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The heart relies on accurate regulation of mitochondrial energy supply to match energy
demand. The main regulators are Ca2+ and feedback of ADP and Pi. Regulation via
feedback has intrigued for decades. First, the heart exhibits a remarkable metabolic
stability. Second, diffusion of ADP and other molecules is restricted specifically in heart
and red muscle, where a fast feedback is needed the most. To explain the regulation by
feedback, compartmentalization must be taken into account. Experiments and theoretical
approaches suggest that cardiomyocyte energetic compartmentalization is elaborate with
barriers obstructing diffusion in the cytosol and at the level of the mitochondrial outer
membrane (MOM). A recent study suggests the barriers are organized in a lattice with
dimensions in agreement with those of intracellular structures. Here, we discuss the
possible location of these barriers. The more plausible scenario includes a barrier at
the level of MOM. Much research has focused on how the permeability of MOM itself
is regulated, and the importance of the creatine kinase system to facilitate energetic
communication. We hypothesize that at least part of the diffusion restriction at the
MOM level is not by MOM itself, but due to the close physical association between
the sarcoplasmic reticulum (SR) and mitochondria. This will explain why animals with a
disabled creatine kinase system exhibit rather mild phenotype modifications. Mitochondria
are hubs of energetics, but also ROS production and signaling. The close association
between SR and mitochondria may form a diffusion barrier to ADP added outside a
permeabilized cardiomyocyte. But in vivo, it is the structural basis for the mitochondrial-SR
coupling that is crucial for the regulation of mitochondrial Ca2+-transients to regulate
energetics, and for avoiding Ca2+-overload and irreversible opening of the mitochondrial
permeability transition pore.
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REGULATION OF MITOCHONDRIAL ENERGY PRODUCTION IN
CARDIOMYOCYTES
The heart can never rest. During high workloads, skeletal mus-
cle may develop an “energy debt,” which is paid back during
rest. But the heart must avoid such an energy debt, as it can-
not take a few minutes off to rest and restore its energy levels.
Therefore, it is crucial to quickly and precisely regulate energy
generation to match the energy consumption in time and space.
The primary energy source in the heart is mitochondrial oxida-
tive phosphorylation, which is mainly regulated by Ca2+ and
ADP/Pi-feedback.

Ca2+ exhibits “parallel regulation” of myofibrillar contraction
and mitochondrial energy supply. Ca2+ enters the mitochondria
through the Ca2+ uniporter, and is pumped out again mainly via
the mitochondrial Na+/Ca2+-exchanger (Wei et al., 2011). This
happens on a beat-to-beat basis. Mitochondrial Ca2+-transients
have the same time to peak as cytosolic Ca2+-transients, but
slower decay (Lu et al., 2013). Ca2+ in the mitochondrial matrix
stimulates pyruvate, isocitrate and α-ketoglutarate dehydrogenase
(McCormack et al., 1990), which reduce NAD to NADH in the

citric acid cycle, as well as the F1F0-ATPase (Territo et al., 2000).
Mitochondrial Ca2+-uptake increases with contraction frequency
and adrenergic stimulation (Lu et al., 2013). Thus, as the Ca2+-
transient increases to make cardiomyocytes contract faster and
with greater force, so is the mitochondrial Ca2+-uptake enhanced
to further stimulate mitochondrial energy generation.

ADP and Pi, on the other hand, exhibit “feedback regulation”
of mitochondrial energy supply. In contrast to Ca2+, which has
a steep electrochemical gradient and is let into the cytosol and
pumped out, the feedback regulation depends on the energetic
circuit, where ATP diffuses from the mitochondria to the ATPases,
and ADP and Pi diffuse from the ATPases to the mitochon-
dria. The importance of feedback as a regulator of mitochondrial
energy supply is intriguing, because the heart exhibits a remark-
able metabolic stability: the ADP-concentration is unchanged
even during large increases in workload and oxygen consump-
tion (Katz et al., 1989; Balaban, 2002). Pi-concentration changes
the most, and some studies suggest Pi to be an important regula-
tor, in particular in low to moderate workloads (Saks et al., 2000;
Bose et al., 2003; Wu et al., 2008). Irrespectively, it is intriguing
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that specifically in cardiomyocytes and red muscle, where feed-
back regulation is needed the most, there seems to be barriers that
obstruct diffusion significantly.

