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O-GlcNAcylation, a generally undermined atypical protein glycosylation process, is
involved in a dynamic and highly regulated interplay with phosphorylation. Akin to
phosphorylation, O-GlcNAcylation is also involved in the physiopathology of several
acquired diseases, such as muscle insulin resistance or muscle atrophy. Recent data
underline that the interplay between phosphorylation and O-GlcNAcylation acts as a
modulator of skeletal muscle contractile activity. In particular, the O-GlcNAcylation level
of the phosphoprotein myosin light chain 2 seems to be crucial in the modulation of
the calcium activation properties, and should be responsible for changes in calcium
properties observed in functional atrophy. Moreover, since several key structural proteins
are O-GlcNAc-modified, and because of the localization of the enzymes involved in the
O-GlcNAcylation/de-O-GlcNAcylation process to the nodal Z disk, a role of O-GlcNAcylation
in the modulation of the sarcomeric structure should be considered.
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O-GlcNAcylation, AN ATYPICAL GLYCOSYLATION
Nowadays, it is well admitted that the phosphorylation does
not act alone in the fine modulation of numerous cellular
processes, but rather, presents a dynamic and highly regu-
lated interplay with an atypical glycosylation, the O-linked N-
acetyl-glucosaminylation (termed O-GlcNAcylation), occurring
on nuclear, cytoplasmic and mitochondrial proteins (Hart et al.,
2007; Cao et al., 2013; Johnsen et al., 2013). This minire-
view is based on significant references focused on the recent
advancements concerning the link between O-GlcNAcylation,
contractile proteins and calcium affinity in skeletal muscle
(Figure 1).

The O-GlcNAcylation of proteins results from the trans-
fer of N-acetyl-β-D-glucosamine from the high energy donor
substrate UDP-GlcNAc (synthesized through the hexosamine
biosynthesis pathway) onto the hydroxyl group of serine and
threonine residues of target proteins by the uridine diphospho-N-
acetyl glucosaminyl transferase (O-GlcNAc transferase or OGT).
The β-N-acetylglucosaminidase (O-GlcNAcase or OGA) cat-
alyzes the removal of O-GlcNAc residues from proteins (Dong
and Hart, 1994; Gao et al., 2001; Wells et al., 2002). Thus,
like phosphorylation, the addition/removal of GlcNAc moi-
eties on the proteins results from the concerted action of
two antagonist enzymes. Reversible, O-GlcNAcylation is highly
dynamic, and responds rapidly to changes in environmen-
tal conditions (Hart et al., 2007). Since OGT is coded from
only one gene (Kreppel et al., 1997), the regulation of its
activity, its localization in cell, or its specificity toward pro-
tein targets are ensured by targeting proteins, such as protein

phosphatase 1 (PP1), Milton (OIP106), p38MAP kinase, myosin
phosphatase 1 (MYPT1) or peroxisome-proliferator-activated
receptor-co-activator-1alpha (PGC1α), transiently associated
with OGT through tetratricopeptide repeats (TPR domains)
at the N-termini of the transferase (Iyer and Hart, 2003; Iyer
et al., 2003; Wells et al., 2004; Cheung and Hart, 2008; Cheung
et al., 2008; Housley et al., 2009). In the same way, the OGA
could also be associated with other proteins like calcineurin
or heat shock proteins among others (Wells et al., 2001).
Moreover, an unusual association of the two opposing OGA/OGT
was described, forming a single O-GlcNAczyme complex
(Whisenhunt et al., 2006).

The analysis of O-GlcNAc pattern, the quantification of vari-
ation of O-GlcNAcylation on proteins and the identification of
the glycosylated sites are crucial for the understanding of the role
of this atypical glycosylation. Methodological approaches include
western blot analyses using antibodies directed against O-GlcNAc
moieties or lectins (Zachara et al., 2011), or the labeling of O-
GlcNAcylated proteins with galactosyltransferase and coupling of
different kind of substrates (Zachara et al., 2011). Moreover, the
identification and mapping of O-GlcNAc modification sites have
been at the origin of several technical developments during the 10
last years (Ma and Hart, 2014 for review).

