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Aging is associated with the accumulation of various deleterious changes in cells.
According to the free radical and mitochondrial theory of aging, mitochondria initiate most
of the deleterious changes in aging and govern life span. The failure of mitochondrial
reduction-oxidation (redox) homeostasis and the formation of excessive free radicals
are tightly linked to dysregulation in the Renin Angiotensin System (RAS). A main
rate-controlling step in RAS is renin, an enzyme that hydrolyzes angiotensinogen to
generate angiotensin I. Angiotensin I is further converted to Angiotensin II (Ang II)
by angiotensin-converting enzyme (ACE). Ang II binds with equal affinity to two main
angiotensin receptors—type 1 (AT1R) and type 2 (AT2R). The binding of Ang II to AT1R
activates NADPH oxidase, which leads to increased generation of cytoplasmic reactive
oxygen species (ROS). This Ang II-AT1R–NADPH-ROS signal triggers the opening of
mitochondrial KATP channels and mitochondrial ROS production in a positive feedback
loop. Furthermore, RAS has been implicated in the decrease of many of ROS scavenging
enzymes, thereby leading to detrimental levels of free radicals in the cell. AT2R is
less understood, but evidence supports an anti-oxidative and mitochondria-protective
function for AT2R. The overlap between age related changes in RAS and mitochondria,
and the consequences of this overlap on age-related diseases are quite complex. RAS
dysregulation has been implicated in many pathological conditions due to its contribution
to mitochondrial dysfunction. Decreased age-related, renal and cardiac mitochondrial
dysfunction was seen in patients treated with angiotensin receptor blockers. The aim of
this review is to: (a) report the most recent information elucidating the role of RAS in
mitochondrial redox hemostasis and (b) discuss the effect of age-related activation of RAS
on generation of free radicals.
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MITOCHONDRIA AND ANGIOTENSIN SYSTEM: OVERVIEW
It is well accepted that mitochondria are the major source of
ATP, which is the fuel for many cellular processes. However,
mitochondrial function extends well beyond bioenergetics (Kang
and Pervaiz, 2012). Accumulating evidence suggests that mito-
chondria are also signaling organelles that interact with the rest
of the cell through ROS and an array of other signaling com-
plexes (Shigenaga et al., 1994; Turrens, 2003; Chandel, 2014).
Earlier studies suggested that mitochondrial ROS were detrimen-
tal byproducts associated with several pathological conditions
(Turrens, 2003; Chandel, 2014). However, more recent studies
suggest that ROS may have fundamental cellular functions—
acting as signaling molecules (Chandel, 2014), stabilizing hypoxia
inducible factors (HIFs), and inducing gene expression to pro-
mote cellular adaptation to low oxygen levels (Chandel et al.,
1998, 2000a). ROS also play a role in tumor necrosis factor (TNF)
receptor signaling (Chandel et al., 2000b, 2001; Nemoto et al.,
2000; Chandel, 2014) and defense against pathogens (Yu et al.,
2012).

RAS is a key hormonal pathway that affects virtually every
organ. While many of the endocrine (circulating), paracrine (cell-
to-different cell), and autocrine (cell-to-same cell) effects of the
RAS are believed to be mediated through the canonical extracellu-
lar RAS, an independent and differentially regulated intracellular
RAS has also been proposed (Robertson and Khairallah, 1971;
Inagami et al., 1986, 1988, 1990; Hunt et al., 1992; Sadoshima
et al., 1993; Mercure et al., 1998; Vila-Porcile and Corvol, 1998;
Cook et al., 2001; Sherrod et al., 2005; Kumar et al., 2007, 2008,
2012; Peters, 2008, 2012; Abadir et al., 2011, 2012). The major
components of RAS are (1) angiotensinogen, derived from the
liver; (2) renin, derived from the juxtaglomerular cells of afferent
arterioles; (3) angiotensin converting enzyme (ACE), a dipep-
tidyl carboxypeptidase; (4) angiotensin II, and (5) angiotensin II
receptors. Angiotensinogen is a globular protein that serves as a
substrate for renin, a glycoproteolytic enzyme. The first step of
the RAS pathway is conversion of angiotensinogen to angiotensin
I by renin. Angiotensin I is then converted to angiotensin II via
ACE enzyme (Griendling et al., 1993). At all levels -endocrine,

www.frontiersin.org November 2014 | Volume 5 | Article 439 | 1

http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/about
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/journal/10.3389/fphys.2014.00439/abstract
http://community.frontiersin.org/people/u/191442
http://community.frontiersin.org/people/u/61979
mailto:pabadir1@jhmi.edu
http://www.frontiersin.org
http://www.frontiersin.org/Mitochondrial_Research/archive


Vajapey et al. Angiotensin system and mitochondria

paracrine, and autocrine—Ang II binds to two main receptor sub-
types, AT1R and AT2R. Both belong to the G-protein-coupled
receptor family but differ in terms of tissue distribution and
cell signaling pathways. Ang II binds with equal affinity to
AT1R and AT2R. These receptors, in turn, activate multiple sig-
nal transduction pathways that include signaling molecules like
Nitric Oxide (NO·), Protein Tyrosine Phosphatases (PTP), and
Mitogen-activated protein kinase (MAPK) (Abadir, 2011; Abadir
et al., 2012). AT1R and AT2R stimulation generally leads to oppos-
ing actions (Abadir, 2011; Abadir et al., 2012) summarized in
Table 1.

Evidence supporting an important role for RAS in mito-
chondrial function/dysfunction comes from many sources (Cook
and Re, 2012; Ellis et al., 2012; Garcia et al., 2012; Gwathmey
et al., 2012; Li et al., 2012; Singh et al., 2012; Wangler et al.,
2012; Yu et al., 2012; Zaobornyj and Ghafourifar, 2012; Ferder
et al., 2013; Sovari et al., 2013). The main function of mito-
chondria is to generate ATP via the electron transport chain.
Electrons are transferred through complex I to complex IV
with oxygen as the final electron acceptor. Damaged ETC com-
plexes may no longer accept electrons, leading to generation of
ROS (Kregel and Zhang, 2007). AT1R knock-out mice exhibit a
notable phenotype with increased mitochondrial numbers and
average lifespan extension exceeding 25% (Benigni et al., 2009).
Other clues of the influence of RAS on mitochondria may be
gleaned from prior work, which demonstrated that Ang II infu-
sion in rodents induced cardiomyopathy by increasing mito-
chondrial ROS generation. In these animals, overexpression of
catalase specific for mitochondria, but not peroxisomes, pro-
tected them against cardiac hypertrophy, fibrosis, and diastolic
dysfunction (Dai et al., 2009; Dikalov and Nazarewicz, 2013).
The recent identification of a functional intra-mitochondrial
angiotensin system (MAS) provided additional insight into the
RAS interface with mitochondria (Eto et al., 2002; Kumar et al.,
2008; Abadir et al., 2011, 2012). Recently, changes in MAS and
a novel role for AT1R on mitochondrial respiration in dia-
betes were reported (Persson et al., in press). In mitochondria
from renal tubular cells, expression of AT2R decreases while
AT1R increases with age. Chronic administration of losartan,
an angiotensin receptor blocker, prevented age-related decrease
of mitochondrial AT2R. Other parts of the system including
renin and ACE have also been localized intracellularly, with
evidence suggesting their presence in the nucleus and mito-
chondria (Vidotti et al., 2004; Abadir et al., 2012). Interestingly,
this intracellular system is independent of circulating RAS; ACE

Table 1 | Opposing functions of AT1R and AT2R.

AT1R AT2R

Vasoconstriction Vasodilation
↑ cell growth ↓ cell growth
Cellular proliferation Cellular differentiation
Anti-naturetic Naturetic
Production of O2 Production of NO
↑ fibroblast proliferation/collagen synthesis ↓ fibroblast proliferation
Pro-apoptotic Anti-apoptotic

inhibitors fail to block intracellular ACE (Cristovam et al.,
2008).

Several groups demonstrated a tight link between RAS,
mitochondria, and a host of age-related pathologic conditions
(Inagami, 2011; Carey, 2012; Conti et al., 2012; Cook and Re,
2012; Dai et al., 2012; Ellis et al., 2012; Gao et al., 2012; Garcia
et al., 2012; Gwathmey et al., 2012; Horan et al., 2012; Li et al.,
2012; Singh et al., 2012; Wangler et al., 2012; Yu et al., 2012;
Zaobornyj and Ghafourifar, 2012). In addition, RAS dysregula-
tion aggravates several acute and chronic diseases, many of which
have been linked to mitochondrial dysfunction [atherosclerosis
(Warnholtz et al., 1999), kidney disease (Ma et al., 1998), myocar-
dial damage after infarction (Kuno et al., 2002), cerebral infarct
size after ischemia (Panahpour and Dehghani, 2012)]. Locally
activated RAS in heart tissue has been implicated in cardiac
hypertrophy and fibrosis (Kumar et al., 2008). The mechanism by
which intracellular angiotensin II (iAng II) affects cardiac tissue
has been a topic of debate for years. One possible mechanism is
that iAng II interacts with intracellular AT1R or AT1-like recep-
tors to bring about the observed changes. Another mechanism
involves iAng II binding directly to chromatin to promote the
transcription of growth factors like insulin, PDGF, and FGF-2
(Baker et al., 2004). iAng II may also may also affect Ca+2 fluxes
and activate phospholipase C and PKC by binding to AT1R on
sarcolemma, mitochondria, or internalized receptors (Eto et al.,
2002; Baker et al., 2004).

Similar to extracellular RAS, intracellular RAS has been impli-
cated in many pathological conditions as well. Intracellularly, RAS
is highly active in producing increased amounts of iAng II in mice
with advanced heart failure. Increased ventricular hypertrophy
or fibrosis was also observed (De Mello and Gerena, 2008). The
mechanism by which Ang II is produced has not been defined yet.
Pressure overload and mechanical stretch of cardiomyocytes after
myocardial infarction may cause secretion of local Ang II. After
examination of levels of expression of angiotensinogen, renin,
ACE and AT1 genes, stretched cardiac myocytes were observed
to have higher levels of mRNA and RAS enzymes than un-
stretched myocytes (Malhotra et al., 1999). This increased Ang
II seems to work through a mineralocorticoid receptor because
the administration of an aldosterone receptor antagonist mit-
igated the effect of Ang II on inward Ca+2 current in failing
hearts (De Mello and Gerena, 2008). Ang II further caused cell
swelling in failing cardiac myocytes via activation of ionic chan-
nels and decrease in gap junction permeability. These molecular
changes may lead to altered gene expression, which could be con-
tributing to cardiac remodeling. In addition, changes in ionic and
gap junction permeability can decrease action potential duration
and conduction velocity. All of these factors may lead to cardiac
arrhythmias by causing electrical uncoupling, mechanical de-
synchronization, and cardiac remodeling (De Mello and Frohlich,
2011). Furthermore, diabetic patients seem to have upregulated
intracellular RAS activity because high glucose in rat mesangial
cells resulted in ∼30-fold increase in intracellular renin (iRenin)
activity and increased iAng II concentrations localized mostly
to the nucleus. Localization of iAng II to the nucleus suggests
that the mechanism of action of iAng II is both cytoplasmic and
nuclear. Renin and chymase (an alternative Ang II-generating
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enzyme), were implicated in the glucose-induced increase in Ang
II rather than ACE; this confirms that the increased Ang II is
not due to increased uptake of circulating Ang II but rather due
to localized tissue synthesis (Re et al., 1984; Vidotti et al., 2004;
Kumar et al., 2007).

MITOCHONDRIAL REDUCTION-OXIDATION (REDOX)
BALANCE: ROLE OF RAS IN ROS GENERATION, TRANSPORT
AND ELIMINATION
Mitochondria play a critical role in redox chemistry.
Mitochondrial redox balance is the process by which, under
physiological conditions, mitochondria maintain a dynamic
balance between ROS generation, their transport, and an array
of antioxidant systems (glutathione, glutathione peroxidase, glu-
tathione reductase, MnSOD, catalase, and thioredoxin system) in
response to fluctuations in cellular energy demand (Aon et al.,
2010; Cortassa et al., 2014).

ROS GENERATION AND TRANSPORT
ROS are generated from various sources including NADPH oxi-
dase (NOX2 and NOX4), uncoupled nitric oxide synthase (NOS),
xanthine oxidase (XO), and mitochondria. Of these, mitochon-
dria are the main source of ROS (Nickel et al., 2014).

ROS are generated in the respiratory chain, mainly at the
level of complex I and III (Murphy, 2009; Kembro et al., 2014)
although recent evidence also involves complex II (Drose, 2013).

Electron transfer between the respiratory complexes in the
respiratory chain generates a proton motive force composed of
proton and electrical gradients that then drives ATP synthesis
at the level of ATP synthase. NADH and FADH2, generated in
the Tricarboxylic Acid (TCA) cycle act as electron donors for
the electron transport chain (ETC) (Rich and Marechal, 2010).
Oxygen is the final acceptor of four electrons transferred from the
ETC, and converted to H2O (Mitchell, 1961; Liu et al., 2002). If
less than four electrons are transferred to oxygen, ROS are pro-
duced (Kregel and Zhang, 2007). Damaged ETC complexes may
no longer accept electrons. Excess ROS can damage respiratory
complexes and initiate a vicious cycle of ROS overflow thus high-
lighting the fact that mitochondria can be both source and victim
of oxidative stress (Daiber, 2010).

ADP and Ca+2, can modulate the rate of ATP generation
according to energy demand. ADP stimulates ATP synthesis via
F1F0 ATPase, driven mainly by the electrical component of the
proton motive force (Wood, 2006). The dissipation of the mito-
chondrial membrane potential generates a “pull” of electrons
from NADH at the level of complex I, or FADH2 from succinate
at the level of complex II thus increasing O2 consumption.

As a matter of fact, an increase in energy demand, e.g., higher
cardiac workload under exercising conditions, will increase both
ADP and Ca2+ uptake by the mitochondria to increase ATP sup-
ply to match the demand (Cortassa et al., 2006; Murphy, 2009).
Energized mitochondria will exhibit higher levels of ATP and
NAD(P)H and lower electron flow thus increasing the proba-
bility of O·−

2 generation in the respiratory chain. Consequently,
mitochondrial ROS production is highly dependent on the ener-
getic and redox status of mitochondria (Kang and Pervaiz, 2012;
Cortassa et al., 2014).

RAS-INDUCED MITOCHONDRIAL ROS GENERATION
As mentioned before, angiotensin II can bind to two major recep-
tors: AT1R and AT2R. Ang II binding to AT1R in the plasma
membrane has been implicated in increased ROS production
(Figure 1). Ang II-AT1R can activate NADPH oxidase, leading
to increased generation of cytoplasmic ROS. This Ang II-AT1R–
NADPH-ROS signal triggers the opening of mitochondrial KATP

(mtKATP) channels (Figure 2) that in turn activates mitochon-
drial ROS production in a positive feedback loop (Daiber, 2010).
Opening of mtKATP channels decreases mitochondrial membrane
potential. This triggers the opening of mitochondrial permeabil-
ity transition (MPT) channel. The loss of membrane potential
due to opening of the inner membrane anion channel (IMAC)
(Aon et al., 2003, 2007) or the permeability transition pore (PTP)
(Zorov et al., 2000) can produce a burst of mitochondrial ROS
leading to ROS-induced ROS release (Zorov et al., 2000; Aon
et al., 2003; Zhang et al., 2007).

MAJOR SITES OF O.−
2

GENERATION
(i) Complex I or NADH: ubiquinone oxidoreductase is consid-

ered one of the major source of superoxide production in
the ETC complexes (Brand et al., 2004). Electrons from suc-
cinate can flow in reverse to complex I to reduce NAD+ to
NADH. This reverse electron transfer (RET) increases ROS
production at the level of complex I. When treated with
ADP or malonate, both of which block RET, mitochondrial
ROS emission decreases (Liu et al., 2002). Which compo-
nent of complex I—FMN, Fe-S clusters, or ubiquinone—is
producing superoxide is not clear (Brand et al., 2004). Ang II
has been shown to damage complex I, thus contributing to

FIGURE 1 | Scheme for RAS induced ROS generation. The binding of
Ang II to AT1R activates NADPH oxidase that transfers an electron from
NADPH to O2generating O·−

2 . Location and expression level of different
NOX enzymes determine their function. (SOD, Superoxide dismutase;
TrxRD, thioredoxin reductase; GR, Glutathione Reductase; GPX,
Glutathione peroxidase; PRx3, peroxiredoxin 3; TRx2, thioredoxin).
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FIGURE 2 | Scheme for the effects of Ang II on mitochondrial KATP channels. Ang II-AT1R–NADPH-ROS signal triggers the opening of mitochondrial KATP

channels and mitochondrial ROS production in a positive feedback loop.

ROS generation. Specifically, Ang II is able to down-regulate
ND5, a component of complex I, via oxidation of mtDNA
thus decreasing electron flow and the likelihood of ROS
generation (Ricci et al., 2005).