In working heart trabeculae, NADH fluorescence decreases
and then partially recovers upon an increase in work (Brandes
and Bers, 2002). This suggests that there are multiple regula-
tors of mitochondrial energy production. As noted above, Ca2+
stimulates dehydrogenases to produce NADH. It also stimulates
F1Fo-ATPase. But overall, Ca2+-uptake by isolated mitochon-
dria leads to an increase in NADH (Territo et al., 2001). NADH
increases or decreases with Pi depending on the presence of
ADP (Bose et al., 2003). ADP stimulates respiration rate, which
decreases NADH fluorescence and increases flavoprotein fluores-
cence (Jepihhina et al., 2011). Cortassa and collaborators made
an integrated model taking into account how excitation con-
traction coupling influences mitochondrial energetics (Cortassa
et al., 2006). With this model, they were able to reproduce the
experimental data of Brandes and Bers (2002) and analyze the
regulatory mechanisms. Their quantitative analysis suggests that
during work transitions energy supply is regulated initially by
feedback, which decreases NADH. Subsequent parallel regula-
tion by Ca2+ counterbalances this decrease, and NADH recovers
(Cortassa et al., 2006). To explain how feedback can respond so
quickly and be so important, despite overall metabolic stability, it
is necessary to take into account energetic compartmentalization
in cardiomyocytes.

It is well recognized that Ca2+ compartments exist in car-
diomyocytes. Local Ca2+-events are visible with Ca2+-indicators
(Wang et al., 2004). Due to the low Ca2+-affinity of the mito-
chondrial Ca2+-uniporter, mitochondrial Ca2+-uptake would
not take place if it were not for the structural proximity between
mitochondria and the sarcoplasmic reticulum (SR) (Franzini-
Armstrong, 2007). There is, however, no direct coupling, and
Ca2+ has to diffuse from the SR to the mitochondria (Franzini-
Armstrong, 2007). This leads to an intra-mitochondrial Ca2+-
gradient (Lu et al., 2013). The other major signaling molecule in
the cell, cyclic AMP, is also confined to compartments. This is the
only way to explain that stimulation of specific receptors using the
same signaling cascade components (Gs proteins, cyclic AMP, and
protein kinase A) leads to specific responses (Kritzer et al., 2012;
Mika et al., 2012).

With these considerations in mind, it is not so surprising
that cardiomyocytes also have energetic compartments with local
concentrations of ADP, Pi, and ATP. Actually, energetic com-
partmentalization of cardiac tissue was suggested already in
1970, where Gudbjarnason et al. showed that after induction of
ischemia, cardiac contraction declines with the concentration of
phosphocreatine (PCr), while overall ATP remains unchanged
(Gudbjarnason et al., 1970). It is difficult to assess energetic
compartments as there are no good fluorescent indicators for
ADP, Pi, and ATP (as for Ca2+). As an indirect measure, many
studies of energetic compartmentalization have assessed and/or
modeled mitochondrial function in permeabilized fibers and
cardiomyocytes—traditionally during ADP- and ATP-titrations.
Mitochondria in permeabilized cardiomyocytes are characterized
by an apparent ADP-affinity that is much lower than that of iso-
lated mitochondria. This is taken to indicate significant diffusion

restriction between the medium outside the permeabilized cell
and the adenine nucleotide translocase (ANT) in the mitochon-
drial inner membrane. Questions that are still being debated are:
What causes the restriction of diffusion? And how does it affect
energetic communication between ATPases and mitochondria via
feedback?

