particular for the 21-hydroxylase or for the Corticotropin
releasing hormone receptor 1 genes) confirmed that GCCs stim-
uli is necessary for the acquisition of the adrenergic but not
the noradrenergic phenotype. It is also striking that chromaf-
fin cell products as NEpi, Epi, Dopamine, VIP and Serotonin
can enhance steroidogenesis of cortical hormones (Aldosterone,
Cortisol, Androstendione, Deoxycorticosterone) in a paracrine
way (Haase et al., 2011).

Of note, Flugge et al. demonstrated that GCCs determinate
diverse expression of α2A-and α2C-ARs in brain during chronic
stress. This finding suggests that adrenal cortex hormones could
influence not only the adrenergic/noradrenergic phenotype but
also the adrenal αAR expression/function thus cooperating in
sympathetic overdrive-related diseases (Flugge et al., 2003).

ADRENAL GRK2 AND CARDIOVASCULAR
PATHOPHYSIOLOGY
HF is characterized by elevated sympathetic tone with augmented
levels of circulating and synaptic CAs. In the early phase of the
disease increased SNA is an useful and compensatory mecha-
nism to maintain cardiac output by increasing heart rate and
cardiac contractility but, when β-ARs become disresponsive to
CAs, this chronic stimulation determinates HF progression and
its consequent detrimental systemic effects (Port and Bristow,
2001). Some studies in the last 10 years underline the critical
inhibitory role of presynaptic α2-AR in peripheral nerve termi-
nals and in adrenal medulla. This finding became clearer when
mice with genetic deletions or knockout (KO) for α2-AR where
studied. Particularly, α2A- or α2C-ARs KO mice that underwent
HF after TAC-induced pressure overload presented an increase in
circulating CAs with subsequently decreased cardiac parameters
compared to control mice (Brede et al., 2002). In addition, dou-
ble α2A/α2C-AR KO mice showed cardiomyopathy at 4 months
of age, without surgery or other treatments (Brum et al., 2002).
The crucial function of human α2-AR in HF development and
progression was elucidated by studies on genetic polymorphism
of this receptor. Small et al. demonstrated that α2CDel322–325
polymorphism is associated with high HF risk (Small et al., 2002;
Davis and Johnson, 2011) probably because this variant was
associated to increased α2-AR-related CAs secretion/outflow (as
shown in vitro) (Small et al., 2000) and subsequent detrimental
cardiotoxicity due to β-AR downregulation/desensitization. Our
group demonstrated few years ago that adrenal hyperfunction
is crucial for HF development and evolution (Lymperopoulos
et al., 2007a). During HF there is an increase in CAs production,
testified by enhanced tyrosine hydroxylase levels, and secretion
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(both NEpi and Epi) by hypertrophic adrenal glands (Figure 1).
To better understand if this mechanism was peculiar of HF, we
tested two different models of HF for etiology and pathology.
Particularly, we evaluated rats that developed congestive HF 10
weeks after myocardial infarction induced by surgical ligation
of left anterior descending coronary artery and transgenic mice
with cardiac overexpression of sarcoplasmic reticulum calcium-
binding protein calsequestrin that underwent progressive HF in a
short time (3 months) and commonly died when they become 4
months old. In both our models of HF (independently from the
reason that determinates this disease) we found adrenal GRK2-
related α2-AR desensitization and downregulation that lead to
enhanced circulating CAs levels. Furthermore, Schneider et al.
demonstrated adrenal GRK2 upregulation in a model of car-
diac hypertrophy due to pressure overload (obtained by TAC
surgery), too. As expected, the degree of cardiac hypertrophy was

FIGURE 1 | Representation of the pathophysiologic role of GRK2 in

adrenal CA-production/secretion: Body’s major source of CAs is the

adrenal medulla, the central part of the adrenal gland, where the

chromaffin cells secrete approximately 20% NEpi and 80% Epi.

Physiological conditions: G-protein-coupled receptor kinase 2 (GRK2)
regulates ARs: (1) in chromaffin cell of adrenal gland GRK2 phosphorylate
α2ARs that exert a tonic sympathoinhibitory function. (2) in cardiomyocytes
GRK2 phosphorylate β1-AR regulate cardiac contractility by AC-PKA
pathway activation. Heart Failure: G-protein-coupled receptor kinase 2
(GRK2) is upregulated in chromaffin cell and in cardiac myocyte. In the
adrenal chromaffin cell, augmented GRK2 levels determinate an
hyper-phosphorylation and desensitization of α2ARs, causing increased
levels of Epi/NE production and secretion. Increasing in amounts of
circulating CAs led to hyper-stimulation of β1-AR and GRK2 overactivation.
Cardiac GRK2 upregulation results in phosphorylation and
desensitization/downregulation of β1-ARs leading to reduction of
contractility. Consequently, double inhibition of GRK2 (pharmacological or
gene therapy) in the heart and in the adrenal gland could have impressive
therapeutic effect in heart failure enhancing cardiac contractility and
reducing plasmatic CAs levels. Acronyms: CAs, Catecholamines; DA,
Dopamine; NE, Norepinephrine; Epi, Epinephrine; GRK2, G protein-coupled
Receptor Kinase 2; ARs, Adrenergic Receptor; α2-AR, α2-Adrenergic
Receptor; β1-AR, β1-Adrenergic Receptor; ATP, Adenosine Tri-Phosphate;
AC, Adenylyl Cyclase; cAMP, cyclic Adenosine Mono-Phosphate; PKA,
Protein Kinase A.