(ii) Cytochrome bc1 complex or complex III is another impor-
tant source of O·−

2 generation. Coenzyme Q, or ubiquinol
(QH2), is the electron donor for complex III. Reduced coen-
zyme Q (QH2) diffuses to the inner side of mitochondrial
membrane to the Qo site, where it transfers one electron
to cytochrome c bound to complex III. Cytochrome c then
transfers electrons to complex IV. Another QH2 transfers an
electron to the oxidized coenzyme Q (Q), reducing it to QH2
near the matrix side of the membrane (Qi site) (Quinlan
et al., 2011). After losing an electron to cytochrome c
and prior to transferring an electron to Q, ubiquinol may
form the intermediate ubisemiquinone (Q.). Electrons can
leak (Turrens, 2003) from Q· to oxygen, forming O·−

2 .
Antimycin, a Qi site inhibitor, elicits large amounts of O·−

2
when O2 reacts with ubisemiquinone bound to the Qo site
(Murphy, 2009). Under normal conditions, O·−

2 generation
from complex I and III varies according to tissue condi-
tions. . . . For example, complex III appears to be the primary
source of O·−

2 in heart and lung mitochondria whereas com-
plex I is the major source in the brain (Turrens and Boveris,
1980; Turrens et al., 1982; Barja and Herrero, 1998; Turrens,
2003). In general, acute and chronic infusion of Ang II has
been shown to decrease expression of electron transport
chain proteins (Larkin et al., 2004). Excessive ROS produc-
tion due to Ang II can impair complex I and III activities,
increasing electron leakage (Prathapan et al., 2014). More
information is needed to delineate the role of RAS in the
modulation of complex III.

(iii) NADPH oxidase (NOX) family proteins: NOX is a fam-
ily of transmembrane proteins that may be source of ROS.
NADPH oxidase works as a nonspecific host defense sys-
tem by releasing large amounts of ROS during infections
(Thrasher et al., 1994). When cytoplasmic NADPH oxi-
dase is activated, it moves toward membrane-associated
cytochrome b558 to form a complex. Cytochrome b558 reg-
ulates the enzymatic activity of NADPH oxidase by transfer-
ring one electron to molecular oxygen, which gets reduced
to O·−

2 (Bayraktutan et al., 1998). While neutrophil NADPH
oxidase produces ROS in bursts, vascular NADPH oxidases
produce low levels of O·−

2 continuously (Cai et al., 2003).
NADPH-derived cytoplasmic ROS can mediate mtKATP
opening enabling K+ influx that produces membrane depo-
larization and alkalinization of the matrix (Di et al., 2007).
This matrix alkalization has been shown to increase H2O2 in
the presence of an mtKATP opener (Pain et al., 2000; Heinzel
et al., 2005; Andrukhiv et al., 2006; Daiber, 2010).

Location and expression level of the different NOX enzymes
determine their function. NOX1 is abundant in colon epithe-
lium and has been reported to play a role in host defense in
intestinal crypts and on luminal surface (Szanto et al., 2005).
NOX2 is expressed in granulocytes and monocyte/macrophages.
ROS generation through NOX2 activation has been shown to
play a role in killing microbes and inactivating microbial viru-
lent factors. The exact localization and level of expression of the
different NOX enzymes are still not completely sorted out yet.
NOX3 has been generally located in the cochlear and vestibular
sensory epithelia, and spiral ganglion. NOX4 has been shown to
be expressed in the kidney and suggested that it plays a role in
protection of the vasculature during inflammatory stress. ROS
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generation through NOX4 has also been shown to induce HIF-1α

transcription factors, which in turn leads to activation of ery-
thropoietin gene in the kidney (Bedard and Krause, 2007; Jung
et al., 2008; Schroder et al., 2012). NOX5 is expressed in vari-
ous tissues including spleen, lymph nodes, and vascular smooth
muscle cells (Bedard and Krause, 2007). NOX5 increases Jak2
phosphorylation, which increases vascular smooth muscle cell
(VSMC) proliferation in human coronary arteries, aorta, and
splenic vessels (Fulton, 2009).

NADPH oxidase is a major source of angiotensin II-induced
ROS generation. NOX1 appears to have various roles in VSMCs,
including Ang II-induced hypertrophy, serum-induced prolif-
eration, and basic fibroblast-induced growth factor migration
(Redmond and Cahill, 2012). It localizes in VSMCs from large
arteries (Nguyen Dinh et al., 2013). NOX1 is needed under vari-
ous physiologic conditions such as thrombin-induced migration,
endothelial cell proliferation, cell growth, and vessel formation
(Sunggip et al., 2013). Overproduction of O·−

2 from NOX1 and
NOX 2 can cause renin release, smooth muscle cell proliferation,
and decreased NO·, all of which lead to endothelial dysfunction
and increased sympathetic tone that in turn cause hypertension
(Takac et al., 2012). Ang II can signal via phospholipase D and this
pathway may cause VSMC proliferation and contractility through
NADPH oxidase (Touyz and Berry, 2002). NOX1distributes in the
plasma membrane, primarily generating O·−

2 anions (Dikalova
et al., 2005; Valente et al., 2012). Ang II activates NOX1 via
NOX1-AT1R interaction. This is supported by a study showing
that continuous infusion of Ang II was correlated with increased
NOX1 mRNA expression (Valente et al., 2012). NOX1 functions
are mostly growth-promoting being highly expressed in prolifer-
ating cells. It activates VEGF and matrix metalloproteinase, which
promote angiogenesis (Lassegue et al., 2001; Wilkinson-Berka
et al., 2014). NOX1 is also responsible for O·−

2 generation and is
implicated in many pathological conditions including atheroscle-
rosis, diabetes and hypertension (Chose et al., 2008; Briones et al.,
2011).

NOX4 is found in subcellular compartments such as the
nucleus, endoplasmic reticulum, and mitochondria (Wingler
et al., 2001; Briones et al., 2011). Unlike NOX1, NOX4 typi-
cally generates H2O2 (Briones et al., 2011; Valente et al., 2012).
NOX4 serves as an oxygen sensor and regulates erythropoietin
synthesis in the kidneys (Geiszt et al., 2000). In VSMCs, NOX4
is found in focal adhesions and shown to maintain differentiation
of cells whereas NOX 1 induces growth and proliferation. This
phenomenon was seen in multiple tissues. For example, in coro-
nary arteries, NOX4 expression was correlated with α-actin levels
in osteoclasts, and over-expressed NOX4 was associated with
increased osteoclast markers. NOX4 is important for maintain-
ing physiologic function of many tissues (Clempus et al., 2007).
NOX4 is not up- but instead down-regulated when treated with
Ang II (Lassegue et al., 2001; Wingler et al., 2001). Both NOX2
and NOX4 are present in the aortic vascular smooth muscle.
When infused with Ang II, NOX2 knock-out mice did not have
significant hypertrophy. Therefore, NOX2 was deemed essential
for Ang II-induced cardiac hypertrophy and NOX 4 did not seem
to play a big role in Ang II-induced cardiac pathologies (Byrne
et al., 2003). This argument is supported by many research groups

that studied Ang II’s effects on ROS generation. Interestingly,
Ang II doubled the ratio of O·−

2 to H2O2 ratio in quiescent
cells and almost quadrupled it in proliferating cells. In addition,
NOX4 is a source of H2O2in a variety of vascular cells includ-
ing fibroblasts, endothelium, and smooth muscles. This constant
generation of H2O2 might be essential to maintaining cell func-
tions in angiogenesis during wound healing (Dikalov et al., 2008).
Increased NOX4 expression is essential in tissue survival during
ischemic stress, tissue remodeling, and regulation of glutathione.
Interestingly, NOX4 has been implicated in cardiac hypertrophy,
interstitial fibrosis, and apoptosis in cardiac muscle; however, car-
diac function was still maintained (Zhang et al., 2010; Brewer
et al., 2011; Schroder et al., 2012; Sunggip et al., 2013). Though
some studies show NOX4 playing a role in pathophysiology, the
great majority shows that the physiological role of this enzyme is
more relevant.

ROLE OF RAS IN ROS SCAVENGING
To maintain ROS balance, the production of ROS has to be
matched with a ROS scavenging mechanisms (Figure 1). MnSOD
in the mitochondrial matrix converts O·−

2 to H2O2, which can
diffuse across membranes. O·−

2 dismutation to H2O2 is important
for signaling and avoiding oxidative damage, in case of oxidative
stress (Kang and Pervaiz, 2012). H2O2 is scavenged by glutathione
peroxidase (GPX) and peroxiredoxin (PRX). NADPH gener-
ated from mitochondrial transhydrogenase (Hoek and Rydstrom,
1988; Jackson, 2003) is the main electron of the GSH and Trx
systems (Nickel et al., 2014). Under normal function, GSH and
Trx mitochondrial systems are mainly responsible for offset-
ting most of the ROS produced by the respiratory chain, espe-
cially under state 3 respiration when electron flow is maximal
(Aon et al., 2012). Other antioxidants localized to cytoplas-
mic and intermembrane space include Copper-Zinc superoxide
dismutase (Cu-ZnSOD) and catalase (Aon et al., 2012). ROS
can mediate increased expression of antioxidant enzymes via
activation of the Nrf2-antioxidant response element signaling
pathway (Nguyen et al., 2009). ROS-activated Nrf2 increases
ARE-mediated gene expression, which includes many antioxi-
dants such as glutathione S-transferase, quinine reductase, and
heme oxygenase 1 (Bergelson et al., 1994; Alam et al., 1999).
Levels of antioxidants are often decreased in disease states or
under oxidative stress. For example, diabetes and insulin resis-
tance are correlated with decreased antioxidant capacity due to
decreased SOD and glutathione reductase activities (Aon et al.,
2012). Under normal conditions, however, antioxidant enzymes
play a major role in scavenging ROS generated from various
sources like NADPH oxidase, NOS, xanthine oxidase, and mito-
chondrial electron transport chain enzymes.

Angiotensin II has been implicated in decreasing the activ-
ity of scavenging enzymes, thereby leading to detrimental levels
of ROS. Ethanol ingestion is associated with oxidative stress and
decreased GSH levels via activation of the RAS. When ethanol-fed
rats were treated with the AT1R blocker losartan, GSH levels were
maintained (Bechara et al., 2005). SOD are also targets of Ang
II. Mammals possess three SOD isoforms, Cu-Zn SOD (SOD1),
Mn SOD (SOD2), and extracellular SOD (SOD3) located in the
cytoplasm, mitochondria and the extracellular space, respectively
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(Rodriguez-Iturbe et al., 2007). SOD1 is a major defense sys-
tem against Ang II-triggered ROS in the kidneys. SOD1 knockout
mice showed 4-fold increase in afferent arteriolar O·−

2 levels when
treated with Ang II (Carlstrom et al., 2010). In addition, in coro-
nary artery disease patients, SOD3 levels were severely reduced
in the human arterial walls and this decrease was associated with
oxidative stress and reduced NO· bioavailability; these conditions
were shown to contribute to the pathophysiology of the disease
(Landmesser et al., 2007). When treated with the AT1R blocker
losartan, an increase in NO· bioavailability and SOD3 activity
were seen. A more than 200% increase in SOD3 activity was asso-
ciated with reduced oxidative stress and improved endothelial
function (Hornig et al., 2001). Catalase activity was diminished
in Ang II-stimulated cardiomyocytes whereas ROS-elicited by
Ang II in mesangial cells implied reduced catalase transcription
(Venkatesan et al., 2007; Murtaza et al., 2008; Tan et al., 2008).
Reduced catalase mRNA expression and protein levels were noted
with Ang II treatment of VSMCs (Xiong et al., 2010). There is
also some evidence about the modulation of the Trx system by
the RAS system; ACE inhibitors have been shown to improve
myocarditis via a mechanism involving the Trx system (Tanito
et al., 2004; Touyz, 2004). The RAS not only contributes directly
to ROS generation, but also it affects indirectly the redox balance
via modulation of various antioxidant enzymes. Treatment meth-
ods involving inhibition of RAS enzymes, specifically Ang II type
1 receptor blocker, may be crucial in impeding pathophysiological
behavior.

ROS AS SIGNALING MOLECULES
Angiotensin II interacts with various tissues including vascular,
renal, and neuronal to induce numerous physiologic signaling
cascades and functions. Griendling et al. discussed the role of
Ang II in modulating growth-related signaling pathways via ROS
signaling (Griendling and Ushio-Fukai, 2000). ROS-mediated
oxidation can alter gene expression thorough signaling cascades
induction, or interaction with transcription factors. H2O2 can
reversibly inhibit tyrosine phosphatase PTP1B, a regulator of the
insulin signaling pathway (Apel and Hirt, 2004; Combs, 2010).
Recent research focuses on PTP1B inhibitors as potential thera-
peutic treatment for type 2 diabetes and obesity (Thareja et al.,
2012). ROS also play a role in tyrosine phosphorylation as shown
in platelet-derived growth factor where a transient increase in
ROS inactivated tyrosine phosphatase (Finkel, 1998). Nontoxic
amounts of H2O2 administered extracellularly have been shown
to stimulate mitogen activated protein kinase (MAPK), that
directly affects the inflammatory response, cell proliferation, dif-
ferentiation, and survival in response to extracellular stimuli
(Stevenson et al., 1994; Arbabi and Maier, 2002). Exogenous
H2O2 has also been shown to activate JNK, (Finkel, 1998) p38,
(Hensley et al., 2000) and NF-KB, a protein complex that induces
expression of protective genes during inflammation and infection
(Baeuerle and Henkel, 1994).

ROS participate in the host innate immune response. Immune
cells undergo respiratory burst, producing high levels of free oxy-
gen radicals during infection, a response that results toxic to
pathogens (Spooner and Yilmaz, 2011). When a pathogen invades
a cell, Leucine-Rich Repeat-containing family member receptor,

NLRX1, moves to the mitochondria to stimulate the electron
transport chain and initiate ROS production (Arnoult et al.,
2009). Since ROS are produced by NADPH oxidases in mature
phagocytic cells, many bacteria, like Francisellatularensis, interfere
with NADPH oxidase assembly (Cirillo et al., 2009). Oxidative
burst within macrophages has been shown to decrease urogen-
ital infections associated with pathogen Chlamydia trachomatis
(Boncompain et al., 2010).

In addition to fighting infections, ROS have also been impli-
cated in cancer therapy since increased ROS levels may be lethal
for tumor cells triggering apoptosis. Direct exposure of cancer
cells to ROS generating agents like arsenic trioxide, or alterna-
tively inhibiting antioxidant enzymes with2-methoxyestradiol, a
SOD inhibitor, may trigger apoptosis in human leukemia (Zhou
et al., 2003; Pelicano et al., 2004).

Overall, available evidence indicates that controlled levels of
ROS represent effective signaling molecules, intervening in differ-
ent cellular processes as diverse as communication, inflammation,
immunity, and as therapeutic cancer agents. The role of RAS
induced ROS in signaling pathways is discussed next.

EPIDERMAL GROWTH FACTOR (EGF) AND EXTRACELLULAR
SIGNAL-REGULATED KINASE 1/2 (ERK1/2)
EGF is required for Ang II effects on various tyrosine kinases,
and its activation is initiated by NOX-induced ROS (Eguchi
et al., 1998; Griendling and Ushio-Fukai, 2000; Ushio-Fukai et al.,
2001). C-Src, a tyrosine kinase activated by Ang II, promotes mul-
tiple signaling events including various MAPKs. Ang II-induced
activation of c-Src is redox-sensitive since its stimulation is inhib-
ited by antioxidants (Abe et al., 1997; Ushio-Fukai et al., 2001).
EGF receptor activation is needed for Ang II action on ERK1/2, a
type of MAPK (Eguchi et al., 1996; Liao et al., 1997; Griendling
and Ushio-Fukai, 2000). ERK1/2 has an important role in cell
adhesion, cell cycle progression, migration, survival, differentia-
tion, metabolism, and proliferation (Roskoski, 2012). Activation
of ERK1/2 is said to be redox-sensitive or redox-insensitive in
some studies (Sundaresan et al., 1995; Viedt et al., 2000).

MAPK AND ADENILATE KINASE (Akt)
MAPKs control various cellular activities like growth, apoptosis,
and stress signals. Four main MAPKs are ERK1/2, c-Jun N termi-
nal kinase (JNK), p38MAPKs, and big MAPK-1. Ang II can acti-
vate JNK, ERK1/2, and p38MAPK. Though there is an ambiguity
as to whether ERK 1/2 is redox-sensitive or not, p38MAPK and
JNK have been shown to be redox-sensitive when activated by Ang
II. Ang II triggers ROS generation through NADPH oxidase acti-
vation, followed by JNK and p39MAPK stimulation (Griendling
and Ushio-Fukai, 2000; Viedt et al., 2000). In VSMCs, Ang II acti-
vates Akt, a serine threonine kinase that plays a role in cell survival
and protein synthesis. NADPH-derived ROS induces Akt which
is associated with heat shock protein 27, also activated by H2O2

(Konishi et al., 1997; Coffer et al., 1998; Ushio-Fukai et al., 1999;
Griendling and Ushio-Fukai, 2000).

