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The carotid body (CB) plays a main role in the maintenance of the oxygen homeostasis.
The hypoxic stimulation of the CB increases the chemosensory discharge, which in turn
elicits reflex sympathetic, cardiovascular, and ventilatory adjustments. An exacerbate
carotid chemosensory activity has been associated with human sympathetic-mediated
diseases such as hypertension, insulin resistance, heart failure, and obstructive sleep
apnea (OSA). Indeed, the CB chemosensory discharge becomes tonically hypereactive
in experimental models of OSA and heart failure. Chronic intermittent hypoxia (CIH), a
main feature of OSA, enhances CB chemosensory baseline discharges in normoxia and
in response to hypoxia, inducing sympathetic overactivity and hypertension. Oxidative
stress, increased levels of ET-1, Angiotensin II and pro-inflammatory cytokines, along
with a reduced production of NO in the CB, have been associated with the enhanced
carotid chemosensory activity. In this review, we will discuss new evidence supporting
a main role for the CB chemoreceptor in the autonomic and cardiorespiratory alterations
induced by intermittent hypoxia, as well as the molecular mechanisms involved in the CB
chemosensory potentiation.
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INTRODUCTION
The carotid body (CB) located in the bifurcation of the carotid
arteries is the main peripheral chemoreceptor sensing arterial
levels of PO2, PCO2, and pH. Also, changes in blood flow, temper-
ature, osmolarity and glucose are able to elicit CB chemosensory
excitation (Gonzalez et al., 1994; Pardal and López-Barneo, 2002;
Iturriaga and Alcayaga, 2004; Iturriaga et al., 2007). The CB
consists of clusters of chemoreceptor (glomus or type I) cells
organized around the capillary network, synaptically connected
to the nerve terminals of sensory neurons whose somata are
in the petrosal ganglion, and surrounded by sustentacular glial
(type II) cells. The most accepted model for chemoreception pro-
poses that hypoxia closes K+ channels, leading to glomus cell
depolarization, entry of Ca2+ and the release of excitatory trans-
mitters (ACh and ATP), which in turn increases the discharge
in the nerve endings of the chemosensory neurons (Iturriaga
and Alcayaga, 2004; Iturriaga et al., 2007). In the last years, new
exciting evidences have shown that the CB plays a crucial role
in the pathogenesis of several human sympathetic-mediated dis-
eases, including obstructive sleep apnea (OSA), congestive heart
failure, resistant hypertension and insulin resistance (Koyama
et al., 2000; Prabhakar et al., 2005; Schultz et al., 2007; Iturriaga
et al., 2009; Abdala et al., 2012; Del Rio et al., 2013; Paton et al.,
2013; Porzionato et al., 2013; Ribeiro et al., 2013). Accordingly,
targeting the CB in several pathological conditions has been pro-
posed to be a future promising therapeutic tool for the treatment
of sympathetic-mediated diseases. Indeed, the selective ablation
of the CB markedly improve rat survival in experimental heart

failure (Del Rio et al., 2013), prevent the development of insulin
resistance and hypertension in rats fed with high sucrose diet
(Ribeiro et al., 2013) and reduced high blood pressure in neu-
rogenic and resistant hypertension (McBryde et al., 2013; Paton
et al., 2013).

