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Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer,
is one of the most lethal human diseases. PDAC is now the fourth leading cause
of cancer mortality in both men and women and deaths due to PDAC are projected
to increase dramatically. Novel targets and agents for chemoprevention are urgently
needed and will most likely arise from a more detailed understanding of the signaling
mechanisms that stimulate the promotion and progression of sub-malignant cells into
pancreatic cancer cells and from the identification of modifiable risk factors for PDAC.
Many epidemiological studies have linked obesity and long-standing type 2 diabetes
mellitus (T2DM) with increased risk and worse clinical outcomes for developing PDAC.
These diet-related metabolic disorders are multifaceted but characterized by peripheral
insulin resistance, compensatory overproduction of insulin and increased bioavailability
of insulin-like growth factor-1 (IGF-1). Mounting evidence indicates that the insulin/IGF-1
receptor system plays a critical role in PDAC development and multiple studies support
the notion that crosstalk between the insulin receptor and heptahelical G protein-coupled
receptor (GPCR) signaling systems is an important element in the biological responses
elicited by these signaling systems, including cell proliferation. This article highlights the
central role of the mechanistic target of rapamycin (mTOR) in mediating crosstalk between
insulin/IGF-1 and GPCR signaling in pancreatic cancer cells and proposes strategies,
including the use of metformin, to target this signaling system in PDAC cells.
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Pancreatic ductal adenocarcinoma (PDAC), the most common
form of pancreatic cancer, is one of the most lethal human dis-
eases. Indeed, the overall 5-year survival rate is a dismal 6% and
the median survival period of 4–6 months. The incidence of this
disease in the US is estimated to increase to more than 44,000 new
cases in 2014 and is now the fourth leading cause of cancer mor-
tality in both men and women (Siegel et al., 2014). Total deaths
due to PDAC are projected to increase dramatically (Rahib et al.,
2014). Novel targets and agents for chemoprevention are urgently
needed and will most likely arise from a more detailed under-
standing of the signaling mechanisms that stimulate the promo-
tion and progression of sub-malignant cells into pancreatic cancer
cells and from the identification of modifiable risk factors for
PDAC. In this context, it is recognized that PDAC arises from the
progression of precursor lesions, the most common of which are
pancreatic intraepithelial neoplasias (PanINs). Progression from
these non-invasive lesions to invasive cancer is associated with the
accumulation of genetic alterations (Murphy et al., 2013), includ-
ing activating mutations in the KRAS oncogene which appears
in ∼90% of PDACs as well as inactivating mutations in tumor
suppressors genes, including p53, p16, and SMAD4 (Murphy
et al., 2013). It is generally accepted that progression of pancreatic

carcinogenesis requires dysregulation of a set of signaling path-
ways leading to sustained cell proliferation (Jones et al., 2008).
The focus of this brief article is on the central role of the mech-
anistic/mammalian target of rapamycin (mTOR) in mediating
insulin/IGF-1 and G protein-coupled receptor (GPCR) signaling
leading to proliferation of pancreatic cancer cells. Subsequently,
strategies to target this pathway in PDAC cells are proposed.

OBESITY, TYPE 2 DIABETES, AND PDAC
In addition to smoking, chronic pancreatitis and a family his-
tory of PDAC (Kolodecik et al., 2014), many epidemiological
studies have linked obesity and long-standing type 2 diabetes mel-
litus (T2DM) with increased risk and worse clinical outcomes
for developing PDAC (Arslan et al., 2010; Giovannucci et al.,
2010). These diet-related metabolic disorders are multifaceted
but characterized by peripheral insulin resistance, compensatory
overproduction of insulin and increased bioavailability of IGF-1
(Alemán et al., 2014). Given the complex organization of the
pancreatic microcirculation, locally overproduced insulin by β