NITRIC OXIDE SYNTHASE (NOS)
NOS is another enzyme capable of producing O·−

2 using tetrahy-
drobiopterin as a cofactor. Superoxide generated from NADPH

Frontiers in Physiology | Mitochondrial Research November 2014 | Volume 5 | Article 439 | 6

http://www.frontiersin.org/Mitochondrial_Research
http://www.frontiersin.org/Mitochondrial_Research
http://www.frontiersin.org/Mitochondrial_Research/archive


Vajapey et al. Angiotensin system and mitochondria

oxidases can give rise to peroxynitrite (ONOO−) (Figure 1).
ONOO− contributes to oxidation of tetrahydrobiopterin, lead-
ing to NOS uncoupling and more O·−

2 generation (Landmesser
et al., 2003). A mitochondrial variant of NOS (mtNOS) can
generate nitric oxide (NO·), a reactive nitrogen species (RNS).
Mitochondrial respiration can be partially inhibited by NO·,
through inactivation of cytochrome c oxidase from complex IV
that can lead to increased ROS production and a vicious cycle
of mitochondrial damage by ROS excess (Kang and Pervaiz,
2012). Excess NO· can react with O·−

2 to form the highly
reactive ONOO− which, like O·−

2 , is unable to permeate the
mitochondrial membrane, can cause oxidative damage, nitra-
tion and nitrosation (Squadrito and Pryor, 1995; Kang and
Pervaiz, 2012). MnSOD can be nitrated by ONOO−, decreas-
ing its activity (Quijano et al., 2001). Ang II-treated endothe-
lial cells released more H2O2, and exhibited mitochondrial loss
of membrane potential, respiration impairment, and decreased
GSH and NO· formation (Doughan et al., 2008; Daiber, 2010).
The reduction of dihydrobiopterin to tetrahydrobiopterin is cat-
alyzed by dihydrofolate kinase. Tetrahydrobiopterin is needed
by eNOS for basal NO· production. Ang II can lead to eNOS
uncoupling via H2O2 production in a NOX-dependent man-
ner. This results in down-regulation of dihydrobiopterin kinase
and diminished tetrahydrobiopterin cofactor and nNOS uncou-
pling. Dysfunctional eNOS results in decreased NO· bioavail-
ability (Cai and Harrison, 2000; Sunggip et al., 2013). Ang
II-induced O·−

2 can react with endothelial NO· produced by
eNOS, decreasing its concentration even more. Loss of NO·
contributes to endothelial dysfunction initiating atherosclero-
sis (Nickenig and Harrison, 2002). In addition, expression of
inflammatory molecules like MCP-1 and VCAM-1 appears to
be indirectly regulated by Ang II, accelerating atherosclerosis
(Nickenig and Harrison, 2002). Angiotensin II-induced phos-
phorylation of various kinases activates NOX and increases ROS
generation.

XANTHINE OXIDASE (XO)
XO is a major source of ROS. Xanthine oxidoreductase (XOR)
degrades purines to generate uric acid. XOR is transcribed as
xanthine dehydrogenase, which is converted to XO after oxida-
tion of cysteine residues or proteolysis (Waud and Rajagopalan,
1976; Amaya et al., 1990; Kelley et al., 2010). XO generates both
O·−

2 and H2O2, the latter in greater amounts under low O2

and pH, e.g., inflammation, ischemia. Higher O·−
2 levels can be

detected under low xanthine concentrations, and high O2 ten-
sions (Kelley et al., 2010). Landmesser et al. showed that Ang
II administration elevates XO through ROS from NADPH oxi-
dase. NADPH oxidase inhibition decreased XO and O·−

2 levels
suggesting that Ang II stimulation of NOX proteins is needed
for XO stimulation. Additionally, XO inhibitors like oxypuri-
nol and tungsten markedly reduced Ang II-induced endothelial
O·−

2 , in agreement with the idea that Ang II stimulates XO.
Furthermore, losartan (AT1R blocker) treatment decreased the
endothelial levels of both XO and O·−

2 . Patients with coronary
disease treated with AT1R blocker for 4 weeks displayed reduced
endothelial XO activation compared to the placebo (Landmesser
et al., 2007).

OTHER ENZYMES
Other enzymes such as pyruvate dehydrogenase, α-ketoglutarate
dehydrogenase, glycerol-3-phosphate dehydrogenase, and from
fatty acid β oxidation can also contribute to ROS generation
(Kang and Pervaiz, 2012). Ang II can modulate the activity of
these various enzymes. For instance, many studies have shown
effects of Ang II on fatty acid oxidation and nonalcoholic fatty
liver disease (Kurita et al., 2008; Toblli et al., 2008). Increased Ang
II levels cause mitochondrial oxidative damage, which leads to
impairment of beta oxidation causing hepatic steatosis. Treatment
with AT1R blockers like valsartan produced substantial improve-
ment of mitochondrial abnormalities (Monteiro et al., 2005). The
mechanism by which fatty acid oxidation appears to be mediated
by ROS generated from NADPH oxidase as well as decreased Cu,
Zn SOD activity (Wei et al., 2009). Ang II has also been shown to
promote pyruvate dehydrogenase complex acetylation, leading to
decreased glucose oxidation (Mori et al., 2013). α-ketoglutarate
dehydrogenase activity was shown to be increased by Ang II
treatment. Increased cytoplasmic and mitochondrial free Ca+2

levels are associated with hepatic stimulation via Ang II. Since
α-ketoglutarate dehydrogenase function is positively stimulated
by Ca+2, its activity is indirectly influenced by Ang II (Exton,
1985; Williamson et al., 1985; Rashed et al., 1988).

Together, the evidence available indicates that RAS can induce
ROS generation through direct—influencing various signaling
pathways, as well as indirect—modulating activities of antioxi-
dant enzymes, mechanisms.

AGING, MITOCHONDRIA AND RAS ASSOCIATED PATHOLOGY
Aging is associated with the accumulation of various deleterious
changes in cells. According to the free radical and mitochondrial
theory of aging, mitochondria initiate most of the deleterious
changes in aging and govern life span (Harman, 1956, 2006;
Cadenas and Davies, 2000; Cadenas, 2004). Three key mito-
chondrial functions that become dysregulated with aging are: (1)
ROS production, (2) ATP synthesis, and (3) apoptosis (Conley
et al., 2007). As proposed by the mitochondrial theory of aging,
increased mitochondrial ROS generation precipitates mitochon-
drial DNA damage and mutations, which in turn leads to failed
oxidative phosphorylation and diminished ADP/ATP reservoir
(Harman, 1956, 2006), ultimately contributing to mitochondrial
deterioration and activation of cell death pathways (Echtay et al.,
2002; Dirks et al., 2006; Skulachev, 2006; Conley et al., 2007;
Pandur et al., 2014). Moreover, mitochondrial morphodynamics
through fusion and fission can also be altered with aging could
potentially lead to their dysfunction (Bleazard et al., 1999; Chen
et al., 2003; Yu et al., 2012). Chronically activated ROS has been
implicated in mitochondrial energetic impairment along with the
development and progression of a host of aging-related condi-
tions including atherosclerosis, myocardial hypertrophy, vascular
dysfunction, hypertension (Heymes et al., 1998; Wang et al., 2003;
Kimura et al., 2005; Doughan et al., 2008; Fukai, 2009; Min et al.,
2009; Widder et al., 2009), type 2 diabetes, frailty, heart failure,
neurodegeneration (including Alzheimer’s disease, Horan et al.,
2012), and sarcopenia (Ballinger et al., 1994; Wallace, 2001, 2005,
2010, 2011; Loeb et al., 2005; Conley et al., 2007; Moore et al.,
2010). Clinically, the onset of this mitochondrial failure is difficult
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to estimate, however, the accumulation of damaged mitochon-
dria typically appears in humans by mid to late seventies and once
established is thought to be irreversible (Aiken et al., 2002; Herbst
et al., 2007). Recently, several studies have shed light on early
mitochondrial changes in healthy subjects that predate the accu-
mulation of damaged mitochondria by almost a decade. These
studies have demonstrated that increased uncoupling leads to a
reduction in mitochondrial efficiency in otherwise healthy people
in their sixties (Greco et al., 2003; Hutter et al., 2004; Bua et al.,
2006; Mogensen et al., 2006; Amara et al., 2007).

The major mechanism by which dysfunction occurs is
via mtDNA mutations. Unlike nuclear genome, mitochondrial
genome is circular, and is not condensed around histones or
packed tightly. This makes it less protected and more easily
damageable than nuclear DNA (nDNA) (Croteau et al., 1999).
mtDNA damage is mostly attributed to ROS. AngII can stimu-
late mitochondrial ROS production via activation of cytoplasmic
NOX-derived O·−

2 and through direct effects on mitochondria
as well. Administration of antioxidants inhibited Ang II effects
on AP-1 signaling pathway (Puri et al., 1995; Xia et al., 1998;
de Cavanagh et al., 2007). Further evidence in support of Ang
II action on mitochondria is given by research showing AT2R
co-localization with this organelle likely in inner membrane, in
various tissues. Ang II and AT2R are likely generally present in the
inner membrane of mitochondria (Inagami, 2011). Ang II stim-
ulates production of NO· via activation of calcium/calmodulin-
dependent eNOS, including mRNA and protein expression levels
(Brown, 1999; Yan et al., 2003). mtDNA codes for critical pro-
teins participating in oxidative phosphorylation (Croteau et al.,
1999). In addition, mtDNA has less repair mechanisms compared
to nDNA; for example, mitochondria lack nucleotide excision
repair mechanisms (Larsen et al., 2005). mtDNA mutation rate
is shown to increase with age, affecting liver, skeletal muscles, and
cardiac muscles (Katayama et al., 1991; Corral-Debrinski et al.,
1992; Marin-Garcia et al., 2002; Druzhyna et al., 2008). Excess
ROS generation may overwhelm antioxidant enzymes, thereby
preventing the mitochondria from protecting themselves (Golden
and Melov, 2001). With chronic exposure to elevated ROS and
decline in repair mechanisms, mtDNA mutations accumulate
during aging (Lin and Beal, 2006). Under RAS over-activation-
as seen in diabetes, hypertension and aging- Ang II induced ROS
plays a significant role in tissue damage. Ang II induced mtROS
generation has been implicated in atherosclerotic lesions and
impairment of cardiac respiration and TCA cycle function leading
to disease (Pueyo et al., 2000; de Cavanagh et al., 2007).

In cardiovascular tissue, mitochondrial ROS contribute to
senescence of endothelial cells and chronic low-grade vascular
inflammation (Ungvari et al., 2007). These endothelial cells can
contribute to atherosclerosis by suppressing regeneration and
angiogenesis of endothelium in the vascular wall leading to car-
diovascular aging (Dai et al., 2012) and the development of
hypertension (Heymes et al., 2003; Shiomi et al., 2004; Wang
et al., 2010; Sugamura and Keaney, 2011; Dikalov and Ungvari,
2013).

Development and progression of several neurodegenerative
disorders has also been linked to mitochondrial dysfunction
(Beal, 2007). A significant decrease in mitochondrial coupling

efficiency in primary hippocampal neurons, reduced steady state
basal respiration, and decreased ATP turnover were noted in
several neurodegenerative disorders (Horan et al., 2012). In
Alzheimer’s disease, several studies have demonstrated that oxida-
tive damage appears to increase development of intracellular Aβ

plaques. ROS activation of c-Jun N terminal kinase and p38
mitogen activated protein kinase lead to increased activity of β

secretase, causing increased Aβ levels (Nishida et al., 2006; Beal,
2007). Parkinson’s disease is caused by a recessive mutation of DJ1
that leads to hypersensitivity to MPTP and oxidative stress since
DJ1 protects against oxidative stress-induced cell death. Studies
show that treatment with SOD1 and vitamin E decrease degener-
ation of dopaminergic neurons (Bonifati et al., 2003; Kim et al.,
2005; Wang et al., 2006a). Huntington’s disease (HD) is also asso-
ciated with oxidative stress since reduced activity of Complex
II and III is seen in basal ganglia and cortex. In addition, HD
patients show decreased PGC1α, which suppresses ROS by acti-
vating ROS scavenging enzymes (St-Pierre et al., 2006; Weydt
et al., 2006; Beal, 2007). ROS are implicated not only in neu-
rodegenerative disorders but also in various other diseases like
age-related musculoskeletal disorders. In sarcopenia, a disease
characterized by reduced skeletal muscle mass with aging, elec-
tron transport system abnormalities were seen in muscle fibers
with “ragged red” phenotype and these changes were associ-
ated with loss of muscle mass (Bua et al., 2002). Patients with
Type 2 diabetes show decreased antioxidant capacity and pos-
sibly an increase in ROS generation by leukocytes (Mohanty
et al., 2000). Studies show increased expression of ROS markers
in pancreatic islet cells under diabetic conditions. Furthermore,
β cells are much more sensitive to ROS due to decreased antioxi-
dant capacity. Chronic hyperglycemia increases ROS levels while
decreasing binding of the transcription factors PDX-1 and Maf-A
from pancreas that exacerbates suppression of insulin synthe-
sis and release. In addition, treatment with antioxidants such
as N-acetyl-L-cysteine and taurine, diminished insulin resistance
due to hyperglycemia (Kaneto et al., 2010).

The overlap between age related changes in RAS and mito-
chondria and the implications of this overlap on age-related
diseases are quite complex. Studies shows that Ang II contributes
to plaque rupture by initiation of VSMC apoptosis, which could
be prevented by AT1R blockers (Lemay et al., 2000). Ang II
induces metalloproteinase activity, which is involved in colla-
gen breakdown and matrix degradation, indirectly through ROS
(Shah and Galis, 2001; Nickenig and Harrison, 2002). Ang II
can induce interleukin-6 (IL6), leukemia inhibitory factor, and
cardiotrophin-1 in cardiac fibroblasts (Sano et al., 2001). IL-6
is an inflammatory marker and a high level of which is associ-
ated with mortality due to increased progression of cardiovas-
cular disease (Volpato et al., 2001). Leukemia inhibitory factor
is a key player in cardiac hypertrophy (Kodama et al., 1997).
Cardiotrophin-1 plays a role in heart failure since it can induce
ventricular remodeling by activating cardiomyocyte hypertrophy
and collagen synthesis (Calabro et al., 2009).

Many studies highlighted the role that RAS plays in hyper-
tension and cardiovascular disease (Marchesi et al., 2008). By
activating local mediators, like vascular endothelial growth factor
(VEGF) and prostaglandins, such as leukotriene C4, PGE2, and
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PGI2, Ang II plays a critical role in regulating vascular permeabil-
ity during hypertension (Harris et al., 2004). Ang II-stimulated
release of these local factors in VSMCs leads to angiogenesis,
vascular permeability, and inflammation. In particular, studies
have shown that AT1R activation causes VEGF secretion (Suzuki
et al., 2003). Hypertension is a condition that results from ROS
of vascular origin produced by elevated levels of Ang II. Chronic
administration of Ang II in mice, triggered elevated O·−

2 from
mitochondria as compared to controls (Widder et al., 2009). O·−

2
and H2O2 produced due to elevated Ang II can carry out various
actions in VSMCs—phosphorylation of MAP kinases, induction
of proto-oncogenes, and activation of AP-1; H2O2 can induce
PDGF stimulation of STATS. All these signaling events contribute
to vascular wall remodeling and thickening seen in hyperten-
sion (Touyz, 2000). Ang II via AT1R also affects brain tissue by
increasing neuronal firing rate and activity. In neurons, NADPH
oxidase-derived ROS produced due to Ang II signaling increase
intracellular Ca+2 concentration (Wang et al., 2006b), which in
turn can stimulate mitochondrial O·−

2 stimulates mitochondrial
superoxide generation (Hongpaisan et al., 2004). In rostral ven-
trolateral medulla, these effects may influence blood pressure,
causing baroreflex abnormalities in chronic hypertension (Nozoe
et al., 2008).

RAS has been implicated in many pathological conditions.
Ang II can precipitate mild to severe mitochondrial dysfunc-
tion in addition to ROS generation. Amelioration of age-related
renal mitochondrial dysfunction under hypertensive conditions,
and ischemic injury, has been described in patients treated with
angiotensin receptor blockers (Doughan et al., 2008). Losartan
treatment prevents mitochondrial dysfunction and structural
changes in the kidney while up regulating antioxidant enzymes,
maintaining GSH and MnSOD levels, and attenuating uncou-
pling proteins. These effects were not apparent when patients
were treated with a Ca2+ channel blocker allowing to conclude
that Ang II must play a role in mitochondrial dysfunction (de
Cavanagh et al., 2006).

Since Ang II is linked to NOX, Wosniak et al. (2009) exam-
ined the effects of mild mitochondrial uncoupling and Ang II
stimulation of NOX isoform in VSMCs. Ethidium bromide was
used to induce mild mitochondrial stress, which the investiga-
tors described as “neither rapidly lethal nor promoting profound
redox derangements” (Wosniak et al., 2009). Results showed that
Ang II-induced NOX activation can be completely eliminated
with mild mitochondrial uncoupling. Ang II up regulates NOX
1 expression and down regulates NOX4 expression and with
mild mitochondrial dysfunction there was a decrease in NOX1
and increase in NOX4. Therefore, these authors concluded that
functional mitochondria are required for Ang II-induced NOX
activation. Wosniak et al. also noted that mitochondrial func-
tion influences activation of growth factor receptors involved in
NOX signaling (Wosniak et al., 2009). In addition, when Ang II
was administered, increased mtDNA damage was only observed
in those cells that had existing dysfunctional mitochondria. Cells
with functional mitochondria did not show any markers of
mtDNA damage. The researchers speculated that mitochondria
might be acting as a switch between normal to pathological
effects of Ang II (Wosniak et al., 2009). The relationship between

angiotensin-related mitochondrial ROS and NADPH oxidase is
still a novel area of research that can potentially provide insight
into pathophysiology of many diseases and may pave the way for
new therapeutic approaches.

