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The large conductance, Ca2+-activated K+ channels (BKCa, KCa1.1) are expressed in various
brain neurons where they play important roles in regulating action potential duration, firing
frequency and neurotransmitter release. Membrane potential depolarization and rising
levels of intracellular Ca2+ gated BKCa channels, which in turn results in an outward
K+ flux that re/hyperpolarizes the membrane. The sensitivity of BK channels to Ca2

Ca
+

provides an important negative-feedback system for Ca2+ entry into brain neurons and
suppresses repetitive firing. Thus, BKCa channel loss-of-function gives rise to neuronal
hyperexcitability, which can lead to seizures. Evidence also indicates that BKCa channels
can facilitate high-frequency firing (gain-of-function) in some brain neurons. Interestingly,
both gain-of-function and loss-of-function mutations of genes encoding for various BKCa
channel subunits have been associated with the development of neuronal excitability
disorders, such as seizure disorders. The role of BKCa channels in the etiology of some
neurological diseases raises the possibility that these channels can be used as molecular
targets to prevent and suppress disease phenotypes.
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BKCa CHANNELS AND NEURONAL EXCITABILITY
Intrinsic membrane properties play an important role in the con-
trol of neuronal activity in the central nervous system (CNS).
Alterations of intrinsic membrane properties can contribute to
diseases of neuronal excitability such as epilepsy. Potassium (K+)
channels in particular are well known for their role in the reg-
ulation of membrane excitability due to their ability to stabilize
the membrane potential. Compelling evidence indicates that K+
channels are critical molecular determinants for seizure gener-
ation and epileptogenesis. One particular type of K+ channel,
the large conductance, Ca2+-activated K+ channel (BKCa, KCa1.1)
is considered to be one of the intrinsic molecular determinants
for the control of neuronal excitability in the CNS. Unlike other
K+ channels, BKCa channels are activated by both voltage and
elevated levels of intracellular Ca2+, resulting in large K+ con-
ductances which in turn re/hyperpolarizes the membrane. The
sensitivity of BKCa channels to Ca2+ provides an important neg-
ative feedback for Ca2+ entry into brain neurons; thus, BKCa

channels may serve as a link between membrane depolarization
and Ca2+ signaling to provide a rapid response to reduce or
prevent neuronal hyperexcitability.

BKCa channels are tetramers of four α subunits, which form
the ion channel pore, and four regulatory β (β1–4) subunits that
are expressed in various tissues, including the brain (Pallanek and
Genetzky, 1994; Jiang et al., 1999). BKCa channels can also be reg-
ulated by acidification (Brelidze and Magleby, 2004; Hou et al.,
2008), ethanol (Liu et al., 2008), protein kinase phosphorylation
(Tian et al., 2001; Zhou et al., 2010), ubiquitination (Liu et al.,
2014) and palmitoylation (Shipston, 2013; Zhou et al., 2012). Of
particular importance, protein S-palmitoylation (or palmitoyla-
tion) and ubiquitination control the cell surface expression and
activity of BKCa, thereby critically contributing to BKCa channel

functions (Shipston, 2013; Liu et al., 2014). Notably, the palmi-
toylation of BKCa channel β subunits promotes the exit of the
pore-forming α subunit from the endoplasmic reticulum and
promotes BKCa channel surface expression (Chen et al., 2013).
The BKCa channel α subunit is encoded by the Slo1 gene, which
can be subjected to splicing to produce channels with differ-
ent functional properties and sensitivity to Ca2+; including the
STREX (stress-axis hormone-regulated exon) channels (Xie and
McCobb, 1998; Chen et al., 2005). Expression profiling studies
have reported that BKCa channel α subunits are broadly expressed
in the CNS (Chang et al., 1997; Wanner et al., 1999; Sausbier
et al., 2006). The regulatory BKCa channel β1 and β4 subunits
are also expressed in the brain, whereas the β2 and β3 subunits
are nearly absent in the brain (Tseng-Crank et al., 1996). BKCa