O-GlcNAcylation has been shown to be involved in almost all
cellular processes, including signal transduction, protein degrada-
tion or regulation of gene expression (Hart et al., 2011; Bond and
Hanover, 2013). O-GlcNAcylation has been also demonstrated
to act as an inducible, cytoprotective stress response. Indeed,
increase in O-GlcNAcylation of nucleocytoplasmic proteins
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FIGURE 1 | Diagram showing various effects and implications of O-GlcNAcylation in skeletal muscle.

protects cells with an induction of heat shock proteins (Zachara
et al., 2004). In cardiomyocytes, O-GlcNAcylation can attenuate
oxidative stress through inhibition of calcium overload and ROS
generation (Ngoh et al., 2010). Studies performed with OGT and
OGA knockout mice have demonstrated that O-GlcNAc is cru-
cial for life since O-GlcNAcylation was essential for embryonic
stem cell viability and is implicated in the aging process, ele-
vation of O-GlcNAcylation being altered in different tissues of
different ages (Shafi et al., 2000; Yang et al., 2012). Moreover,
many reports demonstrate that O-GlcNAcylation might play a
role in the physiopathology of several acquired diseases, such
as cancer, cardiovascular diseases, neurodegenerative diseases,
Alzheimer or type II diabetes (Lefebvre et al., 2010; Slawson et al.,
2010; Nakamura et al., 2012; Bond and Hanover, 2013; Ma and
Hart, 2013; Ma and Vosseller, 2013; Förster et al., 2014). Indeed,
increased O-GlcNAcylation is closely linked to insulin resistance
and hyperglycemia-induced glucose toxicity.

O-GlcNAcylation, SKELETAL MUSCLE, AND
INSULIN-RESISTANCE
The concept of a role of O-GlcNAcylation in skeletal mus-
cle has emerged from studies considering muscle as one of
the crucial insulin-sensitive tissue; indeed, skeletal muscle is
responsible for more than 80% of insulin-stimulated glucose
uptake in humans. In the past decades, studies in rodents
(Hawkins et al., 1997a,b) suggested a correlation between the
development of insulin resistance and increased UDP-GlcNAc
concentrations in muscle. Thus, raising O-GlcNAc level in skele-
tal muscle has been demonstrated to induce insulin resistance
(Arias and Cartee, 2005, Figure 1), while coinfusion of insulin
and glucosamine, increasing UDP-GlcNAc, enhances the O-
GlcNAc modification on numerous unidentified skeletal muscle
proteins (Yki-Jarvinen et al., 1998). Moreover, transgenic mice