THE USE OF ANGIOTENSIN RECEPTOR BLOCKERS (ARBs) IN
MITOCHONDRIAL DYSFUNCTION
Elevated Ang II produces increased levels of ROS (by activating
NADPH oxidase and various other enzymes) that contribute to
various pathological conditions. AT1R blockade decreases RAS-
mediated activation of NADPH oxidase and oxidative stress,
leading to reduced left ventricular fibrosis and mitochondrial
remodeling (Whaley-Connell et al., 2008). Losartan treatment
also reverses left ventricular hypertrophy, reduces fibrosis, ulti-
mately causing an overall improvement of cardiac function
(Khaper and Singal, 2001). Various studies have shown a
lower rate of mortality from cardiovascular disease in patients
treated with angiotensin receptor antagonists. Beneficial effects
of angiotensin receptor blockers include lowered cerebral lesion
incidence, reduced cardiac hypertrophy, and reduced glomeru-
losclerosis. Eprosartan was shown to be effective in prevent-
ing cardiac remodeling, renal failure, and decreasing mortality
(Takemori et al., 2005). Interestingly, insulin treatment induces
AT1R overexpression, and in diabetics, ARBs have been shown
to effectively preserve renal function and reduce cardiovascular
endpoints (Nickenig et al., 1998; Nickenig, 2004). ARBs reduces
Ang-II induced lipolysis and adipocyte dysfunction (Takemori
et al., 2013). Contrary to AT1R, the effects of AT2R are considered
protective. ARBs may increase activation of AT2 receptor aug-
menting end-organ protection (Carey et al., 2000; Unger, 2002).
More research on ARBs and activation of AT2 receptor might yield
promising results in treating various pathological conditions.

AngII receptor blockers have several features in common:
high affinity for AT1R and almost no affinity for AT2 receptors;
high protein binding capacity behaving as competitive inhibitors
with slow dissociation (Burnier, 2001). There are six common
types of ARBs used currently as treatment for hypertension—
losartan, valsartan, candesartan cilexetil, irbesartan, eprosartan,
and telmisartan. These ARBs have been shown to protect against
various disease states. For example, in rats with myocardial infarc-
tion, losartan improves function of several antioxidant enzymes,
significantly reducing oxidative stress. In particular, losartan
increases the activity of GSH peroxidase (Khaper and Singal,
2001) while decreasing levels of vascular O·−

2 due to its antagonist
activity on AT1 receptors (Kurz et al., 1999). It also restores NO·
synthesis and availability playing its role as an antihypertensive
drug protecting endothelial cells (Qadri et al., 2001). Valsartan is
effective in improving heart mitochondrial function under acute
ischemia (Monteiro et al., 2005). Long-term treatment of rabbit
heart with valsartan, after infarction, showed reduced lipid per-
oxide levels; an improvement in postinfarct ventricular remod-
eling and coronary endothelial dysfunction was also seen (Kuno
et al., 2002). In diabetic patients, candesartan cilexetil has been
shown to improve pancreatic β cell function (Qadri et al., 2001)
and irbesartan was effective against postprandial hyperglycemia
and hypertriglyceridemia on endothelial function (Ceriello et al.,
2005). Telmisartan can inhibit apoptosis, oxidative stress, and
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neuro-inflammation in addition to its antihypertensive functions
(Beckman et al., 1990; Butler et al., 2003; Monteiro et al., 2005;
Shao et al., 2006). In hypertensive patients, ARBs were shown to
improve normal retinal perfusion and endothelium-dependent
vasodilation in coronary and renal circulation (Delles et al.,
2004). In addition, ARBs have been associated with a reduction
in inflammatory markers. This is of particular importance since
low grade chronic inflammation is associated with many neu-
rodegenerative diseases like Alzheimer’s and Parkinson’s diseases,
amyotrophic lateral sclerosis, multiple sclerosis, Huntington’s dis-
ease and frailty (Tracy, 2003; Gao and Hong, 2008; Holmes et al.,
2009). ARBs are also able to reverse early myocardial impairment
(Cadeddu et al., 2010), improve insulin sensitivity, decrease inci-
dence of type 2 diabetes (Saitoh et al., 2009) and prevent renal
fibrosis (Shao et al., 2006).

PROSPECTIVE
Mitochondrial dysfunction and oxidative stress underlie
many pathologies and constitute primary theories of aging.
Understanding how age-related mitochondrial dysfunction
might be mitigated or exacerbated is critical to advancing this
research field. The RAS is currently regarded as a physiological
system of vital importance because of its links to both mitochon-
drial function/dysfunction and a host of age-related diseases.
Although many prior studies have advanced our understanding
in each of these aging-relevant biological systems, the progress
in delineating the molecular mechanisms involved has been
rather slow. Given the availability of selective, and relatively
safe blockers of RAS, studies focusing on the interface between
mitochondria, RAS, and aging may prove to be very important in
clinical translation of research.

ACKNOWLEDGMENTS
This study was supported by the Johns Hopkins Older Americans
Independence Center National Institute on Aging Grant P30
AG021334, National Institute on Aging Grants 1R01AG046441
and K23 AG035005, and Nathan Shock in Aging Scholarship
Award (to Peter Abadir) and Medical Student in Aging Research
(MSTAR) (to Ramya Vajapey)

REFERENCES
Abadir, P. M. (2011). The frail renin-angiotensin system. Clin. Geriatr. Med. 27,

53–65. doi: 10.1016/j.cger.2010.08.004
Abadir, P. M., Foster, D. B., Crow, M., Cooke, C. A., Rucker, J. J., Jain, A.,

et al. (2011). Identification and characterization of a functional mitochon-
drial angiotensin system. Proc. Natl. Acad. Sci. U.S.A. 108, 14849–14854. doi:
10.1073/pnas.1101507108

Abadir, P. M., Walston, J. D., and Carey, R. M. (2012). Subcellular characteristics
of functional intracellular renin-angiotensin systems. Peptides 38, 437–445. doi:
10.1016/j.peptides.2012.09.016

Abe, J., Takahashi, M., Ishida, M., Lee, J. D., and Berk, B. C. (1997). c-Src is required
for oxidative stress-mediated activation of big mitogen-activated protein kinase
1. J. Biol. Chem. 272, 20389–20394. doi: 10.1074/jbc.272.33.20389

Aiken, J., Bua, E., Cao, Z., Lopez, M., Wanagat, J., McKenzie, D., et al. (2002).
Mitochondrial DNA deletion mutations and sarcopenia. Ann. N.Y. Acad. Sci.
959, 412–423. doi: 10.1111/j.1749-6632.2002.tb02111.x

Alam, J., Stewart, D., Touchard, C., Boinapally, S., Choi, A. M., and Cook,
J. L. (1999). Nrf2, a Cap’n’Collar transcription factor, regulates induc-
tion of the heme oxygenase-1 gene. J. Biol. Chem. 274, 26071–26078. doi:
10.1074/jbc.274.37.26071

Amara, C. E., Shankland, E. G., Jubrias, S. A., Marcinek, D. J., Kushmerick, M.
J., and Conley, K. E. (2007). Mild mitochondrial uncoupling impacts cellular
aging in human muscles in vivo. Proc. Natl. Acad. Sci. U.S.A. 104, 1057–1062.
doi: 10.1073/pnas.0610131104

Amaya, Y., Yamazaki, K., Sato, M., Noda, K., Nishino, T., and Nishino, T.
(1990). Proteolytic conversion of xanthine dehydrogenase from the NAD-
dependent type to the O2-dependent type. Amino acid sequence of rat
liver xanthine dehydrogenase and identification of the cleavage sites of the
enzyme protein during irreversible conversion by trypsin. J. Biol. Chem. 265,
14170–14175.

Andrukhiv, A., Costa, A. D., West, I. C., and Garlid, K. D. (2006). Opening
mitoKATP increases superoxide generation from complex I of the electron
transport chain. Am. J. Physiol. Heart Circ. Physiol. 291, H2067–H2074. doi:
10.1152/ajpheart.00272.2006

Aon, M. A., Cortassa, S., Maack, C., and O’Rourke, B. (2007). Sequential opening
of mitochondrial ion channels as a function of glutathione redox thiol status.
J. Biol. Chem. 282, 21889–21900. doi: 10.1074/jbc.M702841200

Aon, M. A., Cortassa, S., Marban, E., and O’Rourke, B. (2003). Synchronized whole
cell oscillations in mitochondrial metabolism triggered by a local release of reac-
tive oxygen species in cardiac myocytes. J. Biol. Chem. 278, 44735–44744. doi:
10.1074/jbc.M302673200

Aon, M. A., Cortassa, S., and O’Rourke, B. (2010). Redox-optimized ROS
balance: a unifying hypothesis. Biochim. Biophys. Acta 1797, 865–877. doi:
10.1016/j.bbabio.2010.02.016

Aon, M. A., Stanley, B. A., Sivakumaran, V., Kembro, J. M., O’Rourke, B., Paolocci,
N., et al. (2012). Glutathione/thioredoxin systems modulate mitochondrial
H2O2 emission: an experimental-computational study. J. Gen. Physiol. 139,
479–491. doi: 10.1085/jgp.201210772

Apel, K., and Hirt, H. (2004). Reactive oxygen species: metabolism, oxida-
tive stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399. doi:
10.1146/annurev.arplant.55.031903.141701

Arbabi, S., and Maier, R. V. (2002). Mitogen-activated protein kinases. Crit. Care
Med. 30, S74–S79. doi: 10.1097/00003246-200201001-00010

Arnoult, D., Soares, F., Tattoli, I., Castanier, C., Philpott, D. J., and Girardin,
S. E. (2009). An N-terminal addressing sequence targets NLRX1 to the
mitochondrial matrix. J. Cell Sci. 122(Pt 17), 3161–3168. doi: 10.1242/jcs.
051193

Baeuerle, P. A., and Henkel, T. (1994). Function and activation of NF-
kappa B in the immune system. Annu. Rev. Immunol. 12, 141–179. doi:
10.1146/annurev.iy.12.040194.001041

Baker, K. M., Chernin, M. I., Schreiber, T., Sanghi, S., Haiderzaidi, S.,
Booz, G. W., et al. (2004). Evidence of a novel intracrine mechanism in
angiotensin II-induced cardiac hypertrophy. Regul. Pept. 120, 5–13. doi:
10.1016/j.regpep.2004.04.004

Ballinger, S. W., Shoffner, J. M., Gebhart, S., Koontz, D. A., and Wallace, D.
C. (1994). Mitochondrial diabetes revisited. Nat. Genet. 7, 458–459. doi:
10.1038/ng0894-458

Barja, G., and Herrero, A. (1998). Localization at complex I and mechanism of the
higher free radical production of brain nonsynaptic mitochondria in the short-
lived rat than in the longevous pigeon. J. Bioenerg. Biomembr. 30, 235–243. doi:
10.1023/A:1020592719405

Bayraktutan, U., Draper, N., Lang, D., and Shah, A. M. (1998). Expression
of functional neutrophil-type NADPH oxidase in cultured rat coronary
microvascular endothelial cells. Cardiovasc. Res. 38, 256–262. doi:
10.1016/S0008-6363(98)00003-0

Beal, M. F. (2007). Mitochondria and neurodegeneration. Novartis Found. Symp.
287, 183–192. doi: 10.1002/9780470725207.ch13

Bechara, R. I., Pelaez, A., Palacio, A., Joshi, P. C., Hart, C. M., Brown, L. A.,
et al. (2005). Angiotensin II mediates glutathione depletion, transforming
growth factor-beta1 expression, and epithelial barrier dysfunction in the alco-
holic rat lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 289, L363–L370. doi:
10.1152/ajplung.00141.2005

Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A.
(1990). Apparent hydroxyl radical production by peroxynitrite: implications for
endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. U.S.A.
87, 1620–1624. doi: 10.1073/pnas.87.4.1620

Bedard, K., and Krause, K. H. (2007). The NOX family of ROS-generating
NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313.
doi: 10.1152/physrev.00044.2005

Frontiers in Physiology | Mitochondrial Research November 2014 | Volume 5 | Article 439 | 10

http://www.frontiersin.org/Mitochondrial_Research
http://www.frontiersin.org/Mitochondrial_Research
http://www.frontiersin.org/Mitochondrial_Research/archive


Vajapey et al. Angiotensin system and mitochondria

Benigni, A., Corna, D., Zoja, C., Sonzogni, A., Latini, R., Salio, M., et al. (2009).
Disruption of the Ang II type 1 receptor promotes longevity in mice. J. Clin.
Invest. 119, 524–530. doi: 10.1172/JCI36703

Bergelson, S., Pinkus, R., and Daniel, V. (1994). Induction of AP-1 (Fos/Jun) by
chemical agents mediates activation of glutathione S-transferase and quinone
reductase gene expression. Oncogene 9, 565–571.

Bleazard, W., McCaffery, J. M., King, E. J., Bale, S., Mozdy, A., Tieu, Q., et al. (1999).
The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast.
Nat. Cell Biol. 1, 298–304. doi: 10.1038/13014

Boncompain, G., Schneider, B., Delevoye, C., Kellermann, O., Dautry-Varsat, A.,
and Subtil, A. (2010). Production of reactive oxygen species is turned on and
rapidly shut down in epithelial cells infected with Chlamydia trachomatis. Infect.
Immun. 78, 80–87. doi: 10.1128/IAI.00725-09

Bonifati, V., Rizzu, P., van Baren, M. J., Schaap, O., Breedveld, G. J., Krieger, E.,
et al. (2003). Mutations in the DJ-1 gene associated with autosomal reces-
sive early-onset parkinsonism. Science 299, 256–259. doi: 10.1126/science.10
77209

Brand, M. D., Affourtit, C., Esteves, T. C., Green, K., Lambert, A. J., Miwa, S.,
et al. (2004). Mitochondrial superoxide: production, biological effects, and
activation of uncoupling proteins. Free Radic. Biol. Med. 37, 755–767. doi:
10.1016/j.freeradbiomed.2004.05.034

Brewer, A. C., Murray, T. V., Arno, M., Zhang, M., Anilkumar, N. P.,
Mann, G. E., et al. (2011). Nox4 regulates Nrf2 and glutathione redox
in cardiomyocytes in vivo. Free Radic. Biol. Med. 51, 205–215. doi:
10.1016/j.freeradbiomed.2011.04.022

Briones, A. M., Tabet, F., Callera, G. E., Montezano, A. C., Yogi, A., He, Y., et al.
(2011). Differential regulation of Nox1, Nox2 and Nox4 in vascular smooth
muscle cells from WKY and SHR. J. Am. Soc. Hypertens. 5, 137–153. doi:
10.1016/j.jash.2011.02.001

Brown, G. C. (1999). Nitric oxide and mitochondrial respiration. Biochim. Biophys.
Acta 1411, 351–369. doi: 10.1016/S0005-2728(99)00025-0

Bua, E., Johnson, J., Herbst, A., Delong, B., McKenzie, D., Salamat, S., et al. (2006).
Mitochondrial DNA-deletion mutations accumulate intracellularly to detri-
mental levels in aged human skeletal muscle fibers. Am. J. Hum. Genet. 79,
469–480. doi: 10.1086/507132

Bua, E. A., McKiernan, S. H., Wanagat, J., McKenzie, D., and Aiken, J. M. (2002).
Mitochondrial abnormalities are more frequent in muscles undergoing sarcope-
nia. J. Appl. Physiol. (1985) 92, 2617–2624.