OBSTRUCTIVE SLEEP APNEA IS AN INDEPENDENT RISK
FACTOR FOR SYSTEMIC HYPERTENSION
The OSA syndrome elicited by repeated upper airways occlu-
sion, is usually associated with daytime sleepiness, fatigue,
and deficits in attention and executive function (Beebe and
Gozal, 2002; Idiaquez et al., 2014). Furthermore, OSA is recog-
nized as an independent risk factor for systemic hypertension
(∼50% of OSA patients develop diurnal hypertension, Somers
et al., 2008; Calhoun, 2010), and is associated with stroke, pul-
monary hypertension, coronary artery disease and atrial fibril-
lation (Fletcher, 2000; Parati et al., 2007; Somers et al., 2008;
Dempsey et al., 2010). Indeed, several epidemiological stud-
ies have shown that OSA is an independent risk factor for the
progression of the hypertension, showing a positive relation-
ship between the apnea/hypopnea index (AHI) and high blood
pressures (Young et al., 1993; Peppard et al., 2000; Eckert and
Malhotra, 2008; Marin et al., 2012). Moreover, results obtained
from the Wisconsin Sleep Cohort (an ongoing 21-years longi-
tudinal study performed on 1500 Wisconsin state employees)
showed that untreated OSA patients have a high mortality risk
associated with AHI (Nieto et al., 2000; Young et al., 2008).
According to the “Recommendations for the management of
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patients with obstructive sleep apnoea and hypertension” recently
published by the European Union Cooperation in Scientific and
Technological Research Action B26 on OSA, with the endorse-
ment of the European Respiratory Society and the European
Society of Hypertension (Parati et al., 2013) OSA is defined as
“The combination of at least five obstructive breathing episodes
per hour during sleep (apnoea, hypopnoea and respiratory effort
related arousal events) and the following diagnostic criteria (A
and/or B to be fulfilled). A: Excessive daytime sleepiness that is
not better explained by other factors. B: Two or more of the
following symptoms that are not better explained by other fac-
tors: Choking or gasping during sleep, recurrent awakenings from
sleep, unrefreshing sleep, daytime fatigue and impaired concen-
tration.” According to this study, the AHI defines the severity of
OSA: mild OSA: AHI 5–15 events/h; moderate OSA: AHI 15–30
events/h and severe OSA: AHI > 30 events/h (Parati et al., 2013).

PATHOPHYSIOLOGICAL MECHANISMS OF OSA-INDUCED
HYPERTENSION
The cyclic obstruction of the upper airways during OSA leads
to intermittent hypoxia and hypercapnia, negative intratho-
raxic pressure, sleep fragmentation, and micro-arousals (Somers
et al., 2008; Dempsey et al., 2010). During the airway occlu-
sion, the resulting hypoxia and hypercapnia stimulates the
CB chemoreceptor eliciting reflex acute sympathetic, hyperten-
sive and hyperventilatory responses (Gozal and Kheirandish-
Gozal, 2008; Somers et al., 2008; Garvey et al., 2009; Dempsey
et al., 2010). Among these disturbances, the chronic intermittent
hypoxia (CIH) is considered the main factor for the development
of diurnal hypertension (Lavie, 2003; Gozal and Kheirandish-
Gozal, 2008; Lévy et al., 2008; Somers et al., 2008; Arnardottir
et al., 2009; Dempsey et al., 2010). Although the link between
OSA and hypertension is well proved, the mechanisms underly-
ing the pathogenesis of the hypertension are not entirely known.
The most accepted proposal states that CIH elicits systemic oxida-
tive stress, inflammation, and sympathetic hyperactivity, which
led to endothelial dysfunction and the hypertension (Lavie, 2003;
Somers et al., 2008; Garvey et al., 2009; Ryan et al., 2009; Dempsey
et al., 2010). Nevertheless, conclusions from studies performed
in OSA patients are controversial, because OSA patients often
present concomitant morbidities (i.e., obesity and metabolic
alterations), which are confounding factors that increase the car-
diovascular risk. Thus, animal model of CIH, which simulates
the hypoxic-reoxygenation episodes and reproduce several car-
diovascular pathologic features of OSA including sympathetic
hyperactivity and hypertension, are the gold-standard model to
study mechanisms involved in OSA (Fletcher et al., 1992; Peng
et al., 2003, 2011; Iturriaga et al., 2005, 2009; Prabhakar et al.,
2005; Schulz et al., 2008; Dematteis et al., 2009; Del Rio et al.,
2010, 2011a, 2012; Dumitrascu et al., 2013).