cells is thought to act directly on insulin receptors expressed by
exocrine pancreatic cells. The highly related insulin-like growth
factor-1 (IGF-1) receptor (IGF-1R) and hybrids of IGF-1R and
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insulin receptors can also be activated by insulin (Taniguchi et al.,
2006), in particular at the high concentrations of intra-pancreatic
insulin. Accordingly, PDAC cells express insulin and IGF-1 recep-
tors and over-express insulin receptor substrate (IRS)-1 and IRS-2
and PDAC (but not normal) tissue expresses activated IGF-1R
and IGF-1 (Rozengurt et al., 2010). Silencing the expression of
IGF-1R in pancreatic cancer cells inhibits their growth and metas-
tasis (Subramani et al., 2014) and the beneficial effects of calorie
restriction in pancreatic cancer models appear mediated through
the IGF-1/IGF-1R axis (Harvey et al., 2014). Reciprocally, the pro-
moting effects of high calorie diet have been associated with an
increase in the circulating levels of insulin and IGF-1 (Dawson
et al., 2013). Interestingly, IGF-1 and orthotopically transplanted
PDAC growth were decreased in liver-specific IGF-1-deficient
mice and restored by IGF-1 administration (Lashinger et al.,
2013). Inactivation of p53, as seen during the progression of
50–75% of PDAC, has been recognized to potently up-regulate
the insulin/IGF-1 pathway (Feng and Levine, 2010) and gene
variations in the IGF-1 signaling system have been associated
with worse survival in PDAC (Dong et al., 2010). Collectively,
these studies underscore the significance of the insulin/IGF-1
signaling pathway in PDAC development. Accordingly, elucida-
tion of the signaling pathways triggered by insulin/IGF-1 and
the crosstalk mechanisms between the insulin/IGF-1R and other
signaling pathways in PDAC cells is likely to facilitate the iden-
tification of new targets for therapeutic and chemo-preventive
interventions.

INSULIN/IGF-1 SIGNALING, PI3K/Akt/mTOR AND PDAC
In most cells, binding of insulin to its tetrameric receptor induces
activation of the receptor tyrosine kinase and autophosphory-
lation, followed by docking and tyrosine phosphorylation of
adaptor proteins, including insulin receptor substrates (IRS 1–4)
and Shc which propagate downstream signals (Metz and McGarry
Houghton, 2011). The insulin receptor exhibits a high degree of
homology with the IGF-1R, especially in their tyrosine kinase
domains. Furthermore, the insulin and IGF-1 receptors form
heterodimers that bind IGF-2, another ligand of the IGF fam-
ily produced by cancer cells. As illustrated in Figure 1, a key
insulin/IGF1R-induced pathway via IRS is class I phosphatidyli-
nositol 3-kinase (PI3K)/Akt/mTOR (Taniguchi et al., 2006; Zoncu
et al., 2011). PI3K catalyzes the synthesis of phosphatidylinositol
(3,4,5)-trisphosphate (PIP3), a membrane lipid second messen-
ger that coordinates the localization and activation of down-
stream effectors, including the isoforms of the Akt family (Franke,
2008). The Akts possess a PH domain and conserved residues
(Thr308 and Ser473 in Akt1, the most commonly expressed iso-
form in normal cells) which are critical for Akt activation.
Specifically, Akt translocated to the plasma membrane in response
to products of PI3K, is activated by phosphorylation at Thr308

in the kinase activation loop and at Ser473 in the hydropho-
bic motif. The PI3K/Akt/mTOR pathway plays a pivotal role in
promoting the proliferation and survival of PDAC cells (Asano
et al., 2005), is activated in pancreatic cancer tissues, and lim-
its catabolic processes, including autophagy (Lee et al., 2010).
Interestingly, the Akt2 gene is amplified or activated in a sub-
set of pancreatic carcinomas (Ruggeri et al., 1998). Collectively,

these findings imply that mTOR signaling plays an important role
in obesity-induced pancreatic cancer and is a potential target for
chemoprevention.

mTOR, a master regulator of cell metabolism, growth and
proliferation, functions as a catalytic subunit in two distinct
multi-protein complexes, mTORC1 and mTORC2 (Beauchamp
and Platanias, 2013). mTORC1, characterized by the substrate
binding subunit Raptor senses both nutrients and growth factors
(Dibble and Manning, 2013). As indicated in Figure 1, mTORC1
phosphorylates and controls at least two regulators of protein syn-
thesis, the 40S ribosomal protein subunit S6 kinase (S6K) and
the inhibitor of protein synthesis 4E-binding protein 1 (4EBP1)
which promote protein synthesis and plays a critical role in the
regulation of cellular metabolism (Dibble and Manning, 2013).
mTORC1 is acutely inhibited by rapamycin whereas mTORC2,
which is characterized by Rictor and mSin1, is not inhibited by
short-term treatment with this agent.