Burnier, M. (2001). Angiotensin II type 1 receptor blockers. Circulation 103,
904–912. doi: 10.1161/01.CIR.103.6.904

Butler, A. E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R. A., and Butler, P. C.
(2003). Beta-cell deficit and increased beta-cell apoptosis in humans with type
2 diabetes. Diabetes 52, 102–110. doi: 10.2337/diabetes.52.1.102

Byrne, J. A., Grieve, D. J., Bendall, J. K., Li, J. M., Gove, C., Lambeth, J. D., et al.
(2003). Contrasting roles of NADPH oxidase isoforms in pressure-overload ver-
sus angiotensin II-induced cardiac hypertrophy. Circ. Res. 93, 802–805. doi:
10.1161/01.RES.0000099504.30207.F5

Cadeddu, C., Piras, A., Mantovani, G., Deidda, M., Dessi, M., Madeddu,
C., et al. (2010). Protective effects of the angiotensin II receptor blocker
telmisartan on epirubicin-induced inflammation, oxidative stress, and early
ventricular impairment. Am. Heart J. 160, 487. doi: 10.1016/j.ahj.2010.
05.037

Cadenas, E. (2004). Mitochondrial free radical production and cell signaling. Mol.
Aspects. Med. 25, 17–26. doi: 10.1016/j.mam.2004.02.005

Cadenas, E., and Davies, K. J. (2000). Mitochondrial free radical generation, oxida-
tive stress, and aging. Free Radic. Biol. Med. 29, 222–230. doi: 10.1016/S0891-
5849(00)00317-8

Cai, H., Griendling, K. K., and Harrison, D. G. (2003). The vascular NAD(P)H
oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol. Sci.
24, 471–478. doi: 10.1016/S0165-6147(03)00233-5

Cai, H., and Harrison, D. G. (2000). Endothelial dysfunction in cardiovas-
cular diseases: the role of oxidant stress. Circ. Res. 87, 840–844. doi:
10.1161/01.RES.87.10.840

Calabro, P., Limongelli, G., Riegler, L., Maddaloni, V., Palmieri, R., Golia, E.,
et al. (2009). Novel insights into the role of cardiotrophin-1 in cardiovascular
diseases. J. Mol. Cell. Cardiol. 46, 142–148. doi: 10.1016/j.yjmcc.2008.11.002

Carey, R. M. (2012). Functional intracellular renin-angiotensin systems: potential
for pathophysiology of disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302,
R479–R481. doi: 10.1152/ajpregu.00656.2011

Carey, R. M., Wang, Z. Q., and Siragy, H. M. (2000). Role of the angiotensin type
2 receptor in the regulation of blood pressure and renal function. Hypertension
35(1 Pt 2), 155–163. doi: 10.1161/01.HYP.35.1.155

Carlstrom, M., Lai, E. Y., Ma, Z., Steege, A., Patzak, A., Eriksson, U. J.,
et al. (2010). Superoxide dismutase 1 limits renal microvascular remodel-
ing and attenuates arteriole and blood pressure responses to angiotensin II
via modulation of nitric oxide bioavailability. Hypertension 56, 907–913. doi:
10.1161/HYPERTENSIONAHA.110.159301

Ceriello, A., Assaloni, R., Da, R. R., Maier, A., Piconi, L., Quagliaro, L.,
et al. (2005). Effect of atorvastatin and irbesartan, alone and in com-
bination, on postprandial endothelial dysfunction, oxidative stress, and
inflammation in type 2 diabetic patients. Circulation 111, 2518–2524. doi:
10.1161/01.CIR.0000165070.46111.9F

Chandel, N. S. (2014). Mitochondria as signaling organelles. BMC Biol. 12, 34–12.
doi: 10.1186/1741-7007-12-34

Chandel, N. S., Maltepe, E., Goldwasser, E., Mathieu, C. E., Simon, M. C.,
and Schumacker, P. T. (1998). Mitochondrial reactive oxygen species trigger
hypoxia-induced transcription. Proc. Natl. Acad. Sci. U.S.A. 95, 11715–11720.
doi: 10.1073/pnas.95.20.11715

Chandel, N. S., McClintock, D. S., Feliciano, C. E., Wood, T. M., Melendez, J.
A., Rodriguez, A. M., et al. (2000a). Reactive oxygen species generated at
mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during
hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275, 25130–25138. doi:
10.1074/jbc.M001914200

Chandel, N. S., Schumacker, P. T., and Arch, R. H. (2001). Reactive oxygen species
are downstream products of TRAF-mediated signal transduction. J. Biol. Chem.
276, 42728–42736. doi: 10.1074/jbc.M103074200

Chandel, N. S., Trzyna, W. C., McClintock, D. S., and Schumacker, P. T. (2000b).
Role of oxidants in NF-kappa B activation and TNF-alpha gene transcrip-
tion induced by hypoxia and endotoxin. J. Immunol. 165, 1013–1021. doi:
10.4049/jimmunol.165.2.1013

Chen, H., Detmer, S. A., Ewald, A. J., Griffin, E. E., Fraser, S. E., and Chan, D. C.
(2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion
and are essential for embryonic development. J. Cell Biol. 160, 189–200. doi:
10.1083/jcb.200211046

Chose, O., Sansilvestri-Morel, P., Badier-Commander, C., Bernhardt, F., Fabiani,
J. N., Rupin, A., et al. (2008). Distinct role of nox1, nox2, and p47phox
in unstimulated versus angiotensin II-induced NADPH oxidase activity in
human venous smooth muscle cells. J. Cardiovasc. Pharmacol. 51, 131–139. doi:
10.1097/FJC.0b013e31815d781d

Cirillo, S. L., Subbian, S., Chen, B., Weisbrod, T. R., Jacobs, W. R. Jr., and Cirillo,
J. D. (2009). Protection of Mycobacterium tuberculosis from reactive oxygen
species conferred by the mel2 locus impacts persistence and dissemination.
Infect. Immun. 77, 2557–2567. doi: 10.1128/IAI.01481-08

Clempus, R. E., Sorescu, D., Dikalova, A. E., Pounkova, L., Jo, P., Sorescu, G. P.,
et al. (2007). Nox4 is required for maintenance of the differentiated vascular
smooth muscle cell phenotype. Arterioscler. Thromb. Vasc. Biol. 27, 42–48. doi:
10.1161/01.ATV.0000251500.94478.18

Coffer, P. J., Jin, J., and Woodgett, J. R. (1998). Protein kinase B (c-Akt): a multi-
functional mediator of phosphatidylinositol 3-kinase activation. Biochem. J. 335
(Pt 1), 1–13.

Combs, A. P. (2010). Recent advances in the discovery of competitive protein tyro-
sine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer.
J. Med. Chem. 53, 2333–2344. doi: 10.1021/jm901090b

Conley, K. E., Marcinek, D. J., and Villarin, J. (2007). Mitochondrial dys-
function and age. Curr. Opin. Clin. Nutr. Metab. Care 10, 688–692. doi:
10.1097/MCO.0b013e3282f0dbfb

Conti, S., Cassis, P., and Benigni, A. (2012). Aging and the renin-angiotensin
system. Hypertension 60, 878–883. doi: 10.1161/HYPERTENSIONAHA.110.
155895

Cook, J. L., and Re, R. N. (2012). Lessons from in vitro studies and a related intracel-
lular angiotensin II transgenic mouse model. Am. J. Physiol. Regul. Integr. Comp.
Physiol. 302, R482–R493. doi: 10.1152/ajpregu.00493.2011

Cook, J. L., Zhang, Z., and Re, R. N. (2001). In vitro evidence for an intracellular
site of angiotensin action. Circ. Res. 89, 1138–1146. doi: 10.1161/hh2401.101270

Corral-Debrinski, M., Horton, T., Lott, M. T., Shoffner, J. M., Beal, M. F.,
and Wallace, D. C. (1992). Mitochondrial DNA deletions in human brain:
regional variability and increase with advanced age. Nat. Genet. 2, 324–329. doi:
10.1038/ng1292-324

www.frontiersin.org November 2014 | Volume 5 | Article 439 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Mitochondrial_Research/archive


Vajapey et al. Angiotensin system and mitochondria

Cortassa, S., Aon, M. A., O’Rourke, B., Jacques, R., Tseng, H. J., Marban, E.,
et al. (2006). A computational model integrating electrophysiology, contrac-
tion, and mitochondrial bioenergetics in the ventricular myocyte. Biophys. J.
91, 1564–1589. doi: 10.1529/biophysj.105.076174

Cortassa, S., O’Rourke, B., and Aon, M. A. (2014). Redox-optimized ROS bal-
ance and the relationship between mitochondrial respiration and ROS. Biochim.
Biophys. Acta 1837, 287–295. doi: 10.1016/j.bbabio.2013.11.007

Cristovam, P. C., Arnoni, C. P., de Andrade, M. C., Casarini, D. E., Pereira, L. G.,
Schor, N., et al. (2008). ACE-dependent and chymase-dependent angiotensin II
generation in normal and glucose-stimulated human mesangial cells. Exp. Biol.
Med. (Maywood) 233, 1035–1043. doi: 10.3181/0708-RM-229

Croteau, D. L., Stierum, R. H., and Bohr, V. A. (1999). Mitochondrial DNA repair
pathways. Mutat. Res. 434, 137–148. doi: 10.1016/S0921-8777(99)00025-7

Dai, D. F., Rabinovitch, P. S., and Ungvari, Z. (2012). Mitochondria and car-
diovascular aging. Circ. Res. 110, 1109–1124. doi: 10.1161/CIRCRESAHA.111.
246140

Dai, D. F., Santana, L. F., Vermulst, M., Tomazela, D. M., Emond, M. J.,
MacCoss, M. J., et al. (2009). Overexpression of catalase targeted to mito-
chondria attenuates murine cardiac aging. Circulation 119, 2789–2797. doi:
10.1161/CIRCULATIONAHA.108.822403

Daiber, A. (2010). Redox signaling (cross-talk) from and to mitochondria involves
mitochondrial pores and reactive oxygen species. Biochim. Biophys. Acta 1797,
897–906. doi: 10.1016/j.bbabio.2010.01.032

de Cavanagh, E. M., Inserra, F., Ferder, M., and Ferder, L. (2007). From mito-
chondria to disease: role of the renin-angiotensin system. Am. J. Nephrol. 27,
545–553. doi: 10.1159/000107757

de Cavanagh, E. M., Toblli, J. E., Ferder, L., Piotrkowski, B., Stella, I., and Inserra,
F. (2006). Renal mitochondrial dysfunction in spontaneously hypertensive rats
is attenuated by losartan but not by amlodipine. Am. J. Physiol. Regul. Integr.
Comp. Physiol. 290, R1616–R1625. doi: 10.1152/ajpregu.00615.2005

Delles, C., Michelson, G., Harazny, J., Oehmer, S., Hilgers, K. F., and Schmieder, R.
E. (2004). Impaired endothelial function of the retinal vasculature in hyperten-
sive patients. Stroke 35, 1289–1293. doi: 10.1161/01.STR.0000126597.11534.3b

De Mello, W. C., and Frohlich, E. D. (2011). On the local cardiac renin
angiotensin system. Basic and clinical implications. Peptides 32, 1774–1779. doi:
10.1016/j.peptides.2011.06.018

De Mello, W. C., and Gerena, Y. (2008). Eplerenone inhibits the intracrine and
extracellular actions of angiotensin II on the inward calcium current in the
failing heart. On the presence of an intracrine renin angiotensin aldosterone
system. Regul. Pept. 151, 54–60. doi: 10.1016/j.regpep.2008.06.003

Di, L. F., Canton, M., Menabo, R., Kaludercic, N., and Bernardi, P. (2007).
Mitochondria and cardioprotection. Heart Fail. Rev. 12, 249–260. doi:
10.1007/s10741-007-9028-z

Dikalov, S. I., Dikalova, A. E., Bikineyeva, A. T., Schmidt, H. H., Harrison, D. G.,
and Griendling, K. K. (2008). Distinct roles of Nox1 and Nox4 in basal and
angiotensin II-stimulated superoxide and hydrogen peroxide production. Free
Radic. Biol. Med. 45, 1340–1351. doi: 10.1016/j.freeradbiomed.2008.08.013

Dikalov, S. I., and Nazarewicz, R. R. (2013). Angiotensin II-induced production
of mitochondrial reactive oxygen species: potential mechanisms and rele-
vance for cardiovascular disease. Antioxid. Redox Signal. 19, 1085–1094. doi:
10.1089/ars.2012.4604

Dikalov, S. I., and Ungvari, Z. (2013). Role of mitochondrial oxidative stress
in hypertension. Am. J. Physiol. Heart Circ. Physiol. 305, H1417–H1427. doi:
10.1152/ajpheart.00089.2013

Dikalova, A., Clempus, R., Lassegue, B., Cheng, G., McCoy, J., Dikalov, S., et al.
(2005). Nox1 overexpression potentiates angiotensin II-induced hypertension
and vascular smooth muscle hypertrophy in transgenic mice. Circulation 112,
2668–2676. doi: 10.1161/CIRCULATIONAHA.105.538934

Dirks, A. J., Hofer, T., Marzetti, E., Pahor, M., and Leeuwenburgh, C.
(2006). Mitochondrial DNA mutations, energy metabolism and apopto-
sis in aging muscle. Ageing Res. Rev. 5, 179–195. doi: 10.1016/j.arr.2006.
03.002

Doughan, A. K., Harrison, D. G., and Dikalov, S. I. (2008). Molecular mechanisms
of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial
oxidative damage and vascular endothelial dysfunction. Circ. Res. 102, 488–496.
doi: 10.1161/CIRCRESAHA.107.162800

Drose, S. (2013). Differential effects of complex II on mitochondrial ROS produc-
tion and their relation to cardioprotective pre- and postconditioning. Biochim.
Biophys. Acta 1827, 578–587. doi: 10.1016/j.bbabio.2013.01.004

Druzhyna, N. M., Wilson, G. L., and LeDoux, S. P. (2008). Mitochondrial
DNA repair in aging and disease. Mech. Ageing Dev. 129, 383–390. doi:
10.1016/j.mad.2008.03.002

Echtay, K. S., Roussel, D., St-Pierre, J., Jekabsons, M. B., Cadenas, S., Stuart, J. A.,
et al. (2002). Superoxide activates mitochondrial uncoupling proteins. Nature
415, 96–99. doi: 10.1038/415096a

Eguchi, S., Matsumoto, T., Motley, E. D., Utsunomiya, H., and Inagami, T. (1996).
Identification of an essential signaling cascade for mitogen-activated protein
kinase activation by angiotensin II in cultured rat vascular smooth muscle
cells. Possible requirement of Gq-mediated p21ras activation coupled to a
Ca2+/calmodulin-sensitive tyrosine kinase. J. Biol. Chem. 271, 14169–14175.
doi: 10.1074/jbc.271.24.14169

Eguchi, S., Numaguchi, K., Iwasaki, H., Matsumoto, T., Yamakawa, T., Utsunomiya,
H., et al. (1998). Calcium-dependent epidermal growth factor receptor transac-
tivation mediates the angiotensin II-induced mitogen-activated protein kinase
activation in vascular smooth muscle cells. J. Biol. Chem. 273, 8890–8896. doi:
10.1074/jbc.273.15.8890

Ellis, B., Li, X. C., Miguel-Qin, E., Gu, V., and Zhuo, J. L. (2012). Evidence
for a functional intracellular angiotensin system in the proximal tubule of
the kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R494–R509. doi:
10.1152/ajpregu.00487.2011

Eto, K., Ohya, Y., Nakamura, Y., Abe, I., and Iida, M. (2002). Intracellular
angiotensin II stimulates voltage-operated Ca(2+) channels in arterial myocytes.
Hypertension 39(2 Pt 2), 474–478. doi: 10.1161/hy02t2.102961

Exton, J. H. (1985). Mechanisms involved in alpha-adrenergic phenomena. Am. J.
Physiol. 248(6 Pt 1), E633–E647.

Ferder, M., Inserra, F., Manucha, W., and Ferder, L. (2013). The world pandemic
of vitamin D deficiency could possibly be explained by cellular inflammatory
response activity induced by the renin-angiotensin system. Am. J. Physiol. Cell
Physiol. 304, C1027–C1039. doi: 10.1152/ajpcell.00403.2011

Finkel, T. (1998). Oxygen radicals and signaling. Curr. Opin. Cell Biol. 10, 248–253.
doi: 10.1016/S0955-0674(98)80147-6

Fukai, T. (2009). Mitochondrial Thioredoxin: novel regulator for NADPH oxi-
dase and angiotensin II-induced hypertension. Hypertension 54, 224–225. doi:
10.1161/HYPERTENSIONAHA.109.134403

Fulton, D. J. (2009). Nox5 and the regulation of cellular function. Antioxid. Redox
Signal. 11, 2443–2452. doi: 10.1089/ars.2009.2587

Gao, H. M., and Hong, J. S. (2008). Why neurodegenerative diseases are progres-
sive: uncontrolled inflammation drives disease progression. Trends Immunol. 29,
357–365. doi: 10.1016/j.it.2008.05.002

Gao, J., Chao, J., Parbhu, K. J., Yu, L., Xiao, L., Gao, F., et al. (2012).
Ontogeny of angiotensin type 2 and type 1 receptor expression in mice.
J. Renin Angiotensin Aldosterone Syst. 13, 341–352. doi: 10.1177/14703203124
43720

Garcia, I. M., Altamirano, L., Mazzei, L., Fornes, M., Molina, M. N., Ferder, L.,
et al. (2012). Role of mitochondria in paricalcitol-mediated cytoprotection dur-
ing obstructive nephropathy. Am. J. Physiol. Renal Physiol. 302, F1595–F1605.
doi: 10.1152/ajprenal.00617.2011

Geiszt, M., Kopp, J. B., Varnai, P., and Leto, T. L. (2000). Identification of renox, an
NAD(P)H oxidase in kidney. Proc. Natl. Acad. Sci. U.S.A. 97, 8010–8014. doi:
10.1073/pnas.130135897

Golden, T. R., and Melov, S. (2001). Mitochondrial DNA mutations, oxidative
stress, and aging. Mech. Ageing Dev. 122, 1577–1589. doi: 10.1016/S0047-
6374(01)00288-3

Greco, M., Villani, G., Mazzucchelli, F., Bresolin, N., Papa, S., and Attardi, G.
(2003). Marked aging-related decline in efficiency of oxidative phosphorylation
in human skin fibroblasts. FASEB J. 17, 1706–1708.