The exact location of energetic compartments may differ
from other molecules compartments, but the basic principles of
compartment formation are the same. The concentration of a
molecule in a given location depends on (1) the reaction rate
and relative location of proteins involved in its production/release
and consumption/uptake, (2) its diffusion speed, which in turn
depends (among other things) on its concentration gradient,
(3) its buffering by particulate and/or soluble proteins in the
cell, and (4) the organization of physical barriers in the form
of membrane structures, organelles, and macromolecular com-
plexes, which may obstruct diffusion. If the sites of synthesis
and consumption are close to each other, the molecule may be
immediately consumed thus not being able to diffuse to other
parts of the cell. Thus, the molecule concentration will be locally
much higher compared to the bulk, and the enzymes process-
ing the molecule are said to be coupled. This seems to be the
mechanism regulating the compartmentalization of cyclic AMP
(Kritzer et al., 2012; Mika et al., 2012). Any enzyme pair with
common substrate/product can become coupled. One prerequi-
site is, however, that they are bound in each other’s vicinity, so that
the substrate/product is channeled between the enzymes within
the unstirred layer immediately above the surface (Goldman and
Katchalski, 1971; Arrio-Dupont et al., 1985; Fossel and Hoefeler,
1987; Arrio-Dupont, 1988). If the molecule is consumed fur-
ther away from its generation site, it has enough time to diffuse.
Then, its distribution in the cell depends more on diffusion
speed, buffering, and physical structures forming diffusion bar-
riers. Much of molecular motion in the cell occurs by diffusion
(Kinsey et al., 2011). For example, diffusion of ROS is effec-
tive in the micrometer range, making it a feasible mechanism of
communication between mitochondria (Aon et al., 2004).

ENERGETIC COMPARTMENTS IN DIFFERENT SIZES
Experimental data suggest there to be multiple energetic com-
partments scaling in size from coupled enzymes to the pro-
posed intracellular energetic units (ICEUs) (Saks et al., 2001).
Starting with the smallest, good examples of coupled enzyme
pairs are those of creatine kinase (CK), which is bound near
and coupled to various cellular ATPases such as myosin ATPase
(Ventura-Clapier et al., 1987; Arrio-Dupont, 1988; Haagensen
et al., 2008), the sarco-endoplasmic reticulum Ca2+-ATPase, i.e.,
SERCA (Minajeva et al., 1996), the Na+/K+ ATPase (Grosse et al.,
1980), and the KATP-channel (Crawford et al., 2002). Here, the
ATPases hydrolyze ATP to ADP and Pi, and CK uses PCr to regen-
erate ADP to ATP. In the mitochondria, the reaction goes the
other way: ADP is phosphorylated to ATP, and the mitochon-
drial form of CK (Mi-CK) in the inter-membrane space uses
creatine to regenerate ADP (Wallimann et al., 1992). Structural
and model studies have confirmed that Mi-CK is bound near
the ANT via its binding to cardiolipin in the inner mito-
chondrial membrane (Rojo et al., 1991; Schlattner et al., 2009;
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Karo et al., 2012), suggesting direct metabolite transfer between
them (Vendelin et al., 2004b). The reaction may also go in the
direction of ADP and PCr synthesis in the cytosol, where CK may
be coupled to glycolytic enzymes (Kraft et al., 2000).

Larger compartments depend more on physical structures
forming diffusion barriers. At the next size level, compartments
are represented by organelles. In cardiac tissue, mitochondria are
the organelles taking up the largest volume, 20–30%, whereas
next in size the SR represents 4.5% of the cell volume (Decker
et al., 1991). In mitochondria, the double membrane results in
an inter-membrane as well as a matrix compartment. In car-
diomyocytes, there is a significant barrier for ADP at the level of
the mitochondrial outer membrane (MOM). This was first sug-
gested based on the apparent ADP-affinity being much lower in
permeabilized fibers than in isolated mitochondria (Saks et al.,
1991, 1993; Kuznetsov et al., 1996). Indeed, adenine nucleotides
pass the MOM through the voltage gated anion channel (VDAC)
(Rostovtseva and Colombini, 1997), and the permeability of
VDAC can be regulated by tubulin (Rostovtseva et al., 2008;
Rostovtseva and Bezrukov, 2012).