overexpressing GLUT1 in skeletal muscle was insulin resistant
and exhibit chronically increased glucose flow and increased
UDP-GlcNAc concentrations in muscle (Buse et al., 1996);
indeed, 2–5% of the glucose entering into the cell is directed
to the hexosamine biosynthesis pathway, leading to the synthesis
of UDP-GlcNAc, the donor for O-GlcNAcylation. More recently,
it has been suggested that mitochondrial and contractile dys-
functions, observed in the development of Type 2 diabetes, were
linked to the increase in O-GlcNAcylation level (Johnsen et al.,
2013). Thus, in rats artificially selected for Low Running Capacity
(LCR rats), predisposed to becoming obese, and developing
insulin resistance and cardiovascular dysfunction, the increase
in O-GlcNAcylation on mitochondrial proteins and SERCA was
associated with mitochondrial dysfunction and changes in con-
tractile properties (Koch et al., 2012). In the LCR heart myocytes,
the cardiovascular dysfunction could be attributed to the decline
in the contractility, correlated to the impaired intracellular Ca2+
handling and signaling (Koch et al., 2012). Hu et al. (2005)
demonstrated also the correlation between O-GlcNAcylation and
diabetes since they demonstrated that adenoviral transfer of OGA
into the myocardium of streptozotocin induced diabetic mice,
reversed the excessive O-GlcNAc modifications associated with
diabetes, particularly in the contractile dysfunctions and Ca2+
handling capacities (Hu et al., 2005). The decline in contractibility
could be related to the decrease in calcium affinity and sensi-
tivity reported in skinned cardiac fibers in presence of GlcNAc
(Ramirez-Correa et al., 2008) but rather involved changes in
expression of SERCA (Hu et al., 2005; Johnsen et al., 2013). This
role of O-GlcNAcylation should be considered also in skeletal
muscle since dysfunction of contractibility as well as the Ca2+
handling were also measured in skeletal muscle of rat models of
diabetes (Eshima et al., 2013), via impaired SERCA and Glut 4
(Safwat et al., 2013).
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O-GlcNAcylation/PHOSPHORYLATION INTERPLAY AND
SKELETAL MUSCLE CONTRACTILE ACTIVITY
Phosphorylation was well-admitted for a long time to regu-
late many key processes in muscle physiology. Among them,
phosphorylation is a key regulator of the intracellular signaling
pathways involved in muscle mass and phenotype adaptation to
physiological demands. Moreover, phosphorylation is involved in
myofibrillar physiology, such as muscular contraction or cellular
structuration through the modulation of protein-protein interac-
tions. Indeed, phosphorylation has been demonstrated to play a
crucial role in the regulation of the contractile properties in stri-
ated muscle, but recent reports suggested that O-GlcNAcylation
might play a role as important as phosphorylation in muscle
physiology. Thus, many proteins of muscle proteome have been
identified to be O-GlcNAc modified (Cieniewski-Bernard et al.,
2004, 2012; Hedou et al., 2007; Ramirez-Correa et al., 2008).
Among them, several key contractile proteins of striated muscle
are concerned, i.e., myosin heavy chains (slow MHCI as well as
the fast isoforms MHCIIA and MHCIIB), myosin light chains
(essential MLC or MLC1 and regulatory MLC or MLC2), actin,
both α and β isoforms of tropomyosin as well as isoforms of TnI
and TnT. It is noteworthy that it is not known whether TnC, the
calcium-sensor, bears an O-GlcNAc moiety or not.

While contraction is triggered by calcium release, it is reg-
ulated by several myofilament proteins such as the regulatory
myosin light chain (termed MLC2). MLC2 phosphorylation is
not essential for skeletal muscle contraction but is an important
regulatory mechanism since it can produce changes in thick fil-
ament structure and enhance crossbridge attachment (Szczesna
et al., 2002). For instance, phosphorylation of MLC2, catalyzed
by a Ca2+/calmodulin-dependant MLC kinase, increases the force
development at submaximal calcium concentration, conferring a
higher calcium sensitivity to the fibers (Persechini et al., 1985;
Stephenson and Stephenson, 1993; Sweeney et al., 1993; Szczesna
et al., 2002).

Our recent data highlight the key role of O-GlcNAcylation
as a modulator of skeletal muscle contractile activity, in partic-
ular on the calcium activation properties (Hedou et al., 2007;
Cieniewski-Bernard et al., 2012). Indeed, muscle skinned fibers,
when exposed to N-acetyl-D-glucosamine, present a reversible
decrease in calcium sensitivity and affinity, whereas the cooper-
ativity within the thin filament was not changed (Hedou et al.,
2007). This modulation probably involved disruption of protein-
protein interactions through O-GlcNAc moieties. Interestingly, a
similar effect was observed in rats as well as in human skinned
fibers (Cieniewski-Bernard et al., 2009) and also measured in
cardiac trabeculae (Ramirez-Correa et al., 2008).