Griendling, K. K., Murphy, T. J., and Alexander, R. W. (1993). Molecular
biology of the renin-angiotensin system. Circulation 87, 1816–1828. doi:
10.1161/01.CIR.87.6.1816

Griendling, K. K., and Ushio-Fukai, M. (2000). Reactive oxygen species as medi-
ators of angiotensin II signaling. Regul. Pept. 91, 21–27. doi: 10.1016/S0167-
0115(00)00136-1

Gwathmey, T. M., Alzayadneh, E. M., Pendergrass, K. D., and Chappell, M.
C. (2012). Novel roles of nuclear angiotensin receptors and signaling mech-
anisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R518–R530. doi:
10.1152/ajpregu.00525.2011

Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry.
J. Gerontol. 11, 298–300. doi: 10.1093/geronj/11.3.298

Frontiers in Physiology | Mitochondrial Research November 2014 | Volume 5 | Article 439 | 12

http://www.frontiersin.org/Mitochondrial_Research
http://www.frontiersin.org/Mitochondrial_Research
http://www.frontiersin.org/Mitochondrial_Research/archive


Vajapey et al. Angiotensin system and mitochondria

Harman, D. (2006). Free radical theory of aging: an update: increasing the func-
tional life span. Ann. N.Y. Acad. Sci. 1067, 10–21. doi: 10.1196/annals.1354.003

Harris, R. C., Zhang, M. Z., and Cheng, H. F. (2004). Cyclooxygenase-2 and
the renal renin-angiotensin system. Acta Physiol. Scand. 181, 543–547. doi:
10.1111/j.1365-201X.2004.01329.x

Heinzel, F. R., Luo, Y., Li, X., Boengler, K., Buechert, A., Garcia-Dorado, D.,
et al. (2005). Impairment of diazoxide-induced formation of reactive oxygen
species and loss of cardioprotection in connexin 43 deficient mice. Circ. Res. 97,
583–586. doi: 10.1161/01.RES.0000181171.65293.65

Hensley, K., Robinson, K. A., Gabbita, S. P., Salsman, S., and Floyd, R. A. (2000).
Reactive oxygen species, cell signaling, and cell injury. Free Radic. Biol. Med. 28,
1456–1462. doi: 10.1016/S0891-5849(00)00252-5

Herbst, A., Pak, J. W., McKenzie, D., Bua, E., Bassiouni, M., and Aiken, J. M. (2007).
Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers:
evidence for a causal role in muscle fiber loss. J. Gerontol. A Biol. Sci. Med. Sci.
62, 235–245. doi: 10.1093/gerona/62.3.235

Heymes, C., Bendall, J. K., Ratajczak, P., Cave, A. C., Samuel, J. L., Hasenfuss,
G., et al. (2003). Increased myocardial NADPH oxidase activity in human
heart failure. J. Am. Coll. Cardiol. 41, 2164–2171. doi: 10.1016/S0735-1097(03)
00471-6

Heymes, C., Silvestre, J. S., Llorens-Cortes, C., Chevalier, B., Marotte, F., Levy, B.
I., et al. (1998). Cardiac senescence is associated with enhanced expression of
angiotensin II receptor subtypes. Endocrinology 139, 2579–2587.

Hoek, J. B., and Rydstrom, J. (1988). Physiological roles of nicotinamide nucleotide
transhydrogenase. Biochem. J. 254, 1–10.

Holmes, C., Cunningham, C., Zotova, E., Woolford, J., Dean, C., Kerr, S., et al.
(2009). Systemic inflammation and disease progression in Alzheimer disease.
Neurology 73, 768–774. doi: 10.1212/WNL.0b013e3181b6bb95

Hongpaisan, J., Winters, C. A., and Andrews, S. B. (2004). Strong calcium
entry activates mitochondrial superoxide generation, upregulating kinase
signaling in hippocampal neurons. J. Neurosci. 24, 10878–10887. doi:
10.1523/JNEUROSCI.3278-04.2004

Horan, M. P., Pichaud, N., and Ballard, J. W. (2012). Review: quantifying mito-
chondrial dysfunction in complex diseases of aging. J. Gerontol. A Biol. Sci. Med.
Sci. 67, 1022–1035. doi: 10.1093/gerona/glr263

Hornig, B., Landmesser, U., Kohler, C., Ahlersmann, D., Spiekermann, S.,
Christoph, A., et al. (2001). Comparative effect of ace inhibition and angiotensin
II type 1 receptor antagonism on bioavailability of nitric oxide in patients with
coronary artery disease: role of superoxide dismutase. Circulation 103, 799–805.
doi: 10.1161/01.CIR.103.6.799

Hunt, M. K., Ramos, S. P., Geary, K. M., Norling, L. L., Peach, M. J., Gomez, R.
A., et al. (1992). Colocalization and release of angiotensin and renin in renal
cortical cells. Am. J. Physiol. 263, F363–F373.

Hutter, E., Renner, K., Pfister, G., Stockl, P., Jansen-Durr, P., and Gnaiger, E. (2004).
Senescence-associated changes in respiration and oxidative phosphorylation in
primary human fibroblasts. Biochem. J. 380, 919–928. doi: 10.1042/BJ20040095

Inagami, T. (2011). Mitochondrial angiotensin receptors and aging. Circ. Res. 109,
1323–1324. doi: 10.1161/RES.0b013e31823f05e0

Inagami, T., Mizuno, K., Nakamaru, M., Pandey, K. N., Naruse, M., Naruse, K., et al.
(1988). The renin-angiotensin system: an overview of its intracellular function.
Cardiovasc. Drugs Ther. 2, 453–458. doi: 10.1007/BF00051182

Inagami, T., Mizuno, K., Naruse, K., Okamura, T., and Kawamura, M. (1990).
Intracellular formation and release of angiotensins from juxtaglomerular cells.
Kidney Int. Suppl. 30, S33–S37.

Inagami, T., Nakamaru, M., Pandey, K. N., Naruse, M., Naruse, K., Misono, K.,
et al. (1986). Intracellular action of renin, angiotensin production and release.
J. Hypertens. Suppl. 4, S11–S16.

Jackson, J. B. (2003). Proton translocation by transhydrogenase. FEBS Lett. 545,
18–24. doi: 10.1016/S0014-5793(03)00388-0

Jung, S. N., Yang, W. K., Kim, J., Kim, H. S., Kim, E. J., Yun, H., et al.
(2008). Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha pro-
tein and stimulate transcriptional activity via AMP-activated protein kinase
in DU145 human prostate cancer cells. Carcinogenesis 29, 713–721. doi:
10.1093/carcin/bgn032

Kaneto, H., Katakami, N., Matsuhisa, M., and Matsuoka, T. A. (2010). Role of reac-
tive oxygen species in the progression of type 2 diabetes and atherosclerosis.
Mediators Inflamm. 2010:453892. doi: 10.1155/2010/453892

Kang, J., and Pervaiz, S. (2012). Mitochondria: redox metabolism and dysfunction.
Biochem. Res. Int. 2012:896751. doi: 10.1155/2012/896751

Katayama, M., Tanaka, M., Yamamoto, H., Ohbayashi, T., Nimura, Y., and Ozawa,
T. (1991). Deleted mitochondrial DNA in the skeletal muscle of aged individu-
als. Biochem. Int. 25, 47–56.

Kelley, E. E., Khoo, N. K., Hundley, N. J., Malik, U. Z., Freeman, B.
A., and Tarpey, M. M. (2010). Hydrogen peroxide is the major oxidant
product of xanthine oxidase. Free Radic. Biol. Med. 48, 493–498. doi:
10.1016/j.freeradbiomed.2009.11.012

Kembro, J. M., Cortassa, S., and Aon, M. A. (2014). “Mitochondrial reactive oxygen
species (ROS) and arrhythmias,” in Systems Biology of Free Radicals and Anti
Oxidants, ed I. Laher (Berlin; Heidelberg: Springer-Verlag), 1047–1076.

Khaper, N., and Singal, P. K. (2001). Modulation of oxidative stress by a selective
inhibition of angiotensin II type 1 receptors in MI rats. J. Am. Coll. Cardiol. 37,
1461–1466. doi: 10.1016/S0735-1097(01)01126-3

Kim, R. H., Smith, P. D., Aleyasin, H., Hayley, S., Mount, M. P., Pownall, S., et al.
(2005). Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyrindine (MPTP) and oxidative stress. Proc. Natl. Acad. Sci. U.S.A.
102, 5215–5220. doi: 10.1073/pnas.0501282102

Kimura, S., Zhang, G. X., Nishiyama, A., Shokoji, T., Yao, L., Fan, Y. Y., et al. (2005).
Mitochondria-derived reactive oxygen species and vascular MAP kinases:
comparison of angiotensin II and diazoxide. Hypertension 45, 438–444. doi:
10.1161/01.HYP.0000157169.27818.ae

Kodama, H., Fukuda, K., Pan, J., Makino, S., Baba, A., Hori, S., et al. (1997).
Leukemia inhibitory factor, a potent cardiac hypertrophic cytokine, activates
the JAK/STAT pathway in rat cardiomyocytes. Circ. Res. 81, 656–663. doi:
10.1161/01.RES.81.5.656

Konishi, H., Matsuzaki, H., Tanaka, M., Takemura, Y., Kuroda, S., Ono, Y., et al.
(1997). Activation of protein kinase B (Akt/RAC-protein kinase) by cellu-
lar stress and its association with heat shock protein Hsp27. FEBS Lett. 410,
493–498. doi: 10.1016/S0014-5793(97)00541-3

Kregel, K. C., and Zhang, H. J. (2007). An integrated view of oxidative stress
in aging: basic mechanisms, functional effects, and pathological consid-
erations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R18–R36. doi:
10.1152/ajpregu.00327.2006

Kumar, R., Singh, V. P., and Baker, K. M. (2007). The intracellular renin-
angiotensin system: a new paradigm. Trends Endocrinol. Metab. 18, 208–214.
doi: 10.1016/j.tem.2007.05.001

Kumar, R., Singh, V. P., and Baker, K. M. (2008). The intracellular renin-
angiotensin system: implications in cardiovascular remodeling. Curr. Opin.
Nephrol. Hypertens. 17, 168–173. doi: 10.1097/MNH.0b013e3282f521a8

Kumar, R., Thomas, C. M., Yong, Q. C., Chen, W., and Baker, K. M. (2012).
The intracrine renin-angiotensin system. Clin. Sci. (Lond.) 123, 273–284. doi:
10.1042/CS20120089

Kuno, A., Miura, T., Tsuchida, A., Hasegawa, T., Miki, T., Nishino, Y., et al.
(2002). Blockade of angiotensin II type 1 receptors suppressed free radi-
cal production and preserved coronary endothelial function in the rabbit
heart after myocardial infarction. J. Cardiovasc. Pharmacol. 39, 49–57. doi:
10.1097/00005344-200201000-00006

Kurita, S., Takamura, T., Ota, T., Matsuzawa-Nagata, N., Kita, Y., Uno, M., et al.
(2008). Olmesartan ameliorates a dietary rat model of non-alcoholic steato-
hepatitis through its pleiotropic effects. Eur. J. Pharmacol. 588, 316–324. doi:
10.1016/j.ejphar.2008.04.028

Kurz, S., Hink, U., Nickenig, G., Borthayre, A. B., Harrison, D. G., and Munzel,
T. (1999). Evidence for a causal role of the renin-angiotensin system in nitrate
tolerance. Circulation 99, 3181–3187. doi: 10.1161/01.CIR.99.24.3181

Landmesser, U., Dikalov, S., Price, S. R., McCann, L., Fukai, T., Holland, S. M.,
et al. (2003). Oxidation of tetrahydrobiopterin leads to uncoupling of endothe-
lial cell nitric oxide synthase in hypertension. J. Clin. Invest. 111, 1201–1209.
doi: 10.1172/JCI200314172

Landmesser, U., Spiekermann, S., Preuss, C., Sorrentino, S., Fischer, D., Manes, C.,
et al. (2007). Angiotensin II induces endothelial xanthine oxidase activation:
role for endothelial dysfunction in patients with coronary disease. Arterioscler.
Thromb. Vasc. Biol. 27, 943–948. doi: 10.1161/01.ATV.0000258415.32883.bf

Larkin, J. E., Frank, B. C., Gaspard, R. M., Duka, I., Gavras, H., and
Quackenbush, J. (2004). Cardiac transcriptional response to acute and chronic
angiotensin II treatments. Physiol. Genomics 18, 152–166. doi: 10.1152/physi-
olgenomics.00057.2004

Larsen, N. B., Rasmussen, M., and Rasmussen, L. J. (2005). Nuclear and mito-
chondrial DNA repair: similar pathways? Mitochondrion 5, 89–108. doi:
10.1016/j.mito.2005.02.002

www.frontiersin.org November 2014 | Volume 5 | Article 439 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Mitochondrial_Research/archive


Vajapey et al. Angiotensin system and mitochondria

Lassegue, B., Sorescu, D., Szocs, K., Yin, Q., Akers, M., Zhang, Y., et al. (2001).
Novel gp91(phox) homologues in vascular smooth muscle cells: nox1 medi-
ates angiotensin II-induced superoxide formation and redox-sensitive signaling
pathways. Circ. Res. 88, 888–894. doi: 10.1161/hh0901.090299

Lemay, J., Hamet, P., and deBlois, D. (2000). Losartan-induced apoptosis as a novel
mechanism for the prevention of vascular lesion formation after injury. J. Renin
Angiotensin Aldosterone Syst. 1, 46–50. doi: 10.3317/jraas.2000.010

Li, X. C., Hopfer, U., and Zhuo, J. L. (2012). Novel signaling mechanisms of
intracellular angiotensin II-induced NHE3 expression and activation in mouse
proximal tubule cells. Am. J. Physiol. Renal Physiol. 303, F1617–F1628. doi:
10.1152/ajprenal.00219.2012

Liao, D. F., Monia, B., Dean, N., and Berk, B. C. (1997). Protein kinase C-zeta medi-
ates angiotensin II activation of ERK1/2 in vascular smooth muscle cells. J. Biol.
Chem. 272, 6146–6150. doi: 10.1074/jbc.272.10.6146

Lin, M. T., and Beal, M. F. (2006). Mitochondrial dysfunction and oxidative
stress in neurodegenerative diseases. Nature 443, 787–795. doi: 10.1038/nature
05292

Liu, Y., Fiskum, G., and Schubert, D. (2002). Generation of reactive oxygen species
by the mitochondrial electron transport chain. J. Neurochem. 80, 780–787. doi:
10.1046/j.0022-3042.2002.00744.x

Loeb, L. A., Wallace, D. C., and Martin, G. M. (2005). The mitochondrial the-
ory of aging and its relationship to reactive oxygen species damage and
somatic mtDNA mutations. Proc. Natl. Acad. Sci. U.S.A. 102, 18769–18770. doi:
10.1073/pnas.0509776102

Ma, J., Nishimura, H., Fogo, A., Kon, V., Inagami, T., and Ichikawa, I. (1998).
Accelerated fibrosis and collagen deposition develop in the renal interstitium
of angiotensin type 2 receptor null mutant mice during ureteral obstruction.
Kidney Int. 53, 937–944. doi: 10.1111/j.1523-1755.1998.00893.x

Malhotra, R., Sadoshima, J., Brosius, F. C. 3rd., and Izumo, S. (1999).
Mechanical stretch and angiotensin II differentially upregulate the renin-
angiotensin system in cardiac myocytes In vitro. Circ. Res. 85, 137–146. doi:
10.1161/01.RES.85.2.137

Marchesi, C., Paradis, P., and Schiffrin, E. L. (2008). Role of the renin-angiotensin
system in vascular inflammation. Trends Pharmacol. Sci. 29, 367–374. doi:
10.1016/j.tips.2008.05.003

Marin-Garcia, J., Zoubenko, O., and Goldenthal, M. J. (2002). Mutations in the
cardiac mitochondrial DNA control region associated with cardiomyopathy and
aging. J. Card. Fail. 8, 93–100. doi: 10.1054/jcaf.2002.32501

Mercure, C., Ramla, D., Garcia, R., Thibault, G., Deschepper, C. F., and
Reudelhuber, T. L. (1998). Evidence for intracellular generation of angiotensin
II in rat juxtaglomerular cells. FEBS Lett. 422, 395–399. doi: 10.1016/S0014-
5793(98)00052-0

Min, L. J., Mogi, M., Iwai, M., and Horiuchi, M. (2009). Signaling mechanisms of
angiotensin II in regulating vascular senescence. Ageing Res. Rev. 8, 113–121.
doi: 10.1016/j.arr.2008.12.002

Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen
transfer by a chemi-osmotic type of mechanism. Nature 191, 144–148. doi:
10.1038/191144a0

Mogensen, M., Bagger, M., Pedersen, P. K., Fernstrom, M., and Sahlin, K. (2006).
Cycling efficiency in humans is related to low UCP3 content and to type
I fibres but not to mitochondrial efficiency. J. Physiol. 571, 669–681. doi:
10.1113/jphysiol.2005.101691

Mohanty, P., Hamouda, W., Garg, R., Aljada, A., Ghanim, H., and Dandona,
P. (2000). Glucose challenge stimulates reactive oxygen species (ROS)
generation by leucocytes. J. Clin. Endocrinol. Metab. 85, 2970–2973. doi:
10.1210/jcem.85.8.6854