channels are predominantly located at the axon and presynaptic
terminals, associated with glutamatergic synapses in hippocam-
pus and cortex and GABAergic synapses in the cerebellum (Knaus
et al., 1996; Hu et al., 2001; Misonou et al., 2006; Martire et al.,
2010). These channels are usually found in close proximity to
N-methyl-D-asparte receptors (Isaacson and Murphy, 2001) and
voltage-gated Ca2+ channels (CaV), including CaV1.2, CaV2.2,
and CaV2.1 in the CNS (Marrion and Tavalin, 1998; Grunnet and
Kaufmann, 2004). During an action potential (AP), both mem-
brane depolarization and elevated intracellular Ca2+ can activate
BKCa channels, which in turn contribute to AP fast repolariza-
tion, generate the fast component of the afterhyperpolarization
(fAHP) and reduce Ca2+ influx via inactivation of CaV channels.
Prominently, AP repolarization and fAHP significantly contribute
to AP shape and duration. By controlling the AP shape and dura-
tion, BKCa channels can regulate neuronal excitability and some
Ca2+ transients that underlie the release of neurotransmitter at
presynaptic terminals.
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The mechanisms underlying the inhibitory and excitatory role
of BKCa channels are complex (Figure 1). Functional studies have
reported that the activation of BKCa channels is hyperpolariz-
ing; thus the resulting net effect on membrane excitability is
inhibitory. However, evidence suggests that the activation of BKCa

channels can also facilitate high-frequency firing in some brain
neurons, including CA1 pyramidal cells of the hippocampus (Gu
et al., 2007). In physiological conditions, BKCa channels acti-
vate slowly during an AP, allowing intracellular Ca2+ to activate
Ca2+-dependent conductances such as the small conductance
Ca2+-activated K+ (SKCa) channels, thereby inhibiting repeti-
tive firing. The inhibitory effect following the activation of BKCa

channels may result from a delay in the development of an AP
spike or decrease in fAHP conductances. Altered extracellular
K+ levels can modify the cell membrane potential to persis-
tently depolarized values that may lead to paroxysmal discharges
(Lebovitz, 1996). Interestingly, conversion from regular firing
into burst firing upon the elevation of extracellular K+ has been
observed in hippocampal slices (Jensen et al., 1994; Jensen and
Yaari, 1997). Blockade of BKCa channels also can inhibit neu-
ronal firing because the resulting AP broadening can allow the
activation of slow-onset voltage-gated K+ channels, such as small
SKCa channels and delayed rectifier K+ channels. The resulting
K+ currents associated with an increased inactivation of voltage-
gated Na+ (NaV) channels could slow the depolarization during
an interspike interval. Further, excitation following the activation

of upregulated BKCa channels may result from their role in the
generation of fast spike repolarization and fAHP, which would
favor a reduced activation of SKCa channels and delayed rectifier
K+ channels and would indirectly facilitate the recovery of NaV

from inactivation (Gu et al., 2007). The upregulation of BKCa

channels may cause large increase in extracellular K+, which in
turn reduces the driving force for inhibitory K+ currents lead-
ing to enhanced neuronal excitability. The activation of BKCa

channels can reduce neurotransmitter (GABA) release by short-
ening the duration of depolarization to allow Ca2+ entry via CaV

channels, resulting in enhanced neuronal excitability (Hu et al.,
2001; Raffaelli et al., 2004). There is also a possibility that the
inhibitory and excitatory action of BKCa channels may be age
dependent. Indeed, smaller BKCa channel currents were recorded
in pyramidal neurons of the prefrontal cortex in developing ani-
mals compared with adolescent and adult animals (Ksiazek et al.,
2013). Multiple lines of evidence indicate that a lower availability
and/or expression of BKCa channels may contribute to the broad-
ening of APs during repetitive firing (Shao et al., 1999; Faber
and Sah, 2003). Therefore, the lower availability of BKCa chan-
nels in young animals may facilitate neuronal activity during this
developmental stage. Given the relevance of BKCa channels in the
control of neuronal excitability, these channels have been impli-
cated in the pathophysiology of several neurological disorders
associated with altered neuronal excitability, including seizure
disorders.