OSA produces sympathetic hyperactivity, demonstrated by an
increased muscle sympathetic neural activity to blood vessels
(Carlson et al., 1993) and excessive accumulation of urinary cat-
echolamines (Dimsdale et al., 1995). Similarly, animals exposed
to CIH show enhanced sympathetic responses to hypoxia, and
develop systemic hypertension (Fletcher et al., 1992; Greenberg
et al., 1999; Dick et al., 2007; Feng et al., 2008; Huang et al., 2009;

Zoccal et al., 2009; Del Rio et al., 2010; Marcus et al., 2010). The
autonomic dysfunction is characterized by enhanced sympathetic
outflow, a reduction of the efficiency of the cardiac baroreflex sen-
sitivity and alterations of heart rate variability (HRV). Indeed,
non-invasive spectral analysis of HRV shows an increased ratio
of low (LF) to high frequency (HF) band power, with a relative
predominance of the LF band and a reduced contribution of the
HF band, suggesting preponderance of the sympathetic drive in
patients with OSA (Narkiewicz et al., 1998a; Shiomi et al., 1996)
and animals exposed to CIH (Lai et al., 2006; Rey et al., 2008; Del
Rio et al., 2010). Furthermore, it has been shown that CIH elicits
vagal withdrawal, attributed in part to neuronal loss in ambigu-
ous nucleus (Yan et al., 2008). Therefore, it is likely that the
enhanced sympathetic to parasympathetic balance along with the
reduction of the baroreflex could contribute to impair HRV and
the regulation of vasomotor tone of blood vessels finally eliciting
systemic hypertension.

In addition, OSA syndrome is also associated with endothe-
lial dysfunction and vascular remodeling (Ip et al., 2004; Patt
et al., 2010). OSA patients show an increased intima-media
thickness (Minoguchi et al., 2005; Monneret et al., 2012) and a
reduced nitric oxide-mediated vasodilatation (Kato et al., 2000).
Similarly, some studies found that CIH reduced acetylcholine
(ACh)-mediated vasodilation in rats (Tahawi et al., 2001; Dopp
et al., 2011), but other reported a normal endothelial function
in hypertensive CIH-treated rats (Julien et al., 2003; Lefebvre
et al., 2006). Indeed, Lefebvre et al. (2006) found that CIH had
no effect on the ACh-mediated vasodilatation of carotid, aor-
tic and mesenteric beds, as well as on the contractile responses
induced by noradrenaline and angiotensin II (Ang II) in arter-
ies from CIH-rats compared to the arteries from control rats.
However, they found that the contraction induced by endothelin-
1 (ET-1) was higher in arteries from CIH-rats. More recently,
Philippi et al. (2010) studied the time-course of the alteration
of the endothelium dependent vasodilation in rats exposed to
CIH. They found that CIH produces functional and structural
changes in skeletal muscle arteries within the first 2 weeks of CIH,
and those alterations were accompanied by systemic oxidative
stress. Friedman et al. (2014) found that ROS generation dur-
ing CIH activates NFATc3, which in turn increase the vascular
response to ET-1. The administration of Tempol, a superoxide
dismutase (SOD) mimetic, during CIH prevents the increased
NFATc3 activity in the arteries from CIH-exposed mice, support-
ing that ROS is an important upstream signal in the CIH-induced
NFATc3. Together, the available information suggest that vascular
beds are affected by exposure to CIH, and that enhanced con-
tractile responsiveness to vasoactive molecules such as ET-1 is
critically dependent on ROS formation.