Monteiro, P., Duarte, A. I., Goncalves, L. M., and Providencia, L. A. (2005).
Valsartan improves mitochondrial function in hearts submitted to acute
ischemia. Eur. J. Pharmacol. 518, 158–164. doi: 10.1016/j.ejphar.2005.06.013

Moore, A. Z., Biggs, M. L., Matteini, A., O’Connor, A., McGuire, S., Beamer, B.
A., et al. (2010). Polymorphisms in the mitochondrial DNA control region
and frailty in older adults. PLoS ONE 5:e11069. doi: 10.1371/journal.pone.
0011069

Mori, J., Alrob, O. A., Wagg, C. S., Harris, R. A., Lopaschuk, G. D., and Oudit, G. Y.
(2013). ANG II causes insulin resistance and induces cardiac metabolic switch
and inefficiency: a critical role of PDK4. Am. J. Physiol. Heart Circ. Physiol. 304,
H1103–H1113. doi: 10.1152/ajpheart.00636.2012

Murphy, M. P. (2009). How mitochondria produce reactive oxygen species.
Biochem. J. 417, 1–13. doi: 10.1042/BJ20081386

Murtaza, I., Wang, H. X., Feng, X., Alenina, N., Bader, M., Prabhakar, B. S.,
et al. (2008). Down-regulation of catalase and oxidative modification of protein
kinase CK2 lead to the failure of apoptosis repressor with caspase recruitment
domain to inhibit cardiomyocyte hypertrophy. J. Biol. Chem. 283, 5996–6004.
doi: 10.1074/jbc.M706466200

Nemoto, S., Takeda, K., Yu, Z. X., Ferrans, V. J., and Finkel, T. (2000). Role for
mitochondrial oxidants as regulators of cellular metabolism. Mol. Cell. Biol. 20,
7311–7318. doi: 10.1128/MCB.20.19.7311-7318.2000

Nguyen Dinh, C. A., Montezano, A. C., Burger, D., and Touyz, R. M. (2013).
Angiotensin II, NADPH oxidase, and redox signaling in the vasculature.
Antioxid. Redox Signal. 19, 1110–1120. doi: 10.1089/ars.2012.4641

Nguyen, T., Nioi, P., and Pickett, C. B. (2009). The Nrf2-antioxidant response ele-
ment signaling pathway and its activation by oxidative stress. J. Biol. Chem. 284,
13291–13295. doi: 10.1074/jbc.R900010200

Nickel, A., Kohlhaas, M., and Maack, C. (2014). Mitochondrial reactive oxygen
species production and elimination. J. Mol. Cell. Cardiol. 73C, 26–33. doi:
10.1016/j.yjmcc.2014.03.011

Nickenig, G. (2004). Should angiotensin II receptor blockers and statins be com-
bined? Circulation 110, 1013–1020. doi: 10.1161/01.CIR.0000139857.85424.45

Nickenig, G., and Harrison, D. G. (2002). The AT(1)-type angiotensin receptor in
oxidative stress and atherogenesis: Part II: AT(1) receptor regulation. Circulation
105, 530–536. doi: 10.1161/hc0402.102619

Nickenig, G., Roling, J., Strehlow, K., Schnabel, P., and Bohm, M. (1998). Insulin
induces upregulation of vascular AT1 receptor gene expression by posttranscrip-
tional mechanisms. Circulation 98, 2453–2460. doi: 10.1161/01.CIR.98.22.2453

Nishida, Y., Yokota, T., Takahashi, T., Uchihara, T., Jishage, K., and Mizusawa,
H. (2006). Deletion of vitamin E enhances phenotype of Alzheimer dis-
ease model mouse. Biochem. Biophys. Res. Commun. 350, 530–536. doi:
10.1016/j.bbrc.2006.09.083

Nozoe, M., Hirooka, Y., Koga, Y., Araki, S., Konno, S., Kishi, T., et al. (2008).
Mitochondria-derived reactive oxygen species mediate sympathoexcitation
induced by angiotensin II in the rostral ventrolateral medulla. J. Hypertens. 26,
2176–2184. doi: 10.1097/HJH.0b013e32830dd5d3

Pain, T., Yang, X. M., Critz, S. D., Yue, Y., Nakano, A., Liu, G. S., et al. (2000).
Opening of mitochondrial K(ATP) channels triggers the preconditioned state
by generating free radicals. Circ. Res. 87, 460–466. doi: 10.1161/01.RES.87.
6.460

Panahpour, H., and Dehghani, G. A. (2012). Attenuation of focal cerebral ischemic
injury following post-ischemic inhibition of angiotensin converting enzyme
(ACE) activity in normotensive rat. Iran. Biomed. J. 16, 202–208.

Pandur, S., Ravuri, C., Moens, U., and Huseby, N. E. (2014). Combined incuba-
tion of colon carcinoma cells with phorbol ester and mitochondrial uncoupling
agents results in synergic elevated reactive oxygen species levels and increased
gamma-glutamyltransferase expression. Mol. Cell. Biochem. 388, 149–156. doi:
10.1007/s11010-013-1906-1

Pelicano, H., Carney, D., and Huang, P. (2004). ROS stress in cancer
cells and therapeutic implications. Drug Resist. Updat. 7, 97–110. doi:
10.1016/j.drup.2004.01.004

Persson, P., Palm, F., and Friederich-Persson, M. (in press). The effects of
angiotensin ii on mitochondrial respiration: a role of normoglycemia versus
hyperglycemia. Mitochondr. Physiol. Netw. 8–18.

Peters, J. (2008). Secretory and cytosolic (pro)renin in kidney, heart, and adrenal
gland. J. Mol. Med. 86, 711–714. doi: 10.1007/s00109-008-0328-0

Peters, J. (2012). Local renin-angiotensin systems in the adrenal gland. Peptides 34,
427–432. doi: 10.1016/j.peptides.2012.01.023

Prathapan, A., Vineetha, V. P., and Raghu, K. G. (2014). Protective effect of
Boerhaavia diffusa L. against mitochondrial dysfunction in angiotensin II
induced hypertrophy in H9c2 cardiomyoblast cells. PLoS ONE 9:e96220. doi:
10.1371/journal.pone.0096220

Pueyo, M. E., Gonzalez, W., Nicoletti, A., Savoie, F., Arnal, J. F., and Michel,
J. B. (2000). Angiotensin II stimulates endothelial vascular cell adhesion
molecule-1 via nuclear factor-kappaB activation induced by intracellular oxida-
tive stress. Arterioscler. Thromb. Vasc. Biol. 20, 645–651. doi: 10.1161/01.ATV.
20.3.645

Puri, P. L., Avantaggiati, M. L., Burgio, V. L., Chirillo, P., Collepardo, D.,
Natoli, G., et al. (1995). Reactive oxygen intermediates mediate angiotensin
II-induced c-Jun.c-Fos heterodimer DNA binding activity and proliferative
hypertrophic responses in myogenic cells. J. Biol. Chem. 270, 22129–22134. doi:
10.1074/jbc.270.38.22129

Frontiers in Physiology | Mitochondrial Research November 2014 | Volume 5 | Article 439 | 14

http://www.frontiersin.org/Mitochondrial_Research
http://www.frontiersin.org/Mitochondrial_Research
http://www.frontiersin.org/Mitochondrial_Research/archive


Vajapey et al. Angiotensin system and mitochondria

Qadri, F., Arens, T., Schwartz, E. C., Hauser, W., and Dominiak, P. (2001).
Angiotensin-converting enzyme inhibitors and AT1-receptor antagonist restore
nitric oxide synthase (NOS) activity and neuronal NOS expression in the
adrenal glands of spontaneously hypertensive rats. Jpn. J. Pharmacol. 85,
365–369. doi: 10.1254/jjp.85.365

Quijano, C., Hernandez-Saavedra, D., Castro, L., McCord, J. M., Freeman, B. A.,
and Radi, R. (2001). Reaction of peroxynitrite with Mn-superoxide dismutase.
Role of the metal center in decomposition kinetics and nitration. J. Biol. Chem.
276, 11631–11638. doi: 10.1074/jbc.M009429200

Quinlan, C. L., Gerencser, A. A., Treberg, J. R., and Brand, M. D. (2011). The mech-
anism of superoxide production by the antimycin-inhibited mitochondrial
Q-cycle. J. Biol. Chem. 286, 31361–31372. doi: 10.1074/jbc.M111.267898

Rashed, H. M., Waller, F. M., and Patel, T. B. (1988). Hormonal regulation of the
alpha-ketoglutarate dehydrogenase complex in the isolated perfused rat liver.
J. Biol. Chem. 263, 5700–5706.

Re, R. N., Vizard, D. L., Brown, J., and Bryan, S. E. (1984). Angiotensin II receptors
in chromatin fragments generated by micrococcal nuclease. Biochem. Biophys.
Res. Commun. 119, 220–227. doi: 10.1016/0006-291X(84)91641-3

Redmond, E. M., and Cahill, P. A. (2012). The NOX-ROS connection: target-
ing Nox1 control of N-cadherin shedding in vascular smooth muscle cells.
Cardiovasc. Res. 93, 386–387. doi: 10.1093/cvr/cvs020

Ricci, C., Pastukh, V., and Schaffer, S. W. (2005). Involvement of the mitochondrial
permeability transition pore in angiotensin II-mediated apoptosis. Exp. Clin.
Cardiol. 10, 160–164.

Rich, P. R., and Marechal, A. (2010). The mitochondrial respiratory chain. Essays
Biochem. 47, 1–23. doi: 10.1042/bse0470001

Robertson, A. L. Jr., and Khairallah, P. A. (1971). Angiotensin II: rapid local-
ization in nuclei of smooth and cardiac muscle. Science 172, 1138–1139. doi:
10.1126/science.172.3988.1138

Rodriguez-Iturbe, B., Sepassi, L., Quiroz, Y., Ni, Z., Wallace, D. C., and Vaziri, N. D.
(2007). Association of mitochondrial SOD deficiency with salt-sensitive hyper-
tension and accelerated renal senescence. J. Appl. Physiol. (1985) 102, 255–260.
doi: 10.1152/japplphysiol.00513.2006

Roskoski, R. Jr. (2012). ERK1/2 MAP kinases: structure, function, and regulation.
Pharmacol. Res. 66, 105–143. doi: 10.1016/j.phrs.2012.04.005

Sadoshima, J., Xu, Y., Slayter, H. S., and Izumo, S. (1993). Autocrine release
of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes
in vitro. Cell 75, 977–984. doi: 10.1016/0092-8674(93)90541-W

Saitoh, Y., Hongwei, W., Ueno, H., Mizuta, M., and Nakazato, M. (2009).
Telmisartan attenuates fatty-acid-induced oxidative stress and NAD(P)H oxi-
dase activity in pancreatic beta-cells. Diabetes Metab. 35, 392–397. doi:
10.1016/j.diabet.2009.04.005

Sano, M., Fukuda, K., Sato, T., Kawaguchi, H., Suematsu, M., Matsuda, S., et al.
(2001). ERK and p38 MAPK, but not NF-kappaB, are critically involved in
reactive oxygen species-mediated induction of IL-6 by angiotensin II in cardiac
fibroblasts. Circ. Res. 89, 661–669. doi: 10.1161/hh2001.098873

Schroder, K., Zhang, M., Benkhoff, S., Mieth, A., Pliquett, R., Kosowski, J., et al.
(2012). Nox4 is a protective reactive oxygen species generating vascular NADPH
oxidase. Circ. Res. 110, 1217–1225. doi: 10.1161/CIRCRESAHA.112.267054

Shah, P. K., and Galis, Z. S. (2001). Matrix metalloproteinase hypothesis of
plaque rupture: players keep piling up but questions remain. Circulation 104,
1878–1880.

Shao, J., Iwashita, N., Ikeda, F., Ogihara, T., Uchida, T., Shimizu, T., et al. (2006).
Beneficial effects of candesartan, an angiotensin II type 1 receptor blocker,
on beta-cell function and morphology in db/db mice. Biochem. Biophys. Res.
Commun. 344, 1224–1233. doi: 10.1016/j.bbrc.2006.04.011

Sherrod, M., Liu, X., Zhang, X., and Sigmund, C. D. (2005). Nuclear localization of
angiotensinogen in astrocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288,
R539–R546. doi: 10.1152/ajpregu.00594.2004

Shigenaga, M. K., Hagen, T. M., and Ames, B. N. (1994). Oxidative damage and
mitochondrial decay in aging. Proc. Natl. Acad. Sci. U.S.A. 91, 10771–10778.
doi: 10.1073/pnas.91.23.10771

Shiomi, T., Tsutsui, H., Matsusaka, H., Murakami, K., Hayashidani, S., Ikeuchi, M.,
et al. (2004). Overexpression of glutathione peroxidase prevents left ventricu-
lar remodeling and failure after myocardial infarction in mice. Circulation 109,
544–549. doi: 10.1161/01.CIR.0000109701.77059.E9

Singh, H., Stefani, E., and Toro, L. (2012). Intracellular BK(Ca) (iBK(Ca))
channels. J. Physiol. (Lond). 590, 5937–5947. doi: 10.1113/jphysiol.2011.
215533

Skulachev, V. P. (2006). Bioenergetic aspects of apoptosis, necrosis and mitoptosis.
Apoptosis 11, 473–485. doi: 10.1007/s10495-006-5881-9

Sovari, A. A., Rutledge, C. A., Jeong, E. M., Dolmatova, E., Arasu, D., Liu,
H., et al. (2013). Mitochondria oxidative stress, connexin43 remodeling, and
sudden arrhythmic death. Circ. Arrhythm. Electrophysiol. 6, 623–631. doi:
10.1161/CIRCEP.112.976787

Spooner, R., and Yilmaz, O. (2011). The role of reactive-oxygen-species in
microbial persistence and inflammation. Int. J. Mol. Sci. 12, 334–352. doi:
10.3390/ijms12010334

Squadrito, G. L., and Pryor, W. A. (1995). The formation of peroxynitrite in vivo
from nitric oxide and superoxide. Chem. Biol. Interact 96, 203–206. doi:
10.1016/0009-2797(94)03591-U

Stevenson, M. A., Pollock, S. S., Coleman, C. N., and Calderwood, S. K. (1994).
X-irradiation, phorbol esters, and H2O2 stimulate mitogen-activated protein
kinase activity in NIH-3T3 cells through the formation of reactive oxygen
intermediates. Cancer Res. 54, 12–15.

St-Pierre, J., Drori, S., Uldry, M., Silvaggi, J. M., Rhee, J., Jager, S., et al. (2006).
Suppression of reactive oxygen species and neurodegeneration by the PGC-1
transcriptional coactivators. Cell 127, 397–408. doi: 10.1016/j.cell.2006.09.024

Sugamura, K., and Keaney, J. F. Jr. (2011). Reactive oxygen species
in cardiovascular disease. Free Radic. Biol. Med. 51, 978–992. doi:
10.1016/j.freeradbiomed.2011.05.004

Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K., and Finkel, T. (1995).
Requirement for generation of H2O2 for platelet-derived growth factor signal
transduction. Science 270, 296–299. doi: 10.1126/science.270.5234.296

Sunggip, C., Kitajima, N., and Nishida, M. (2013). Redox control of cardiovas-
cular homeostasis by angiotensin II. Curr. Pharm. Des. 19, 3022–3032. doi:
10.2174/1381612811319170008

Suzuki, Y., Ruiz-Ortega, M., Lorenzo, O., Ruperez, M., Esteban, V., and Egido, J.
(2003). Inflammation and angiotensin II. Int. J. Biochem. Cell Biol. 35, 881–900.
doi: 10.1016/S1357-2725(02)00271-6

Szanto, I., Rubbia-Brandt, L., Kiss, P., Steger, K., Banfi, B., Kovari, E., et al. (2005).
Expression of NOX1, a superoxide-generating NADPH oxidase, in colon cancer
and inflammatory bowel disease. J. Pathol. 207, 164–176. doi: 10.1002/path.1824

Takac, I., Schroder, K., and Brandes, R. P. (2012). The Nox family of NADPH oxi-
dases: friend or foe of the vascular system? Curr. Hypertens. Rep. 14, 70–78. doi:
10.1007/s11906-011-0238-3

Takemori, K., Inoue, T., and Ito, H. (2013). Effects of angiotensin II type 1 receptor
blocker and adiponectin on adipocyte dysfunction in stroke-prone sponta-
neously hypertensive rats. Lipids Health Dis. 12, 108–112. doi: 10.1186/1476-
511X-12-108

Takemori, K., Ishida, H., and Ito, H. (2005). Continuous inhibition of the
renin-angiotensin system and protection from hypertensive end-organ dam-
age by brief treatment with angiotensin II type 1 receptor blocker in
stroke-prone spontaneously hypertensive rats. Life Sci. 77, 2233–2245. doi:
10.1016/j.lfs.2004.12.048

Tan, W. Q., Wang, K., Lv, D. Y., and Li, P. F. (2008). Foxo3a inhibits cardiomyocyte
hypertrophy through transactivating catalase. J. Biol. Chem. 283, 29730–29739.
doi: 10.1074/jbc.M805514200