significantly associated with adrenal weight and adrenal CAs pro-
duction (Schneider et al., 2011). Of note, GRK2 increase results
in α2-AR phosphorylation and subsequently in loss of inhibitory
feedback (Figure 1). This ends up in the increase of Epi and NEpi
release incisively contribute to SNS overdrive. The main func-
tion of adrenal GRK2 in sympathetic overactivity and consequent
progression of HF became more evident when we tried to con-
trast GRK2 increase by direct adrenal injection of its inhibitor
βARKct in HF rats (this peptide is the C-terminal part of GRK2
that doesn’t contain the phosphorylation portion but competes
with GRK2 for G-proteins βγ subunits binding). In particu-
lar we used an Adenovirus codifying for βARKct and 1 week
after gene delivery we performed the in vivo and in vitro eval-
uations. βARKct was able, by inhibiting GRK2, to restore α2AR
membrane levels/function and subsequently have a sympatholytic
effect lowering plasma CAs levels. This permits to counteract
CA cardiotoxic effects by decreasing cardiac β-AR downregu-
lation/desensitization and thus ameliorate heart dilatation and
function as attested by echocardiography and in vivo cardiac
hemodynamic.

Recently, we decided to investigate if GRK2 inhibition before
HF onset can determinate any advantage in development and
progression of this invaliding disease. For this purpose we used
Cre/loxP technology to obtain tissue-specific GRK2 KO mice.
In particular, GRK2 was deleted only in chromaffin cells of
adrenal medulla by the use of mice expressing Cre recombinase
under the control of the phenylethanolamine N-methyl trans-
ferase (PNMT) gene promoter (PNMT-driven GRK2 KO mice)
(Lymperopoulos et al., 2010). PNMT is the enzyme that catalyses
the trasformation of NEpi into Epi and this function is pecu-
liar in chromaffin cells. According to our results, adrenal GRK2
pre-HF deletion allows for a significant attenuation of adrenal
hypertrophy and reduction of in vivo plasmatic CAs in post-MI
HF mice. Decreased systemic cathecolaminergic stimulation that
is usually detrimental for HF establishment, determinates lower
cardiac β-AR downregulation/desensitization (GRK2 decreasing-
mediated), with a consequent better heart function and enhanced
cardiac inotropic reserve. Significantly, the PNMT-driven GRK2
KO mice showed a characteristic basal phenotype: reduced CAs
production (lower Thirosine Hydroxylase protein levels) and
adrenal dimensions. All these findings suggest that GRK2 could
be a significant adrenal trophic element in physiologic conditions
and in HF in particular, being a crucial CAs production regulator
(directly acting on biosynthetic enzymes or indirectly by β2-AR
mediated CAs secretion stimulation). In addition, our group has
recently shown that adrenal GRK2 is also a physiological regu-
lator of adrenal CAs production/secretion and thereby of SNA.
In particular, in healthy rats, adrenal GRK2 adenovirus-mediated
(Ad-GRK2) gene delivery led to increased plasmatic levels of
Epi and NEpi whereas Ad-βARKct adrenal gene transfer deter-
mined a significant decrease of the same levels. Of note, despite
NEpi was only the 20% of the total CAs secreted by adrenal
medulla, gene delivery influencing GRK2 activity is able to change
its levels. These results were confirmed by in vitro chromaffin
cells experiments that also showed, as expected, that physiolog-
ical adrenal GRK2 action is α2-AR mediated (Lymperopoulos
et al., 2008). Moreover, adrenal GRK2 has a significant role
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on beneficial sympatholytic effects of β-blockers and exercise
training during HF (Rengo et al., 2010, 2012a; Femminella et al.,
2013a). Importantly, training and beta-blocker therapy are know
to have several biological effects and to improve survival in HF.
Effectively, both these therapies led to a reduction of adrenal
GRK2 levels/activity which conducts to decrease and normaliza-
tion of CAs biosynthesis and production through restoration of
α2-AR density/signaling. In our study on β-blockers effects on
adrenal gland activity, we evaluated bisoprolol (a β1-AR selective
blocker) to exclude any involvement of facilitatory pre-synaptic
β2-ARs (see above). Of note, bisoprolol effects on left ventricu-
lar reverse remodeling preceded adrenal GRK2 downregulation
and α2AR restoration. Consequently, these two treatments could
exert a complementary neurohormonal action in contrasting the
detrimental consequence of autonomic overdrive that affects HF
patients. Furthermore, α2-AR dysfunction during HF may have
important therapeutic implications because it could explain the
failure of MOXSE and MOXCON trials (Swedberg et al., 2002).
These trials were interrupted for the excessive mortality in the
treated group and one of the possible explanations could be the
dysfunction of α2-AR in adrenal medulla and peripheral nerve
terminals that could not permit the drug to exert its beneficial
consequences. Therefore, β-blockers and exercise training treat-
ments taking advantage of their adrenal α2-ARs effects could
potentially impact on moxonidine efficacy during HF.