Further experiments performed after the pharmacological
increase of O-GlcNAcylation level of contractile protein glyco-
sylation, using PUGNAc or Thiamet G, two inhibitors of OGA
(Gloster and Vocadlo, 2010), leads to an increase of calcium
affinity on slow soleus skinned fibers (Cieniewski-Bernard et al.,
2012). Several regulatory contractile proteins, predominantly fast
isoforms, presented a drastic increase in their O-GlcNAc level.
Since the only slow isoform of contractile protein (and so the
more representative isoforms in the slow skeletal muscle) pre-
senting an increase of O-GlcNAc level was the myosin regulatory

light chains MLC2, the effect of enhanced O-GlcNAcylation pat-
tern on calcium activation parameters of slow soleus fibers was
attributed to the increase of the O-GlcNAcylation of sMLC2
(Cieniewski-Bernard et al., 2012).

All these data closely linked O-GlcNAcylation to the mod-
ulation of contractile activity of skeletal muscle, a decrease in
O-GlcNAcylation being associated to a decrease in calcium affin-
ity and reciprocally (Figure 1). Moreover, analysis of the proteins
presenting changes in their O-GlcNAc level states suggests that
MLC2 could play an important role in this modulation. Since
MLC2 was identified to be O-GlcNAcylated (Hedou et al., 2007),
and because of the potential antagonism between phosphoryla-
tion and O-GlcNAcylation, i.e., the potential O-GlcNAcylated site
corresponds to the only site of phosphorylation in MLC2 located
in Ser 14 for the rat slow MLC2 isoform (Blumenthal and Stull,
1980; Ramirez-Correa et al., 2008), the O-GlcNAcylation should
be considered as a potential new mechanism that could mod-
ulate the contractile properties of skeletal muscle as well as the
phosphorylated states of MLC2.

O-GlcNAcylation/PHOSPHORYLATION INTERPLAY, AND
SKELETAL MUSCLE CONTRACTILE DYSFUNCTION IN
ATROPHIED MUSCLE
Muscle atrophy characterized skeletal muscle adaptation to a
large variety of disuse conditions (immobilization, micrograv-
ity, bed rest, or nerve injury). This atrophy results from a
reduction in fiber diameter, protein content and is associated
with slow to fast phenotype transitions accompanied by func-
tional changes such as loss in force and increased fatigability
(Baldwin et al., 1996; Fitts et al., 2000; Fluck and Hoppeler, 2003;
Mounier et al., 2009). Moreover a role of O-GlcNAcylation in the
development of muscle atrophy has been suggested (Cieniewski-
Bernard et al., 2006; Figure 1). Indeed, a correlation between
variations in O-GlcNAcylation levels and the development of
atrophy after hindlimb unloading was shown, suggesting that O-
GlcNAc variations could control the muscle protein homeostasis
(Cieniewski-Bernard et al., 2006). In particular, it was suggested
that O-GlcNAcylation should be implicated in the regulation of
muscular atrophy as a protective mechanism against proteasomal
degradation (Cieniewski-Bernard et al., 2006). It was also recently
described that muscle-specific overexpression of NCOATGK, a
splice variant of O-GlcNAcase, induces skeletal muscle atrophy
(Huang et al., 2011).

We have demonstrated that the slow-to-fast transition (at
MHC and MLC2 level) concomittantly to soleus muscle atrophy
was correlated with an increase of the global level of MLC2 phos-
phorylation in rat hindlimb unloading model (Bozzo et al., 2005)
as well as in human patients who were subjected to 2-months
Bed Rest (Stevens et al., 2013). However, similar variations in
MLC2 phosphorylation have been observed when clenbuterol
was administrated to rats; in such case, muscle hypertrophy was
associated to slow-to-fast transition in rats (Bozzo et al., 2003).