The heterodimer of the tumor suppressor tuberous sclero-
sis complex 2 (TSC2; tuberin) and TSC1 (hamartin) represses
mTORC1 signaling by acting as the GTPase-activator pro-
tein for the small G protein Rheb (Ras homolog enriched in
brain), a potent activator of mTORC1 in its GTP-bound state.
Phosphorylation of TSC2 by Akt and/or ERK/p90RSK (at dif-
ferent sites) uncouples TSC1/TSC2 from Rheb, leading to Rheb-
GTP accumulation and mTORC1 activation (Figure 1). The Rag
GTPases (RAGA/B and RAGC/D), in conjunction with the adap-
tor Ragulator, activate mTORC1 in response to amino acids, by
promoting mTORC1 translocation to lysosomal membranes that
contain Rheb-GTP (Bar-Peled and Sabatini, 2014). Phosphatase
and tensin homolog (PTEN) opposes PI3K by degrading PIP3

to PIP2 thereby inactivating Akt and mTOR signaling (Song
et al., 2012). The adaptor protein Shc binds to autophospho-
rylated IGF-1R to stimulate Grb2/SOS-mediated Ras activation
(GTP loading) leading to Raf/MEK/ERK activation (Figure 1). As
will be discussed below, insulin/IGF-1-induced signaling cross-
talks with pathways triggered through other receptors systems
expressed by PDAC cells thereby forming complex networks.

In addition to be phosphorylated at multiple Tyr residues
that promote downstream signaling, the IRS family is also phos-
phorylated at multiple serine and threonine residues that atten-
uate signaling and promote degradation. In this context, it is
important that activation of the mTORC1/S6K axis inhibits IRS-
1 function following its phosphorylation at multiple residues,
including Ser636/639 by mTORC1 and Ser307/636/1001 by S6K
(Tanti and Jager, 2009). Accordingly, treatment of PDAC cells
with rapamycin caused a striking increase in Akt phosphoryla-
tion at Ser473 while exposure to active-site inhibitors of mTOR
(e.g., KU63794 and PP242) abrogated Akt phosphorylation at
this site in PDAC cells (Soares et al., 2013). Conversely, active-site
inhibitors of mTOR caused a marked increase in ERK activation
whereas rapamycin did not have any stimulatory effect on ERK
activation in PDAC cells (Soares et al., 2013). These results imply
that first and second generation of mTOR inhibitors promote
over-activation of different pro-oncogenic pathways in PDAC
cells, suggesting that suppression of feed-back loops should be
a major consideration in the use of these inhibitors for PDAC
therapy.
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FIGURE 1 | Insulin/IGF-1 signaling pathways. The receptors for the
peptides of the insulin family peptides consist of ligand-binding α chain
and tyrosine kinase-containing β chain (cartoons in the box). Insulin binds
to the insulin receptors (InsR) with high affinity while it binds to IGF-1R
at higher concentrations. Insulin also binds to hybrid receptors
(IGF-1R/InsR). IGF-1 binds to the IGF-1R and to hybrid receptors with
high affinity. IGF-2 binds to the InsR-A, IGF-1R, and IGF-1R/InsR-A hybrid
receptor. For the sake clarity, negative feedback loops mediated by

downstream components of the pathway (e.g., mTORC1, S6K) that
restrain the activity of upstream components (e.g., IGF-1R, IRS) have not
been included. The signaling network depicted in this figure is discussed
in the text. Note that the IGF-1R and hybrid IGF-1R/InsRs couple more
efficiently to Shc/Grb2/SOS providing an explanation for the increased
ability of IGF-1 to induce ERK activation as compared with insulin. Green
lines indicate stimulatory interactions while red lines indicate inhibitory
interactions.