In cardiomyocytes, even larger compartments have been pro-
posed to exist. They were named ICEUs (Saks et al., 2001).
Although their delimiters are still not identified, it has been
suggested that t-tubules, organelles, and macromolecular com-
plexes are organized in such a manner that ATPases are grouped
with mitochondria. The existence of ICEUs was proposed on the
basis of experiments suggesting the existence of cytoplasmic dif-
fusion restrictions. Diffusion restriction by MOM can explain
the much lower ADP-affinity in permeabilized cardiomyocytes.
However, it cannot explain the fact that ADP and Pi generated
inside permeabilized cardiomyocytes seem to be “channeled” to
the mitochondria rather than out of the solution (Kummel, 1988;
Seppet et al., 2001). For this, there has to be cytosolic diffusion
restrictions as well. Modeling shows that these are localized rather
than uniformly distributed in the cytoplasm (Vendelin et al.,
2004a). A more elaborate 3D model shows a possible arrangement
of the diffusion restrictions, which are at the level of MOM and
as sheets between mitochondria—probably formed by the SR and
cytoskeletal proteins (Ramay and Vendelin, 2009).

ENERGETIC COMPARTMENTS AFFECT ENERGETIC
COMMUNICATION—BUT HOW?
In the energetic circuit between ATPases and mitochondria,
the main issue is how to efficiently transport ADP and Pi

from ATPases to the mitochondria. This ensures an adequate
phophorylation potential near ATPases and regulation of mito-
chondrial energy production. Overall, ADP ranges in the μM,
whereas ATP, Pi, PCr, and creatine range in the mM (Wallimann
et al., 1992). Pi-concentration varies the most with changes in
work (Wu et al., 2008). However, due to its low concentration,
even small changes in ADP have a large effect on the phosphory-
lation potential, which must be above a certain value for ATPases
to obtain sufficient energy from ATP hydrolysis.

The physiological importance of coupled enzymes is quite
obvious. The functional coupling between cytosolic CK and
ATPases is beneficial when energy demand exceeds energy sup-
ply, and PCr is used to buffer the ADP/ATP-ratio and thus

the phosphorylation potential. This situation has been dubbed
“temporal energy buffering,” that is characterized by a net con-
sumption of PCr to buffer ATP. In cardiomyocytes, the functional
coupling between Mi-CK and ANT is beneficial, because oxida-
tive phosphorylation is the main source of energy, which can be
stored as PCr. The CK equilibrium constant favors ADP phospho-
rylation. Thus, locally high ATP concentrations or direct transfer
of ATP from ANT is needed for Mi-CK to generate PCr. The same
is true for cytoplasmic CK coupled to glycolytic enzymes.

On a slightly larger scale, the situation becomes more debat-
able. In addition to the temporal energy buffering, CK has been
suggested to function as a spatial buffer. The spatial buffering
occurs because the CK system forms an energy circuit with cre-
atine and PCr, which runs in parallel with that of ADP and ATP.
In the presence of spatial energy buffering there is no net con-
sumption of high-energy phosphates, i.e., consumption matches
generation. Thus, the CK system or “CK shuttle” facilitates ener-
getic communication between ATPases and ATP-producing sites.

In the heart that depends on reliable regulation of mito-
chondrial energy, the CK system has been assumed by other
investigators to be paramount. Indeed, it seems paradoxical that
in oxidative muscles, that rely on energy generated by mito-
chondria, there is a significant barrier obstructing the feedback
from ATPases at the MOM level (Kuznetsov et al., 1996; Ventura-
Clapier et al., 1998). As an explanation, it has been proposed
that the MOM permeability is regulated to ensure energetic com-
munication via the CK system (Saks et al., 1994). While this
proposal is appealing, the role of the CK system continues to be
debated. As noted above, it has been shown that dimeric tubulin
binds VDAC and can restrict its permeability (Rostovtseva and
Bezrukov, 2012). But it has yet to be established whether such a
restriction actually occurs in vivo and whether this restriction is
regulated in the heart. If such regulation occurs, we would expect
MOM to be more permeable in the absence of a functional CK
system.