Thus, the slow-to-fast MLC2 transition was associated to an
increase of phosphorylation level of the two isoforms regardless
of whether hypertrophy or atrophy develops. Moreover, although
numerous data argue that MLC2 phosphorylation lead to higher
calcium sensitivity in skeletal muscle, an increase in MLC2
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phosphorylation was measured after muscle atrophy whereas the
calcium sensitivity decreases (Bozzo et al., 2003). Similar data
were obtained from phosphoproteome analysis in human aged
muscle (Gannon et al., 2008). These data could indicate that
the decrease in calcium sensitivity occurring during hindlimb
unloading could involve another type of regulation than classical
phosphorylation. Since we demonstrated that a decrease in cal-
cium affinity was measured when O-GlcNAcylation is reduced,
and since a decrease in O-GlcNAcylation is observed in atro-
phied muscle, one hypothesis is that O-GlcNAcylation might be
involved in this alteration.

To support this hypothesis, the variation of O-GlcNAcylation
level on MLC2, as well as its interplay with phosphorylation,
was investigated in atrophied soleus muscle (Cieniewski-Bernard
et al., in press). Interestingly, an antagonism between phospho-
rylation and O-GlcNAcylation was demonstrated on the slow
MLC2 in a rat model of hindlimb unloading, largely used to
induce functional atrophy of antigravitary muscles such as soleus
(Cieniewski-Bernard et al., in press), since a decrease in MLC2 O-
GlcNAcylation was measured in atrophied soleus associated to the
increase in phosphorylation states as previously described. More
importantly, the use of Phos-Tag acrylamide gels allowed the
authors to analyze the O-GlcNAcylation state on each phospho-
rylated form of MLC2 (Cieniewski-Bernard et al., in press). It was
demonstrated that the two post-translational modifications were
mutually exclusive, and that this interplay was closely associated
to load because of the reversibility of these processes occur-
ring during reloading. Interestingly, it was demonstrated that the
enzymes involved in the phosphorylation/dephosphorylation and
O-GlcNAcylation/de-O-GlcNAcylation processes were associated
within a multi-enzymatic complex, and were localized to the
nodal Z disk region of the sarcomere. All these results are in favor
of an interplay between phosphorylation and O-GlcNAcylation
on MLC2, probably through the same site.

This interplay between phosphorylation and O-GlcNAcylation
in the fine modulation of MLC2 activity was also observed in
humans (Stevens et al., 2013). Indeed, the post-translational
modifications of MLC2 were investigated in soleus biopsies
obtained from 60-days Bed-Rest female subjects. In this cohort,
several groups were formed: 60-days Bed Rest (BR), BR +
Exercice (combined aerobic and resistive exercises), and BR +
Nutritional protocol (leucine and valine diet). The slow-fast phe-
notype transition of MLC2 was associated to an increase of the
phosphorylation states of slow and fast isoforms MLC2 while
the global MLC2 glycosylation level was decreased. Interestingly,
aerobic and resistive exercises, which preserved muscles from
BR changes (and so slow-to-fast transition), also prevented this
antagonism.

Taken together, all these data clearly corroborated the inter-
play between phosphorylation and O-GlcNAcylation on MLC2,
in animal and in human models of functional atrophy. Indeed,
the decrease in calcium sensitivity as well as calcium affinity
measured in skinned fibers of atrophied muscle soleus cannot
be obviously explained by the increase in MLC2 phosphoryla-
tion state, as it was previously described (Bozzo et al., 2003).
Since previous experiments have demonstrated that decrease
in O-GlcNAcylation was associated to a decrease in calcium

sensitivity and affinity, whereas its phosphorylated state increased
in atrophied muscle, MLC2 O-GlcNAcylation state could be
predominantly involved in the alteration of contractile parame-
ters observed in atrophied soleus. In contrast, the MLC2 phos-
phorylation might be rather associated to phenotype transition
than to changes in contractile parameters in atrophied muscle.
Interestingly, some data support for a structural role of MLC2
phosphorylation: MLC2 phosphorylation induces stress fiber
assembly in nonmuscle cells (Katoh et al., 2001) and mediates
sarcomere organization during hypertrophic growth in cardiac
muscle (Aoki et al., 2000).