Tanito, M., Nakamura, H., Kwon, Y. W., Teratani, A., Masutani, H., Shioji, K.,
et al. (2004). Enhanced oxidative stress and impaired thioredoxin expres-
sion in spontaneously hypertensive rats. Antioxid. Redox Signal. 6, 89–97. doi:
10.1089/152308604771978381

Thareja, S., Aggarwal, S., Bhardwaj, T. R., and Kumar, M. (2012). Protein
tyrosine phosphatase 1B inhibitors: a molecular level legitimate approach
for the management of diabetes mellitus. Med. Res. Rev. 32, 459–517. doi:
10.1002/med.20219

Thrasher, A. J., Keep, N. H., Wientjes, F., and Segal, A. W. (1994). Chronic
granulomatous disease. Biochim. Biophys. Acta 1227, 1–24. doi: 10.1016/0925-
4439(94)90100-7

Toblli, J. E., Munoz, M. C., Cao, G., Mella, J., Pereyra, L., and Mastai, R. (2008).
ACE inhibition and AT1 receptor blockade prevent fatty liver and fibrosis
in obese Zucker rats. Obesity (Silver. Spring). 16, 770–776. doi: 10.1038/oby.
2007.114

Touyz, R. M. (2000). Oxidative stress and vascular damage in hypertension. Curr.
Hypertens. Rep. 2, 98–105. doi: 10.1007/s11906-000-0066-3

Touyz, R. M. (2004). Reactive oxygen species and angiotensin II signaling in vas-
cular cells—implications in cardiovascular disease. Braz. J. Med. Biol. Res. 37,
1263–1273. doi: 10.1590/S0100-879X2004000800018

www.frontiersin.org November 2014 | Volume 5 | Article 439 | 15

http://www.frontiersin.org
http://www.frontiersin.org/Mitochondrial_Research/archive


Vajapey et al. Angiotensin system and mitochondria

Touyz, R. M., and Berry, C. (2002). Recent advances in angiotensin II signal-
ing. Braz. J. Med. Biol. Res. 35, 1001–1015. doi: 10.1590/S0100-879X20020009
00001

Tracy, R. P. (2003). Emerging relationships of inflammation, cardiovascular disease
and chronic diseases of aging. Int. J. Obes. Relat. Metab. Disord. 27(Suppl. 3),
S29–S34. doi: 10.1038/sj.ijo.0802497

Turrens, J. (2003). F. Mitochondrial formation of reactive oxygen species. J. Physiol.
552(Pt 2), 335–344. doi: 10.1113/jphysiol.2003.049478

Turrens, J. F., and Boveris, A. (1980). Generation of superoxide anion by the NADH
dehydrogenase of bovine heart mitochondria. Biochem. J. 191, 421–427.

Turrens, J. F., Freeman, B. A., Levitt, J. G., and Crapo, J. D. (1982). The effect of
hyperoxia on superoxide production by lung submitochondrial particles. Arch.
Biochem. Biophys. 217, 401–410. doi: 10.1016/0003-9861(82)90518-5

Unger, T. (2002). The role of the renin-angiotensin system in the development
of cardiovascular disease. Am. J. Cardiol. 89, 3A–9A. doi: 10.1016/S0002-
9149(01)02321-9

Ungvari, Z., Orosz, Z., Labinskyy, N., Rivera, A., Xiangmin, Z., Smith, K., et al.
(2007). Increased mitochondrial H2O2 production promotes endothelial NF-
kappaB activation in aged rat arteries. Am. J. Physiol. Heart Circ. Physiol. 293,
H37–H47. doi: 10.1152/ajpheart.01346.2006

Ushio-Fukai, M., Alexander, R. W., Akers, M., Yin, Q., Fujio, Y., Walsh, K.,
et al. (1999). Reactive oxygen species mediate the activation of Akt/protein
kinase B by angiotensin II in vascular smooth muscle cells. J. Biol. Chem. 274,
22699–22704. doi: 10.1074/jbc.274.32.22699

Ushio-Fukai, M., Griendling, K. K., Becker, P. L., Hilenski, L., Halleran, S., and
Alexander, R. W. (2001). Epidermal growth factor receptor transactivation by
angiotensin II requires reactive oxygen species in vascular smooth muscle cells.
Arterioscler. Thromb. Vasc. Biol. 21, 489–495. doi: 10.1161/01.ATV.21.4.489

Valente, A. J., Yoshida, T., Murthy, S. N., Sakamuri, S. S., Katsuyama, M., Clark,
R. A., et al. (2012). Angiotensin II enhances AT1-Nox1 binding and stimulates
arterial smooth muscle cell migration and proliferation through AT1, Nox1,
and interleukin-18. Am. J. Physiol. Heart Circ. Physiol. 303, H282–H296. doi:
10.1152/ajpheart.00231.2012

Venkatesan, B., Mahimainathan, L., Das, F., Ghosh-Choudhury, N., and Ghosh,
C. G. (2007). Downregulation of catalase by reactive oxygen species via PI
3 kinase/Akt signaling in mesangial cells. J. Cell. Physiol. 211, 457–467. doi:
10.1002/jcp.20953

Vidotti, D. B., Casarini, D. E., Cristovam, P. C., Leite, C. A., Schor, N., and Boim,
M. A. (2004). High glucose concentration stimulates intracellular renin activity
and angiotensin II generation in rat mesangial cells. Am. J. Physiol. Renal Physiol.
286, F1039–F1045. doi: 10.1152/ajprenal.00371.2003

Viedt, C., Soto, U., Krieger-Brauer, H. I., Fei, J., Elsing, C., Kubler, W., et al. (2000).
Differential activation of mitogen-activated protein kinases in smooth muscle
cells by angiotensin II: involvement of p22phox and reactive oxygen species.
Arterioscler. Thromb. Vasc. Biol. 20, 940–948. doi: 10.1161/01.ATV.20.4.940

Vila-Porcile, E., and Corvol, P. (1998). Angiotensinogen, prorenin, and renin are
Co-localized in the secretory granules of all glandular cells of the rat ante-
rior pituitary: an immunoultrastructural study. J. Histochem. Cytochem. 46,
301–311. doi: 10.1177/002215549804600303

Volpato, S., Guralnik, J. M., Ferrucci, L., Balfour, J., Chaves, P., Fried, L. P., et al.
(2001). Cardiovascular disease, interleukin-6, and risk of mortality in older
women: the women’s health and aging study. Circulation 103, 947–953. doi:
10.1161/01.CIR.103.7.947

Wallace, D. C. (2001). A mitochondrial paradigm for degenerative diseases and
ageing. Novartis Found. Symp. 235, 247–263. doi: 10.1002/0470868694.ch20

Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative
diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet.
39, 359–407. doi: 10.1146/annurev.genet.39.110304.095751

Wallace, D. C. (2010). Mitochondrial DNA mutations in disease and aging. Environ.
Mol. Mutagen. 51, 440–450.

Wallace, D. C. (2011). Bioenergetic origins of complexity and disease. Cold Spring
Harb. Symp. Quant. Biol. 76, 1–16. doi: 10.1101/sqb.2011.76.010462

Wang, D., Qian, L., Xiong, H., Liu, J., Neckameyer, W. S., Oldham, S., et al. (2006a).
Antioxidants protect PINK1-dependent dopaminergic neurons in Drosophila.
Proc. Natl. Acad. Sci. U.S.A. 103, 13520–13525. doi: 10.1073/pnas.0604661103

Wang, G., Anrather, J., Glass, M. J., Tarsitano, M. J., Zhou, P., Frys, K. A., et al.
(2006b). Nox2, Ca2+, and protein kinase C play a role in angiotensin II-induced
free radical production in nucleus tractus solitarius. Hypertension 48, 482–489.
doi: 10.1161/01.HYP.0000236647.55200.07

Wang, G., Hamid, T., Keith, R. J., Zhou, G., Partridge, C. R., Xiang, X., et al. (2010).
Cardioprotective and antiapoptotic effects of heme oxygenase-1 in the fail-
ing heart. Circulation 121, 1912–1925. doi: 10.1161/CIRCULATIONAHA.109.
905471

Wang, M., Takagi, G., Asai, K., Resuello, R. G., Natividad, F. F., Vatner, D. E., et al.
(2003). Aging increases aortic MMP-2 activity and angiotensin II in nonhu-
man primates. Hypertension 41, 1308–1316. doi: 10.1161/01.HYP.0000073843.
56046.45

Wangler, N. J., Santos, K. L., Schadock, I., Hagen, F. K., Escher, E., Bader,
M., et al. (2012). Identification of membrane-bound variant of metalloen-
dopeptidase neurolysin (EC 3.4.24.16) as the non-angiotensin type 1 (non-
AT1), non-AT2 angiotensin binding site. J. Biol. Chem. 287, 114–122. doi:
10.1074/jbc.M111.273052

Warnholtz, A., Nickenig, G., Schulz, E., Macharzina, R., Brasen, J. H., Skatchkov,
M., et al. (1999). Increased NADH-oxidase-mediated superoxide produc-
tion in the early stages of atherosclerosis: evidence for involvement of the
renin-angiotensin system. Circulation 99, 2027–2033. doi: 10.1161/01.CIR.99.
15.2027

Waud, W. R., and Rajagopalan, K. V. (1976). The mechanism of conversion of
rat liver xanthine dehydrogenase from an NAD+-dependent form (type D) to
an O2-dependent form (type O). Arch. Biochem. Biophys. 172, 365–379. doi:
10.1016/0003-9861(76)90088-6

Wei, Y., Clark, S. E., Thyfault, J. P., Uptergrove, G. M., Li, W., Whaley-Connell,
A. T., et al. (2009). Oxidative stress-mediated mitochondrial dysfunction con-
tributes to angiotensin II-induced nonalcoholic fatty liver disease in trans-
genic Ren2 rats. Am. J. Pathol. 174, 1329–1337. doi: 10.2353/ajpath.2009.
080697

Weydt, P., Pineda, V. V., Torrence, A. E., Libby, R. T., Satterfield, T. F., Lazarowski,
E. R., et al. (2006). Thermoregulatory and metabolic defects in Huntington’s
disease transgenic mice implicate PGC-1alpha in Huntington’s disease neurode-
generation. Cell Metab. 4, 349–362. doi: 10.1016/j.cmet.2006.10.004

Whaley-Connell, A., Habibi, J., Cooper, S. A., Demarco, V. G., Hayden, M. R.,
Stump, C. S., et al. (2008). Effect of renin inhibition and AT1R blockade on
myocardial remodeling in the transgenic Ren2 rat. Am. J. Physiol. Endocrinol.
Metab. 295, E103–E109. doi: 10.1152/ajpendo.00752.2007

Widder, J. D., Fraccarollo, D., Galuppo, P., Hansen, J. M., Jones, D. P., Ertl, G.,
et al. (2009). Attenuation of angiotensin II-induced vascular dysfunction and
hypertension by overexpression of Thioredoxin 2. Hypertension 54, 338–344.
doi: 10.1161/HYPERTENSIONAHA.108.127928

Wilkinson-Berka, J. L., Deliyanti, D., Rana, I., Miller, A. G., Agrotis, A., Armani,
R., et al. (2014). NADPH oxidase, NOX1, mediates vascular injury in ischemic
retinopathy. Antioxid. Redox Signal. 20, 2726–2740. doi: 10.1089/ars.2013.5357

Williamson, J. R., Cooper, R. H., Joseph, S. K., and Thomas, A. P. (1985). Inositol
trisphosphate and diacylglycerol as intracellular second messengers in liver. Am.
J. Physiol. 248(3 Pt 1), C203–C216.

Wingler, K., Wunsch, S., Kreutz, R., Rothermund, L., Paul, M., and Schmidt, H.
H. (2001). Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and
Nox4 by the renin-angiotensin system in vitro and in vivo. Free Radic. Biol. Med.
31, 1456–1464. doi: 10.1016/S0891-5849(01)00727-4

Wood, E. J. (2006). Marks’ basic medical biochemistry: a clinical
approach (second edition). Biochem. Mol. Biol. Educ. 34, 395. doi:
10.1002/bmb.2006.494034052660

Wosniak, J. Jr., Santos, C. X., Kowaltowski, A. J., and Laurindo, F. R. (2009). Cross-
talk between mitochondria and NADPH oxidase: effects of mild mitochondrial
dysfunction on angiotensin II-mediated increase in Nox isoform expression and
activity in vascular smooth muscle cells. Antioxid. Redox Signal. 11, 1265–1278.
doi: 10.1089/ars.2009.2392

Xia, Y., Buja, L. M., and McMillin, J. B. (1998). Activation of the cytochrome
c gene by electrical stimulation in neonatal rat cardiac myocytes. Role of
NRF-1 and c-Jun. J. Biol. Chem. 273, 12593–12598. doi: 10.1074/jbc.273.
20.12593

Xiong, S., Salazar, G., San, M. A., Ahmad, M., Patrushev, N., Hilenski, L., et al.
(2010). PGC-1 alpha serine 570 phosphorylation and GCN5-mediated acetyla-
tion by angiotensin II drive catalase down-regulation and vascular hypertrophy.
J. Biol. Chem. 285, 2474–2487. doi: 10.1074/jbc.M109.065235

Yan, C., Kim, D., Aizawa, T., and Berk, B. C. (2003). Functional interplay
between angiotensin II and nitric oxide: cyclic GMP as a key mediator.
Arterioscler. Thromb. Vasc. Biol. 23, 26–36. doi: 10.1161/01.ATV.0000046231.17
365.9D

Frontiers in Physiology | Mitochondrial Research November 2014 | Volume 5 | Article 439 | 16

http://www.frontiersin.org/Mitochondrial_Research
http://www.frontiersin.org/Mitochondrial_Research
http://www.frontiersin.org/Mitochondrial_Research/archive


Vajapey et al. Angiotensin system and mitochondria

Yu, E., Mercer, J., and Bennett, M. (2012). Mitochondria in vascular disease.
Cardiovasc. Res. 95, 173–182. doi: 10.1093/cvr/cvs111

Zaobornyj, T., and Ghafourifar, P. (2012). Strategic localization of heart mitochon-
drial NOS: a review of the evidence. Am. J. Physiol. Heart Circ. Physiol. 303,
H1283–H1293. doi: 10.1152/ajpheart.00674.2011

Zhang, G. X., Lu, X. M., Kimura, S., and Nishiyama, A. (2007). Role
of mitochondria in angiotensin II-induced reactive oxygen species and
mitogen-activated protein kinase activation. Cardiovasc. Res. 76, 204–212. doi:
10.1016/j.cardiores.2007.07.014

Zhang, M., Brewer, A. C., Schroder, K., Santos, C. X., Grieve, D. J.,
Wang, M., et al. (2010). NADPH oxidase-4 mediates protection against
chronic load-induced stress in mouse hearts by enhancing angiogenesis.
Proc. Natl. Acad. Sci. U.S.A. 107, 18121–18126. doi: 10.1073/pnas.1009
700107

Zhou, Y., Hileman, E. O., Plunkett, W., Keating, M. J., and Huang, P. (2003).
Free radical stress in chronic lymphocytic leukemia cells and its role in cellu-
lar sensitivity to ROS-generating anticancer agents. Blood 101, 4098–4104. doi:
10.1182/blood-2002-08-2512

Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., and Sollott, S. J. (2000).
Reactive oxygen species (ROS)-induced ROS release: a new phenomenon

accompanying induction of the mitochondrial permeability transition in
cardiac myocytes. J. Exp. Med. 192, 1001–1014. doi: 10.1084/jem.192.7.1001

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 25 August 2014; accepted: 27 October 2014; published online: 24 November
2014.
Citation: Vajapey R, Rini D, Walston J and Abadir P (2014) The impact of age-
related dysregulation of the angiotensin system on mitochondrial redox balance. Front.
Physiol. 5:439. doi: 10.3389/fphys.2014.00439
This article was submitted to Mitochondrial Research, a section of the journal Frontiers
in Physiology.
Copyright © 2014 Vajapey, Rini, Walston and Abadir. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

www.frontiersin.org November 2014 | Volume 5 | Article 439 | 17

http://dx.doi.org/10.3389/fphys.2014.00439
http://dx.doi.org/10.3389/fphys.2014.00439
http://dx.doi.org/10.3389/fphys.2014.00439
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Mitochondrial_Research/archive

	The impact of age-related dysregulation of the angiotensin system on mitochondrial redox balance
	Mitochondria and Angiotensin System: Overview
	Mitochondrial Reduction-Oxidation (Redox) Balance: Role of RAS in ROS Generation, Transport and Elimination
	ROS Generation and Transport
	RAS-Induced Mitochondrial ROS Generation
	Major Sites of O2.-Generation
	Role of RAS in ROS Scavenging

	ROS as Signaling Molecules
	Epidermal Growth Factor (EGF) and Extracellular Signal-Regulated Kinase 1/2 (ERK1/2)
	MAPK and Adenilate kinase (Akt)
	Nitric Oxide Synthase (NOS)
	Xanthine Oxidase (XO)
	Other Enzymes
	Aging, Mitochondria and RAS Associated Pathology
	The Use of Angiotensin Receptor Blockers (ARBs) in Mitochondrial Dysfunction

	Prospective
	Acknowledgments
	References