CROSSTALK BETWEEN INSULIN/IGF-1 RECEPTOR AND G
PROTEIN-COUPLED RECEPTOR SIGNALING SYSTEMS IN
PDAC
Many studies support the notion that crosstalk between the
insulin receptor and heptahelical GPCR signaling systems is
implicated in a variety of normal and abnormal processes,
including cardiovascular and renal pathologies in obesity,
metabolic syndrome and T2DM. Many GPCRs and their cog-
nate agonists also mediate autocrine/paracrine growth stimu-
lation in a variety of cancer cells and dramatically synergize
with insulin/IGF-1 in inducing mitogenic signaling (Rozengurt,
1986). A recent characterization of cancer genomes demon-
strated frequent mutations in GPCRs and G proteins (Kan et al.,
2010). Consequently, we hypothesized that crosstalk between
insulin/IGF-1 receptor and GPCR signaling systems is also a
mechanism for enhancing the development of pancreatic can-
cer (Rozengurt et al., 2010). Accordingly, PDAC cells and tis-
sues express multiple mitogenic GPCRs, including receptors
that recognize neurotensin, angiotensin II and substance P
(Rozengurt et al., 2010) and a broad-spectrum GPCR antago-
nist inhibited the growth of PDAC cells in vivo (Guha et al.,
2005). Using PDAC cells in culture, we demonstrated positive

crosstalk between insulin receptor and GPCR signaling systems
(Kisfalvi et al., 2009).

Many GPCRs activate G proteins of the Gq family, promot-
ing its dissociation into Gαq and Gβγ and the exchange of GDP
bound to Gαq for GTP (Rozengurt, 2007). The resulting GTP-
Gαq complex activates the β isoforms of phospholipase C (PLC),
identified as one of the “core” signaling pathways that undergo
somatic alterations in nearly all pancreatic cancers (Jones et al.,
2008). As shown in Figure 2, PLCβ produces second messen-
gers that activate members of the protein kinase C (PKC) family
which, in turn, phosphorylate and activate the protein kinases
of the protein kinase D (PKD) family, including PKD1, PKD2,
and PKD3 (Rozengurt et al., 2005). The PKC/PKD axis induces
MEK/ERK/p90RSK activation, at least in part by direct phos-
phorylation of RIN1 and thereby potentiates K-Ras signaling
(Rozengurt et al., 2005). In addition, PKDs can promote COX-
2-mediated production of PGE2 which can bind to their own
receptors after exiting the cells (Figure 2). PKDs are rapidly acti-
vated by GPCR agonists in PDAC cells (Guha et al., 2002; Rey
et al., 2003a,b; Yuan and Rozengurt, 2008), are over-expressed in
PDAC tissues (Harikumar et al., 2010) and PKD over-expression
in PDAC cell lines promotes their proliferation (Kisfalvi et al.,
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FIGURE 2 | Crosstalk between insulin/IGF-1 receptors and GPCR

signaling systems. The binding of an agonistic ligand to its cognate GPCR
triggers the activation of multiple signal transduction pathways via
heterotrimeric G proteins, including Gq/11. GPCRS also signal via arrestin
(β-Arr) in a G protein-independent manner. A rapid increase in the activity of
phospholipases C leads to the synthesis of lipid-derived second messengers,
Ca2+ fluxes and subsequent activation of protein phosphorylation cascades,
including PKC/PKD, Raf/MEK/ERK and Akt/mTOR/p70S6K. The EGFR has
emerged as a transducer in the signaling by GPCRs, a process termed EGFR

transactivation, and promoted by the release of heparin-binding epidermal
growth factor (HB-EGF) through the activation of a disintegrin and
metalloprotease (ADAM). The pathways stimulated by GPCRs are extensively
interconnected by synergistic and antagonistic cross-talks that play a critical
role in signal transmission, integration and dissemination. In this context,
mTOR emerges as a critical point of convergence in the action of
insulin/IGR-1R, EGFR, and GPCRs. Rapamycin, an allosteric inhibitor of
mTORC1 and metformin, an inhibitor of mitochondrial function that indirectly
(broken lines) stimulates AMPK, are also included.

2010) and invasion (Ochi et al., 2011). Furthermore, a novel PKD
inhibitor blocks pancreatic cancer cell growth in vitro and in vivo
(Harikumar et al., 2010).