FIGURE 1 | Proposed mechanisms associated with BKCa loss-of-function

and gain-of-function channels. BKCa channel loss-of-function occurs when
there is low abundance of the channel at the membrane surface but no change
in the BKCa channel number in the endoplasmic reticulum (ER, note that
ubiquitination prevent channels from trafficking to the cell surface). Potential
mechanisms underlying neuronal hyperexcitability following BKCa channels
loss-of-function include reduced fAHP conductances. BKCa channel

gain-of-function is characterized by the release of ubiquitinated BKCa channels
fromtheER and their insertion into themembranesurface (Liuet al., 2014). Thus,
impairing ubiquitination may lead to overexpression of BKCa channels relative to
control conditions. Potential mechanisms underlying neuronal hyperexcitability
following BKCa channels gain-of-function include: rapid AP repolarization that
would favor reduced activation of SKCa and delayed rectifier K+ channels as well
as facilitated the rate of recovery of NaV channels from inactivation.
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BKCa CHANNEL LOSS-OF-FUNCTION HYPOTHESIS
BKCa CHANNEL LOSS-OF-FUNCTION AND ENHANCED NEURONAL
EXCITABILITY IN SEIZURE DISORDERS
Epilepsy consists of a group of chronic neurological disor-
ders characterized by spontaneous and recurrent seizures. These
seizures result from aberrant neuronal excitability associated with
abnormal connections in the brain. Because the activation of
BKCa channels limits the depolarization-induced bursting activ-
ity in neurons, it is assumed that a loss-of-function in BKCa

channels will promote neuronal hyperexcitability, which can
lead to seizures. Accordingly, reduced fAHP conductances were
found in dentate gyrus granule cells obtained from patients suf-
fering from temporal lobe epilepsy (Williamson et al., 1993).
Similarly, idiopathic generalized epilepsy (mostly typical absence
epilepsy) in humans has been associated with a single nucleotide
deletion in exon 4 (delA750) of the KCNMB3 gene encod-
ing for BKCachannel β3 subunit (Lorenz et al., 2007). When
expressed in a heterologous system, this mutation (BKCa chan-
nel β3b-V4 subunit isoform) exhibited BKCa channel loss-of-
function, characterized by fast inactivation kinetics (Hu et al.,
2003). The mutated KCNMB3 gene also has been found in
patients with dup(3q) syndrome with seizures (Riazi et al.,
1999).

BKCa channel loss-of-function has also been implicated in the
pathophysiology of animal models of seizures and epilepsy. A
transient loss of fAHP conductances was found in subicular neu-
rons following a kindling model of epileptogenesis (Behr et al.,
2000). In the genetically epilepsy-prone rat (GEPR), an inher-
ited model of generalized tonic-clonic epilepsy, reduced fAHP
conductances were reported in CA3 neurons of the hippocampus
(Verma-Ahuja et al., 1995). Similarly, in preliminary experi-
ments, we found that the current density of BKCa channels
is significantly reduced in inferior colliculus (IC) neurons, the
site of seizure initiation in this model. However, no signifi-
cant change was observed in the abundance of BKCa channel
α subunit proteins in IC neurons of the GEPR (N’Gouemo
et al., 2009). Similarly, the expression of BKCa channel α sub-
unit was not altered in the dentate gyrus of the Krushinskii-
Molodkina rat, a model of inherited epilepsy (Savina et al.,
2014). Nevertheless, the protein expression of BKCa channel β4
subunits was elevated in the dentate gyrus of the Krushinskii-
Moslodkina rat (Savina et al., 2014). The upregulation of β4
subunit is consistent with loss-of-function because this sub-
unit inhibits BKCa channel activity (Brenner et al., 2005). In
a model of alcohol withdrawal seizures, BKCa channel loss-of-
function was reported and characterized by reduced current
density, decreased channel conductance and lower protein abun-
dance of BKCa channel α subunit in IC neurons (N’Gouemo
and Morad, 2014). However, these changes outlasted the finite
period of alcohol withdrawal seizure susceptibility, suggesting
that BKCa channel loss-of-function in IC neurons was associated
with the long-term effects of alcohol withdrawal hyperexcitabil-
ity. Whether BKCa channels in IC neurons play an important
role in the pathogenesis of alcohol withdrawal seizures remains
to be determined. In a pilocarpine post-status epilepticus model,
a downregulation of BKCa channel α subunit mRNA and pro-
tein was found in the cortex and hippocampus, consistent with