Experiments where the CK system was inhibited by feeding
with beta-guanidinoproionic acid (a creatine analog) or knock-
out of one or more CK isoforms have shown varying effects
on cardiac function. In general, the hearts seem to adapt to
cope with basal workloads, but they fail under high workload
conditions, fast work transitions and ischemia (Shoubridge et al.,
1985; Mekhfi et al., 1990; Zweier et al., 1991; Neubauer et al., 1999;
Kaasik et al., 2001; Crozatier et al., 2002; Spindler et al., 2004;
Nahrendorf et al., 2005). In studies of knockout mice, genetic
background has turned out to be important, and backcrossing
seems to result in a milder phenotype (Lygate et al., 2009, 2012).
It has been surprising that, so far, no compensatory changes have
been found in heart of mice lacking guanidineacetate methyl-
transferase (GAMT; an enzyme in the creatine synthesis path-
way), where the CK system is non-functional due to lack of
creatine. These mice are smaller in size (Schmidt et al., 2004)
but exhibit the same exercise capacity and tolerance to chronic
myocardial infarction of their wild type littermates (Lygate et al.,
2013). Furthermore, in a follow up study it was shown that intra-
cellular compartmentalization as well as diffusion across MOM
and mitochondrial organization were unchanged (Branovets
et al., 2013). GAMT deficient mice accumulate guanidinoacetate,
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which is phosphorylated and may be used instead of creatine by
CK in critical situations (Boehm et al., 1996; Kan et al., 2004).
However, guanidinoacetate is not used by Mi-CK (Boehm et al.,
1996), thus being unable to facilitate transport across MOM.
Consequently, the cardiomyocytes of these mice do relatively well
without a CK system, despite the fact that diffusion is restricted
at the level of MOM to the same extent as in wildtype. This is
in agreement with the idea that mitochondria are able to supply
energy for SERCA-mediated Ca2+-uptake with the same effi-
ciency as CK (Kaasik et al., 2001). However, this interpretation
raises the following question: is the CK system needed to facilitate
ADP/ATP transport across MOM in the heart? At present, we have
no firm answer to this question, and further studies are needed.

It must be noted that spatial energy buffering by CK may
not exclusively mean that CK facilitates energetic communica-
tion across MOM. Experiments with mice overexpressing M-CK
showed that the higher M-CK activity and the associated higher
CK flux significantly improves cardiac function after ischemia-
reperfusion (Akki et al., 2012) and in failing hearts (Gupta et al.,
2012). Indeed, the decrease in CK flux can be used as a predic-
tor of heart failure (Bottomley et al., 2013). Taken together these
data indicate that lack of CK does not worsen heart failure and
that M-CK overexpression has therapeutic potential (Lygate and
Neubauer, 2014). Whereas the rescue by M-CK overexpression
seems to be at odds with the lack of changes in knockout mod-
els, differences in metabolism and energy transfer during energy
starvation might provide an explanation. In the healthy heart,
CK activity is moderate and a significant fraction is accounted
for by Mi-CK. In glycolytic muscles, the total CK activity is
higher than in oxidative muscle, mainly due to cytosolic M-CK
(Ventura-Clapier et al., 1998). Both ischemic and failing hearts
exhibit insufficient mitochondrial energy generation, relying on
glycolytic energy supply to a large extent. This prompts us to ask
whether hearts overexpressing M-CK are rescued because of a
higher M-CK activity enabling a more efficient energy transfer
between glycolytic enzymes and ATPases.