GPCR agonists also stimulate mTORC1 through at least
two converging mechanisms: EGFR transactivation and ERK-
mediated phosphorylation of TSC2 (Rozengurt, 2007; Foster and
Fingar, 2010; Rozengurt et al., 2010). Transactivation of the EGFR
is mediated by the rapid generation of EGFR ligands through pro-
teolysis of membrane-bound precursors proteins and via intracel-
lular phosphorylation of EGFR mediated by Src (Santiskulvong
and Rozengurt, 2007). The importance of EGFR has been demon-
strated in transgenic mice models in which pancreas-specific
deletion of EGFR prevented Kras-induced development of PDAC
(Ardito et al., 2012).

We hypothesize that the concomitant activation of PI3K/Akt
(through insulin/IGF-1 and EGF receptors), PKD/ERK (via
agonist-induced Gq signaling) and mTORC1 (synergistically
through PI3K/Akt induced by insulin/IGF-1R and EGFR and
GPCR-stimulated ERK/p90RSK) in PDAC cells potently stimu-
lates DNA synthesis and proliferation of these cancer cells, and
thus provide potential targets for chemotherapeutic intervention
(Figure 2). Since both the ERK and PI3K pathways are effectors
of KRAS, activating mutations of KRAS reinforce the crosstalk

between insulin/IGF-1 receptor and GPCR signaling systems,
thereby increasing the robustness of the network induced by
insulin/IGF-1 and GPCR agonists in pancreatic cancer cells.

METFORMIN, AMPK, AND PDAC
Metformin (1,1-dimethylbiguanide hydrochloride) is the most
widely prescribed drug for treatment of T2DM worldwide.
Although it has been in clinical use for decades, its precise
molecular mechanism of action remains incompletely under-
stood. The primary systemic effect of metformin is the lowering
of blood glucose levels through reduced hepatic gluconeogenesis
and improved insulin sensitivity by increasing glucose uptake in
peripheral tissues, including skeletal muscles and adipose tissue
(Shaw et al., 2005). Metformin also reduces the circulating levels
of insulin and IGF-1 in both diabetic and non-diabetic patients
(Berker et al., 2004; Goodwin et al., 2008).

At the cellular level, metformin indirectly stimulates AMP–
activated protein kinase (AMPK) activation (Hawley et al., 2010),
though other cellular mechanisms of action have been proposed,
especially at high concentrations (Sahra et al., 2008; Kalender
et al., 2010). Metformin does not act directly on AMPK but
inhibits complex I activity of the mitochondrial respiratory chain
(El-Mir et al., 2000; Owen et al., 2000), resulting in reduced ATP
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synthesis and increase in cellular AMP and ADP. AMPK is a con-
served sensor of cellular energy being activated when ATP con-
centrations decrease and 5′-AMP concentrations increase (Kahn
et al., 2005; Oakhill et al., 2011). Interestingly, AMPK is also
implicated in the regulation of epithelial cell polarity (Mirouse
et al., 2007), which is lost in advanced PanINs (Hingorani et al.,
2003).

AMPK exists as a heterotrimer, composed of the catalytic
kinase α subunit and two regulatory subunits, β and γ (Kahn
et al., 2005). AMP directly binds to the AMPK γ subunit,
causing allosteric activation and preventing dephosphorylation
of Thr172 in the activation loop of the α subunit (Gowans
et al., 2013). The tumor suppressor LKB-1/STK11 (Liver kinase
B1/serine–threonine kinase 11) is the major kinase phosphory-
lating the AMPK activation loop. LKB-1/STK11 is mutated in
the Peutz-Jegher syndrome (Kahn et al., 2005), characterized by
predisposition to GI neoplasms, including PDAC.