However, further functional experiments need to
be performed to demonstrate unambiguously that the
phosphorylation/O-GlcNAcylation balance of MLC2 might
be directly involved in the decrease in calcium sensitivity and
affinity observed in atrophied muscles. While recent reports
focused on MLC2, other regulatory contractile proteins have
been demonstrated to be O-GlcNAcylated such as Tropomyosin,
TnT and TnI (Cieniewski-Bernard et al., 2012). We cannot
totally exclude that the glycosylation state of these proteins nor
that unidentified O-GlcNAc proteins (more particularly, TnC is
one of them) might play a role in the modulation of contractile
activity.

MYOFIBRILLAR PROTEINS O-GlcNAcylation AND
PERSPECTIVES
From the data described above, it seems very likely that
O-GlcNAcylation plays a major role in modulating the con-
tractile activity in skeletal muscle. However, the role of the O-
GlcNAcylation might also concern other mechanisms involved
in the sarcomeric structure. The preferential localization of
OGT and OGA in the sarcomere, more particularly at the Z
disk region (Cieniewski-Bernard et al., in press), argue for an
important role of O-GlcNAcylation in this nodal region that
could influence mechanisms other than the modulation of the
contractile activity. Indeed, it was demonstrated that myosin,
actin but also key proteins involved in the sarcomeric struc-
ture (desmin, actinin, αB-crystallin, and ZASP) were modified
by O-GlcNAc moieties (Cieniewski-Bernard et al., 2012; Leung
et al., 2013). Interestingly, we demonstrated that the O-GlcNAc
sites on myosin were localized in a region involved in polymer-
ization and interaction of myosin with proteins partner such as
myomesin, M-protein or titin (Hedou et al., 2009) supporting a
role for O-GlcNAcylation in the organization of the sarcomere
(Figure 1). This hypothesis is underlined by the fact that numer-
ous structural proteins are modified by O-GlcNAc: beta3 integrin
(Ahmad et al., 2006), vinculin (Laczy et al., 2010), spectrin
(Zhang and Bennett, 1996), alphaB-crystallin (Roquemore et al.,
1996), laminin (Kwak et al., 2010), or cytokeratin (Ku and Omary,
1995), and variation of O-GlcNAcylation of the intermediate
filaments has been demonstrated to lead to defective phosphory-
lated states and so to polymerization (Farah and Galileo, 2008;
Slawson et al., 2008). Moreover, O-GlcNAcylation modulates
organization and solubilization of cytokeratin (Rotty et al., 2010;
Srikanth et al., 2010). Interestingly, It has been demonstrated that
the intermediate filament proteins, vimentin and desmin, pos-
sess lectin-like properties toward O-GlcNAc moieties, supporting
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physiological interaction between GlcNAc-bearing ligands (and
so O-GlcNAc proteins) and lectinic proteins (Ise et al., 2010).
The assembly and regular arrangement of the sarcomere results
from highly regulated interactions between myofibrillar proteins
and structural proteins which are at the origin of a sarcom-
eric cytoskeleton. It’s becoming evident from recent data that a
role of O-GlcNAcylation in the organization of the sarcomere
should be considered. Since phosphorylation has been demon-
strated to be involved in protein-protein interactions, a balance
between phosphorylation and O-GlcNAcylation might modulate
the dynamics of the sarcomere structural organization. Future
investigations will be conducted with aim to determine the role of
O-GlcNAcylation in the organization and dynamic of the sarcom-
ere. This work may provide new insights in the understanding
of molecular mechanisms of diseases characterized by a disinte-
gration of myofibrils and marked disorganization of the Z band
region such as myofibrillar and congenital myopathies.
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