INTERMITTENT HYPOXIA ENHANCES CB CHEMOSENSORY
DISCHARGES IN NORMOXIA AND HYPOXIA
Patients recently diagnosed with OSA, present potentiated
pressor and ventilatory responses to hypoxia (Narkiewicz
et al., 1998a,b, 1999), suggesting that the peripheral hypoxic
chemoreflex were enhanced by CIH. Fletcher et al. (1992) were
the first to obtain evidences that the CB is involved in the
hypertension induced by CIH. They found that the bilateral CB
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denervation prevented the development of hypertension in rats
exposed to CIH for 35 days. Despite this seminal observation,
the proposal that the CB contributes to the progression of the
cardiovascular pathologies associated to OSA was not seriously
considered. However, in the last decade a growing body of new
evidences have support the proposal that the CB contributes
to the progression of the CIH-induced hypertension (See for
reviews: Prabhakar et al., 2005; Smith and Pacchia, 2007; Weiss
et al., 2007; Somers et al., 2008; Garvey et al., 2009; Iturriaga
et al., 2009; Dempsey et al., 2010). Recordings of rat and cat CB
chemosensory discharges in situ and in vitro have demonstrate
that CIH selectively increases basal chemosensory discharges
in normoxia, and potentiates chemosensory and ventilatory
responses to acute hypoxia (Peng et al., 2003, 2004; Rey et al.,
2004, 2006; Prabhakar et al., 2005; Iturriaga et al., 2009; Del Rio
et al., 2010, 2012). In addition, CIH induces plasticity of the
CB chemosensory activity manifested as long-term facilitation.
Indeed, Peng et al. (2003) found that chemosensory baseline
discharges increased when the CB was excited by repetitive acute
intermittent hypoxia in rats exposed to CIH. They reported that
following 10 episodes of 12% O2 lasting for 15 s, interspersed
with 5 min of 95% O2, the baseline chemosensory discharge
increased with each episode of hypoxia, which persist for 60 min
following the end of the hypoxic stimulus.

The mechanisms underlying the enhanced CB chemosensory
reactivity to hypoxia induced by CIH are not entirely known
(Iturriaga et al., 2009). Oxidative stress (Peng et al., 2003, 2009;
Del Rio et al., 2010, 2012; Marcus et al., 2010), ET-1 (Rey et al.,
2006, 2007; Pawar et al., 2009), Ang II (Lam et al., 2008, 2012;
Fung, 2014), and pro-inflammatory cytokines (Iturriaga et al.,
2009; Del Rio et al., 2011a, 2012; Lam et al., 2012) have been
associated with the CB chemosensory potentiation. However, the
primary molecular target responsible for the increased chemore-
ceptor discharge remains unknown. Recently, we studied the
effects evoked by CIH on TASK K+ channel activity and the depo-
larization induced by acute hypoxia in CB glomus cells from adult
rats exposed to CIH (Ortiz et al., 2013). We measured mem-
brane potential, single channel and macroscopic currents in the
presence of TEA and 4-aminopyridine in CB chemoreceptor cells
isolated from adult rats exposed to CIH for 7 days. CIH treatment
did not change the resting membrane potential, but the hypoxic-
evoked depolarization increased by 2-fold. Moreover, the hypoxic
inhibition of the open probability of the TASK-K+ channel was
larger and faster in glomus cells from CIH-treated rats. This novel
effect of CIH may contribute to explain the potentiation of CB
oxygen chemoreception.

MOLECULAR MECHANISMS UNDERLYING ENHANCED
CAROTID BODY CHEMOSENSORY ACTIVITY DURING
INTERMITTENT HYPOXIA
OXIDATIVE STRESS CONTRIBUTES TO ENHANCE THE CAROTID
CHEMOSENSORY ACTIVITY DURING INTERMITTENT HYPOXIA
ROS and reactive nitrogen species (RNS) have been proposed
as mediators of the cardiovascular alterations in OSA patients
(Christou et al., 2003; Lavie, 2003; Gozal and Kheirandish-Gozal,
2008; Jelic et al., 2008; Lévy et al., 2008) and animal exposed to
CIH (Peng et al., 2003, 2009, 2011; Chen et al., 2005; Troncoso