AMPK is thought to inhibit mTORC1 function at three lev-
els: (1) AMPK stimulates TSC2 function via phosphorylation on
Ser1345 (Inoki et al., 2003, 2006; Shaw et al., 2004), leading to
accumulation of Rheb-GDP (the inactive form) and thereby to
inhibition of mTORC1 activation; (2) AMPK inhibits mTORC1
by direct phosphorylation of Raptor (on Ser722 and Ser792), which
disrupts its association with mTOR (Gwinn et al., 2008); (3)
Insulin/IGF-1-induced mTORC1 activation is also attenuated by
AMPK by direct phosphorylation of IRS-1 on Ser794, a site that
interferes with PI3K activation (Tzatsos and Tsichlis, 2007; Ning
and Clemmons, 2010). Metformin, at high concentrations, also
inhibits mTORC1 via AMPK-independent pathways, targeting
Rag GTPases and/or REDD1 (Kalender et al., 2010; Ben Sahra
et al., 2011). Since mTORC1 is a key site of signaling crosstalk
in PDAC cells, we examined whether metformin opposes positive
crosstalk between insulin/IGF-1 receptors and GPCR signaling
systems in these cells.

In designing mechanistic experiments with metformin or
other inhibitors of mitochondrial respiration such as the natural
alkaloid berberine, it is important to use physiological concentra-
tions of glucose in the culture medium. Cancer cells use aerobic
glycolysis when the glucose concentration in the medium is very
high but retain significant capacity of oxidative phosphorylation
(Rossignol et al., 2004; Imamura et al., 2009; Vander Heiden
et al., 2009). Thus, when cultured in regular DMEM (which
contains 25 mM glucose), cells derive most of the ATP from gly-
colysis. In contrast, when the concentration of ambient glucose is
physiological (∼5 mM) and glucose uptake rates are lower, cells
derive part of their ATP from mitochondrial oxidative phospho-
rylation (Vazquez et al., 2010) and hence, are more sensitive to
mild inhibitors of mitochondrial function, like metformin. Our
results demonstrated that metformin prevented mTORC1 signal-
ing in PDAC cells (Kisfalvi et al., 2009) and that the inhibitory
effect of low doses of metformin on mTORC1 was markedly
enhanced when PDAC cells were cultured in medium contain-
ing physiological concentrations of glucose (Sinnett-Smith et al.,
2013; Soares et al., 2013). In this context, most previous studies
in vitro with multiple cell types have used high concentrations
of this agent to elicit effects [e.g., 5–30 mM], a condition that
can lead to off-target effects. In addition to inhibit mTORC1, our

results demonstrated that metformin prevented ERK activation in
PDAC cells (Soares et al., 2013). Interestingly, the effects of met-
formin on Akt and ERK activation are strikingly different from
allosteric or active-site mTOR inhibitors in PDAC cells, though
all these agents potently inhibited the mTORC1/S6K axis (Soares
et al., 2013). Furthermore, administration of metformin inhib-
ited the growth of aggressive PDAC cells in xenograft models
(Kisfalvi et al., 2013). Collectively, these studies imply that met-
formin inhibits mitogenic signaling, including mTORC1, ERK,
and proliferation in PDAC cells and raise the attractive possibil-
ity that this anti-diabetic agent could offer a novel approach for
the chemoprevention of PDAC (Rozengurt et al., 2010; Yue et al.,
2014).

In line with this possibility, a number of epidemiological stud-
ies suggested a link between administration of metformin and
reduced incidence of a variety of cancers in T2DM patients,
including PDAC (Li et al., 2009; DeCensi et al., 2010; Lee et al.,
2011; Bodmer et al., 2012; Franciosi et al., 2013; Zhang et al.,
2013). Interestingly, metformin use in T2DM patients with PDAC
was associated to better survival (Sadeghi et al., 2012). However,
a meta-analysis of nine observational studies showed a trend but
failed to show a significant association between metformin and
PDAC risk (Singh et al., 2013). Methodological limitations and
biases that potentially exaggerate the beneficial effects of met-
formin in observational studies have been identified (Gandini
et al., 2014). In any case, epidemiological associations do not
establish causation, but support the need for understanding
mechanism(s) of action and for prospective clinical studies. For
example, it will be of great interest to test anti-cancer effects of
metformin on PDAC cells with complex I mutations that render
them hypersensitive to inhibitors (Birsoy et al., 2014).

The elucidation of the mechanism(s) by which metformin
targets cancer cells is key for advancing the field as can lead
to novel therapeutic strategies, including the identification of
specific patient populations that ultimately will benefit from met-
formin administration, the generation of preliminary biomarker
evidence of target inhibition, will stimulate the development of
second generation drugs and the design of combinatorial inter-
ventions.
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