The importance of CK as a spatial energy buffer has also
been studied using theoretical approaches. Some of these stud-
ies support the idea that CK-mediated enhancement of the ADP
feedback is important (Wu and Beard, 2009). A model based
on NMR data suggested that under normal conditions, ener-
getic communication may occur via direct ADP/ATP transport
as well as creatine/PCr transport. In contrast, at high workload,
the CK system is bypassed (Vendelin et al., 2010). A recent study
shows that energy transport via the CK system amounts to no
more than 15% (Hettling and van Beek, 2011). In fact, tempo-
ral and spatial energy buffering by the CK system are inseparable
(Meyer et al., 1984). This is in agreement with the idea that
the mitochondrial response to a change in heart rate is faster in
CK knockout mice (Gustafson and van Beek, 2002). In view of
these data, we ask whether in the heart, spatial energy buffer-
ing is needed under physiological conditions, and for facilitated
transport across MOM.

Model simulations of kinetic data suggest moderate diffusion
restriction at the MOM level, but not necessarily by MOM itself
(Ramay and Vendelin, 2009; Sepp et al., 2010). Thus, a significant
part of the low apparent ADP-affinity in permeabilized cells is

due to cytoplasmic diffusion restrictions forming ICEUs. ICEUs
explain why ADP is channeled to mitochondria rather than out of
the cell (Seppet et al., 2001), and why mitochondrial ATP is as effi-
cient as CK in providing ATP to SR and myofilaments with ATP
(Kaasik et al., 2001). Hypothetically, ICEUs confine mitochondria
and ATPases in smaller compartments to reduce diffusion dis-
tances and ensure direct energetic communication. However, it
remains an open question whether the ICEUs are “designed” in
the sense that some structures are specifically organized in order
to form ICEUs, or whether ICEUs are simply the consequence of
cellular organization.

Figure 1A shows the regular arrangement of mitochondria in a
cardiomyocyte. Figure 1B displays the probability distribution of
neighboring mitochondria around a central mitochondrion. Of
note is the circular arrangement of mitochondria in the cross-
section (Birkedal et al., 2006). Does this arrangement explain
energetic coupling between mitochondria and ATPases? Rows of
myofilaments are surrounded by rows of mitochondria that func-
tion as sinks for ADP and Pi. Oppositely, rows of mitochondria
are also surrounded by rows of myofilaments that function as
sinks for ATP. It seems natural that in a feedback system with
energetic circuits, the majority of metabolites diffuse down their
concentration gradients the shortest possible path rather than
diffusing out of the permeabilized cell.

FIGURE 1 | Highly ordered arrangement of intermyofibrillar

mitochondria in rat cardiomyocytes. (A) Representative confocal image
of MitoTracker Green labeled mitochondria are shown on the top (XY) and
reconstructed cross-section (XZ) at the bottom. The original images are
compared with deconvolved images after applying algorithms developed in
Laasmaa et al. (2011). (B) Probability density of the closest mitochondrial
centers in each sector of a rat cardiomyocyte, calculated as described in
Birkedal et al. (2006). The density is shown in pseudo color with blue
corresponding to regions where no neighboring mitochondria were found
and red to the regions with high probability of finding the center of
neighboring mitochondria. Note that mitochondria are arranged in a regular
pattern (XY plane) with parallel rows separated by ∼1.8 μm that can be
found in any transversal direction relative to each other (XZ plane). For
details of the analysis, see Birkedal et al. (2006).
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In the quest for the location of cytosolic diffusion restrictions,
we have studied intracellular diffusion using raster image correla-
tion spectroscopy (RICS). We first showed that radial diffusion
of fluorescently labeled ATP in cardiomyocytes is slower than
transversal diffusion (Vendelin and Birkedal, 2008). A later study
used two fluorescent molecules of different size (Illaste et al.,
2012). Here, it was intriguing to find that in the cardiomyocyte
compared to solution, diffusion of the large molecule was less
restricted than diffusion of the small molecule. A stochastic model
predicted that diffusion restrictions form a lattice with dimen-
sions that are in agreement with the cardiomyocyte ultrastructure
(Illaste et al., 2012). In Figure 2, we take a step further and draw
this lattice superimposed on the cardiomyocytes ultrastructure.