However, the complete mechanism through which adrenal
CAs overdrive occurs in HF is still unclear. In this regard some
studies in dogs showed that bilateral adrenal denervation signif-
icantly reduced heart dysfunction after cardiac pressure overload
(Womble et al., 1980).

Accordingly, it has recently been shown that unilateral den-
ervation of the adrenal gland from the preganglionic cholinergic
nerves, did not permit adrenal hypertrophy and rising of CAs pro-
duction during cardiac pressure overload (Schneider et al., 2011).
Hence, cholinergic innervation of the adrenal gland by nicotinic
receptors and a Ca2++/calmodulin-dependent signaling is cru-
cial to determinate adrenal hypertrophy, increase GRK2 levels and
raise NEpi and Epi storage.

Of note, in isolated adrenal gland with undamaged splanch-
nic nerves, cholinergic stimulation caused release of cortisol
and aldosterone (Ehrhart-Bornstein et al., 1995). These findings,
together with the strict adrenocortical linkage (treated above),
suggest that adrenal activation could be triggered by pregan-
glionic cholinergic nerves stimulation through release of corticos-
teroids hormones.

CONCLUSIONS
CAs levels are a powerful prognostic factor of morbidity and
mortality in HF (Cohn et al., 1984). GRK2 has a multiorgan
pivotal role: in adrenal medulla and in cardiac nerve termi-
nals this kinase regulates NEpi/Epi production and secretion
through α2-ARs, whereas in heart it mediates cardiac effects of
CAs by β-ARs regulation. In particular, adrenal GRK2-dependent
α2-AR dysregulation seems to be crucial in enhanced CAs secre-
tion from the adrenal gland during HF, contributing to detri-
mental sympathetic cardiotoxic effects. Consequently, restoration
of adrenal α2-AR signaling through the inhibition of GRK2 may

be a novel sympatholytic therapeutic strategy for HF. Decreasing
CAs levels would permit restoration of cardiac β-AR downreg-
ulation/desensitization via cardiac GRK2 downregulation and
ameliorate some critical aspects of failing heart such as adverse
remodeling, arrhythmias and cardiac arrest. Of note, several ther-
apeutic strategies, as β-blockers and exercise training, can exert
their beneficial effects on HF also by decreasing sympathetic
overdrive through adrenal GRK2 inhibition (probably also in
sympathetic nerve terminals).

Significantly, systemic GRK2 inhibition during HF might be
impressive because of its well-known positive cardiac effects
and its ability to thwart the chronic activation of the renin–
angiotensin–aldosterone (GRK2 inhibition could counteract
phosphorylation and desensitization of Angiotensin II recep-
tor type 1) and endothelin (GRK2 inhibition could prevent
endothelin-induced insulin resistance) systems (Rockman et al.,
1996; Zolk et al., 1999; Anavekar and Solomon, 2005; Usui et al.,
2005). Furthermore it is interesting that GRK2 inhibition could
be obtained by both systemic administration of a pharmaceutical
GRK2 inhibitor molecule (Piao et al., 2012) or by local (cardiac or
eventually adrenal) and systemic gene therapy delivery (Zincarelli
et al., 2008, 2010).

In addition, GRK2 inhibitors could be useful as adjunctive
therapy in HF, thus reducing the dosage and consequently the
adverse effects of β-blockers.

As discussed above, α2-AR agonists are able to increase
α2-AR inhibitory activity and thus to determinate sympathol-
ysis in HF due to peripheral and adrenal α2-AR downregula-
tion/desensitization. Importantly, our group evidenced that the
therapeutic effects of moxonidine on decreasing CAs in vivo in
rats with HF were enhanced with GRK2 inhibition via adrenal
gene therapy. Of note, this combined therapy led to lower
Epi levels, a non-typical phenomenon for moxonidine alone
(Lymperopoulos et al., 2007a).

Adrenal GRK2 inhibition could be also positive and valu-
able as a therapy for other diseases characterized by sympathetic
hyperactivity as hypertension (Schlaich et al., 2004), hyperthy-
roidism (Foley et al., 2001), pheochromocytoma (Roghi et al.,
2011) or some cognitive, and psychiatric disorders as depression
(Hausberg et al., 2007; Femminella et al., 2013b).

To summarize, cardiac and adrenal GRK2 inhibition rep-
resents an important therapeutic target during HF. However,
further studies would be necessary to better understand the
underlying complete mechanism and to allow potential and inno-
vative specific peptides or gene delivery techniques to become
part of common HF therapy.
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