a loss-of-function of BKCa channels associated with seizure gen-
eration (Pacheco Otalora et al., 2008; Ermolinsky et al., 2011).
Further analysis revealed that the remaining BKCa channels in
the dentate gurus were essentially made of the BKCa channel
STREX splice variant instead of the ZERO variant (Ermolinsky
et al., 2011). Interestingly, inserting the STREX splice variant
shifts the conductance/voltage relation of BKCa channels to the
left so that the channels are active at more physiological Ca2+
and voltage levels (Shipston, 2013). However, elevated intracel-
lular Ca2+ is associated with seizure activity and epileptoge-
nesis (Sanabria et al., 2001; Raza et al., 2004), suggesting an
altered function of the remaining STREX BKCa channels in the
pilocarpine model.

BKCa CHANNEL LOSS-OF-FUNCTION AND ENHANCED NEURONAL
EXCITABILITY IN AUTISM SPECTRUM DISORDERS
Autism spectrum disorders (ASD) are a heterogeneous group of
genetic neurodevelopmental disorders characterized by impair-
ment of social communication and behavioral problems.
Interestingly, studies have reported a co-occurrence of ASD
and epilepsy (Deykin and MacMahon, 1979). The prevalence
of epilepsy and associated electroencephalogram abnormalities
in ASD significantly exceeded that of the normal population
(Tuchman and Rapin, 1997). The higher incidence of epilepti-
form electroencephalogram abnormalities was also reported in
children with ASD without epilepsy (Tuchman and Rapin, 1997).
Thus, autism may be classified as a disorder of neuronal excitabil-
ity, suggesting a potential role for ion channels in the etiology
of ASD. ASD-linked ion channels of interest include BKCa chan-
nels. A mutation in the KCNAM1 gene, which encodes for the
α subunit of BKCa channels, has been reported in some ASD
patients with epilepsy (Laumonnier et al., 2006). The mutated
KCNAM1 gene also causes haploinsufficiency in ASD patients,
suggesting a potential role of BKCa channels in the pathogenesis
of ASD (Laumonnier et al., 2006). When expressed in a het-
erologous system, this mutation exhibits reduced BKCa channel
currents consistent with a loss-of-function (Laumonnier et al.,
2006). Whether the downregulation of BKCa channels directly
contributes to the pathogenesis of autism-epilepsy phenotype
remains unknown.

BKCa CHANNEL LOSS-OF-FUNCTION AND REDUCED NEURONAL
EXCITABILITY IN SEIZURE DISORDERS
Evidence shows that pharmacological blockade of BKCa channels
can trigger seizures and status epilepticus, providing compelling
evidence that BKCa channel loss-of-function can contribute to
epileptogenesis (Young et al., 2003). However, mice lacking BKCa

channel α (and β1) subunits do not exhibit spontaneous seizures,
consistent with no change or reduced CNS excitability (Sausbier
et al., 2004). Thus, the elevated seizure susceptibility observed
in animal models cannot be explained solely by a downregula-
tion of BKCa channel α subunits. Notably, evidence shows that
BKCa channels can be subjected to ubiquitination by CRL4ACRBN

and are therefore retained in the endoplasmic reticulum and
prevented from trafficking to the cell surface. Deregulation of
this control mechanism results in enhanced activity of neuronal
BKCa channels and epileptogenesis (Liu et al., 2014). Notably, the
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cereblon (CRBN) co-localizes with BKCa channels in brain neu-
rons and regulate their surface expression (Jo et al., 2005). The
CRBN gene is highly expressed in the hippocampus, consistent
with its role in the pathogenesis of limbic seizures (Liu et al.,
2014).