Two possible scenarios are represented in Figure 2. In the first
one (Figure 2A), the lattice is superimposed onto the mitochon-
drial membranes and the m-band and z-line of the sarcomere. In
the second one (Figure 2B), half of a mitochondrion is grouped
together with a fraction of a sarcomere. Considering the struc-
tures in the cell, the former seems more plausible: Transversally,
diffusion barriers are formed by mitochondrial and SR mem-
branes whereas longitudinal barriers are constituted by protein-
dense regions in the myofilaments (z-lines and m-bands) and
probably with some help from the junctional SR and t-tubules.
However, the problem is that diffusion restriction at the level
of MOM seems to separate rather than group together mito-
chondrial energy generation and ATPase energy consumption. An
alternative explanation would be that diffusional restrictions at
MOM are not due to the membrane itself but a result of its close
association with the SR. Much of the work on energetic com-
partmentalization uses permeabilized cardiomyocytes, which are
kept in a relaxed state. Although non-physiological, this is a use-
ful preparation since it represents a simple situation. However,
the importance of the SR is difficult to study in permeabilized
cardiomyocytes, as SERCA is not active in this preparation (Sepp
et al., 2014). As a membranous structure, the SR associated with
the mitochondria will restrict diffusion from the medium to
mitochondria in permeabilized cardiomyocytes. However, it also
forms the structural basis for the energetic coupling between
SERCA and mitochondria (Kaasik et al., 2001).

A fully developed cardiac CK system with a relatively high
expression of mitochondrial as well as cytosolic CK isoforms is
mainly found in adult mammals. The fact that mitochondrial CK
seems absent in the hearts of lower vertebrates such as fish and
frog can be explained by that they have a lower body temperature
and cardiac performance, and depend more on glycolytic energy
production (Ventura-Clapier et al., 1998; Birkedal and Gesser,
2006; Sokolova et al., 2009). Likewise, neonatal mammals with
lower cardiac performance and higher reliance on glycolysis do
not express Mi-CK (Hoerter et al., 1991, 1994; Tiivel et al., 2000).
As the cardiomyocytes mature, they increase in diameter and
develop from a relatively simple morphology to multiple parallel
rows of myofibrils and mitochondria organized in a crystal-like
pattern as we know it in adult cardiomyocytes (Vendelin et al.,
2005; Birkedal et al., 2006; Anmann et al., 2014). In parallel, they
develop t-tubules and a more elaborate SR (Sedarat et al., 2000;
Dan et al., 2007) as their excitation contraction coupling changes
to depend less on trans sarcolemmal Ca2+-transport and more on
L-type Ca2+-influx to trigger Ca2+-release from the SR (Huang
et al., 2008). During maturation the functional significance of
cytosolic and Mi-CK increases (Hoerter et al., 1994). In light of
the question whether CK facilitates transport across MOM, it is
tempting to speculate that the increase in Mi-CK during develop-
ment occurs simply because the cells transition from glycolytic
to mitochondrial energy generation (Ostadal et al., 1999) and
functional coupling of CK to an energy generation site is neces-
sary for this reaction to happen in the direction of PCr synthesis.
Probably, the concomitant decrease in apparent ADP-affinity is
not for increasing energetic communication via the CK system,
but due to the simultaneous development of the SR. The SR is less
developed in lower vertebrates (Santer, 1985; Franzini-Armstrong
and Boncompagni, 2011). In mammal heart, the SR develops sig-
nificantly postnatally (Dan et al., 2007; Huang et al., 2008), and
so does its association with mitochondria (Boncompagni et al.,
2009). Thus, changes in SR-mitochondria interactions might
provide an alternative explanation for the inter-species differ-
ences and developmental changes in the apparent ADP-affinity
of permeabilized cardiomyocytes (Ventura-Clapier et al., 1998;
Sokolova et al., 2009; Anmann et al., 2014). Additionally, the low

FIGURE 2 | Two scenarios for how diffusional barriers may be organized

in cardiomyocytes. The schematic drawings are scaled according to Birkedal
et al. (2006), Hayashi et al. (2009) and show mitochondria, t-tubules and
sarcoplasmic reticulum (SR) around a sarcomere. The diffusional barriers are

drawn to scale according to Illaste et al. (2012) and superimposed. In (A) the
barriers are in agreement with the cell structures, but seem to separate
mitochondria and myosin ATPases. In (B) mitochondria are grouped together
with ATPases, but this scenario is difficult to explain in structural terms.
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apparent ADP-affinity is specific for oxidative muscles (Kuznetsov
et al., 1996; Ventura-Clapier et al., 1998). The difference between
muscles might be explained by distinct expression of tubulin that
regulate VDAC gating (Varikmaa et al., 2014). Another explana-
tion involves SR-mitochondria interaction that seems to be more
prominent in muscles that are rich in mitochondria (Franzini-
Armstrong, 2007).

The close association of SR and mitochondria is crucial for
proper function and energetic regulation. By ensuring mito-
chondrial Ca2+-uptake, it allows for regulation of mitochondrial
energy production by Ca2+ as well as ADP and Pi. Moreover,
it ensures sufficient energy supply to SERCA. Indeed, mito-
chondria are as efficient as CK in providing energy for SERCA
function (Kaasik et al., 2001). Furthermore, as is the subject
of this special issue, mitochondria are not only energetic but
also redox hubs since they generate reactive oxygen species
(ROS) with signaling potential. Mitochondrial Ca2+-uptake may
take part in the regulation of ROS. As noted in the begin-
ning, Ca2+ uptake by mitochondria increases NADH. Therefore,
the Ca2+-uptake under physiological conditions may have sim-
ilar effects as the addition of respiratory substrates: increase in
NAD(P)H in turn used to reduce glutathion and thioredoxin
pools, important antioxidant systems modulating mitochondrial
ROS-emission (Garcia et al., 2010; Stanley et al., 2011; Aon et al.,
2012). Compromised energy provision affects SERCA activity
and Ca2+-re-uptake. This may lead to an increase in mito-
chondrial Ca2+, which is known to be an important trigger
of the permeability transition pore (mPTP) (Bernardi, 1999).
mPTP opening is to some extent reversible. But high enough
Ca2+ and stimulation by other factors leads to irreversible open-
ing, and eventually to apoptosis and/or necrosis (Di Lisa et al.,
2011). Functional coupling between SR and mitochondria will
ensure energy supply to SERCA thus preventing excessive mito-
chondrial Ca2+-uptake. In a situation of limited energy supply,
transport of ADP and Pi from SERCA to the mitochondria
may increase the mitochondrial Ca2+-uptake capacity before
mPTP opening is triggered (Wei et al., 2012; Sokolova et al.,
2013).

CONCLUDING REMARKS
Feedback regulation of energetics depends on the location of dif-
fusion barriers. We suggest an alternative explanation for the
diffusion restriction at MOM level, namely that it is due to a
close association of mitochondria and SR that ensures SERCA
energy supply as well as mitochondrial regulation by Ca2+. It
has been suggested that in cardiomyocytes, the permeability of
MOM itself is regulated by tubulin. Indeed, “closing the gates”
to the mitochondria to enhance energetic communication by
the CK system seems like a good explanation, if it is more
efficient. There are, however, some studies suggesting that a sig-
nificant fraction of the energetic communication can occur as
direct transport of ATP, ADP, and Pi. Also, cardiac function
is not severely compromised by the lack of a functional CK
system although diffusion restriction at the level of MOM is
unchanged.

Whether the compartmentalization of energy units control
the feedback exerted by the CK system or merely exists as part

of a structural organization to optimize energy transfer between
mitochondria and ATPases via ADP, Pi, and Ca2+, remain open
questions.
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