BKCa CHANNEL GAIN-OF-FUNCTION HYPOTHESIS
BKCa CHANNEL GAIN-OF-FUNCTION AND ENHANCED NEURONAL
EXCITABILITY IN SEIZURE DISORDERS
Although BKCa channels are thought to reduce neuronal firing,
evidence indicates that the gain-of-function of these channels
can contribute to bursting activity and epileptogenesis. Indeed,
upregulation of the α subunit and downregulation of the β4 sub-
unit of BKCa channels were found in the dentate gyrus neurons
of Krushinskii-Molodkin rats subjected to audiogenic kindling,
which induced enhanced seizure severity (Savina et al., 2014).
These findings are consistent with the BKCa channel gain-of-
function associated with enhanced seizure severity because the
β4 subunit inhibits BKCa channel activity. Notably, genetic dele-
tion of the β4 subunit of BKCa channels facilitates the devel-
opment of pilocarpine-induced seizures that are associated with
gain-of-function of BKCa channels, as characterized by elevated
cell-surface expression of BKCa channels, enhanced Ca2+ sensi-
tivity to BKCa channels, larger currents and high-frequency firing
in the dentate gyrus of the hippocampus (Brenner et al., 2005;
Shruti et al., 2012).

BKCa channel gain-of-function has also been found in human
epilepsy. Accordingly, in a family of patients suffering from gen-
eralized epilepsy (mostly absence epilepsy) and paroxysmal dysk-
inesia, a missense mutation (D434G) in exon 10 of the KCNMA1
gene that encodes the BKCa channel α subunit has been found
(Du et al., 2005). When expressed in a heterologous system, this
mutation gave rise to gain-of-function of BKCa channel currents
characterized by larger currents, elevated open channel probabil-
ity and enhanced Ca2+ sensitivity to BKCa channels (Du et al.,
2005; Wang et al., 2009; Yang et al., 2010). The D434G muta-
tion gain-of-function was potentiated in the presence of β1, β2,
and β4 subunits of BKCa channels (Díez-Sampedro et al., 2006;
Lee and Cui, 2009). Notably, a polymorphism in the β4 subunit
has been associated with human epilepsy (Cavalleri et al., 2007).
These findings suggest that D434G mutation-induced changes in
BKCa channels contribute to neuronal hyperexcitability and lead
to generalized seizures and paroxysmal dyskinesia.

BKCa CHANNEL GAIN-OF-FUNCTION AND REDUCED NEURONAL
EXCITABILITY IN SEIZURE DISORDERS
BKCa channels are found in excitatory neurons located in several
brain sites, including the hippocampus, where they may pro-
mote high-frequency firing (Gu et al., 2007). Blockade of BKCa

channels in these brain sites may reduce or suppress neuronal
hyperexcitability. Consistent with this hypothesis, the blockade
of BKCa channels suppressed pentylenetetrazole-induced epilep-
tiform activity as well as spontaneous bursting activity in cor-
tical neurons obtained from EL mouse, an inherited model of
epilepsy (Jin et al., 2000). Similarly, picrotoxin-induced gener-
alized tonic-clonic seizures give rise to BKCa channel gain-of-
function characterized by elevated currents and high-frequency

firing in somatosensory (barrel) cortical neurons of pre-sensitized
animals (Shruti et al., 2008). Accordingly, the blockade of BKCa

channels suppressed these picrotoxin-induced generalized tonic-
clonic seizures (Sheehan et al., 2009). Thus, picrotoxin-induced
seizure pre-sensitization may cause a maladaptive regulation (e.g.,
exit from the endoplasmic reticulum) of BKCa channels in brain
neurons. In a fly model of ethanol intoxication/withdrawal, a
blockade of Slo1 gene neural promoter prevented the occurrence
of ethanol-induced enhancement of electrographical seizure sus-
ceptibility, suggesting BKCa channel gain-of-function in the
pathogenesis of alcohol withdrawal seizures (Ghezzi et al., 2012).
However, this report raises some controversy with a rodent model
of alcohol withdrawal seizures (N’Gouemo and Morad, 2014).

CONCLUSION
The role of BKCa channels in the pathophysiology of diseases
of neuronal excitability is complex, in part because the activity
of these channels can be regulated by many metabolic factors
that alter neuronal excitability, including phosphorylation and
acidification. Compelling evidence suggests that BKCa channel
loss-of-function and gain-of-function can both contribute to
neuronal hyperexcitability that leads to enhanced seizure suscep-
tibility. The identification of BKCa channel subunit mutations has
been critical in determining the role of these channels in etiol-
ogy and mechanisms for epileptogenesis and seizure generation,
raising the possibility that BKCa channels may represent potential
molecular targets for seizure suppression.
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