Brindeiro et al., 2007; Huang et al., 2009; Del Rio et al., 2010,
2012). Studies performed in OSA patients and animals exposed
to CIH have shown that hypoxia-reoxygenation produces sys-
temic oxidative stress due to the accumulation of ROS and RNS.
Peng et al. (2003) proposed that superoxide radical participates
in the potentiation of the rat CB chemosensory responses to
hypoxia induced by CIH. They found that pre-treatment of rats
for 10 days before and concomitant with the exposure to CIH
with manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin
pentachloride (MnTMPyP), a SOD mimetic, prevents the CB
chemosensory potentiation. In addition, they found that CIH
decreases the activity of the aconitase enzyme in the CB and the
activity of the complex I of the mitochondrial electron trans-
port chain, suggesting that the mitochondria function is affected
by CIH and represent a potential source of ROS production
(Peng et al., 2003). In addition, Peng et al. (2009) found that
acute hypoxia produced a larger increase in NOX activity in CBs
from rats exposed to CIH for 10 days compared to the NOX
activity found in control CBs, suggesting that NADPH oxidase
contributes to generate ROS during CIH. Recently, Schulz et al.
(2014) have shown that NADPH oxidase 2 (NOX2) knockout
blocks the development of the hypertension induced by CIH.
Indeed, they found that mice showed significant arterial blood
pressure elevations after CIH. The hypertension was attenuated
by l inhibition of NOX by apocynin, whereas NOX2 was not
upregulated in the heart, aorta, and femoral and carotid arter-
ies of CIH-mice. Therefore, they suggested that the CIH-induced
arterial hypertension is mediated by ROS derived from an acti-
vation of NOX2 within cells located outside the cardiovascular
system.

We studied the role of nitro-oxidative stress on the enhanced
CB chemosensory function and hypertension in rats exposed
to CIH for 21 days (Del Rio et al., 2010). We measured 3-
nitrotyrosine (3-NT) formation in the CB as an index of oxidative
stress. Superoxide reacts with NO to generate peroxynitrite, a
powerful oxidizing agent that nitrates protein tyrosine-residues
forming 3-NT. We found that CIH increased plasma lipid per-
oxidation and the formation of 3-NT in the CB. In addition,
CIH enhanced the CB chemosensory and ventilatory responses to
acute hypoxia, alters HRV and elicits hypertension. Concomitant
administration of ascorbic acid reduced the increased systemic
and local CB nitro-oxidative stress, the potentiation of CB
chemosensory and ventilatory responses to hypoxia, as well as the
hypertension in rats exposed to CIH (Del Rio et al., 2010). These
results agree and extend previous observations that antioxidant
treatment prevented the CB chemosensory potentiation (Peng
et al., 2003) and the hypertension (Troncoso Brindeiro et al.,
2007) in rats exposed to CIH.

The available evidence indicates that oxidative stress is
involved in the CIH-induced CB potentiation, but it is matter of
debate whether ROS are the primary signal, because ROS per se do
not increase the CB chemosensory discharges. Indeed, H2O2 does
not increase the carotid chemosensory discharge in rats (Peng
et al., 2009) or cats CB (Osanai et al., 1997). In addition, mod-
ification of ROS production in rat glomus cells did not alter
the catecholamine secretion, suggesting a lack of a causal link
between ROS and glomus cells excitability (Gonzalez et al., 2007).
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FIGURE 1 | Diagram of the proposed hypothetical mechanisms involved

in the potentiation of the CB chemosensory response to hypoxia and

the development of hypertension induced by CIH. It is likely that the

hypoxic-reoxygenation cycles enhance the CB chemosensitivity to hypoxia,
which in turn contributes to elicit a persistent augmented sympathetic neural
drive.

Thus, it is possible that other molecules activated by the oxida-
tive stress mediate the enhancing effects of CIH on CB oxygen
chemoreception (See Figure 1 and Table 1).

ENDOTHELIN-1
We and other have proposed that ET-1 is involved in the poten-
tiation of the CB chemosensory discharge induced by CIH (Rey
et al., 2006, 2007; Pawar et al., 2009; Iturriaga, 2013; Peng
et al., 2013) and in the development of hypertension (Troncoso
Brindeiro et al., 2007; Allahdadi et al., 2008). Rey et al. (2006)
found that CIH increased 10-times the ET-1 immunoreactivity in
endothelial, smooth muscle and glomus cells from CBs from cats
exposed to CIH for 4 days, without changes in ET-1 plasma con-
centration. ET-1 elicits chemosensory excitation in both in situ
and in vitro perfused cat CB preparation, but not in the super-
fused CB preparation, showing a predominant vascular effect.
The CIH-induced potentiation of baseline discharges and hypoxic
chemosensory responses in the perfused cat CB preparation was
reduced by the unspecific ET-1 receptor blocker bosentan (Rey
et al., 2006). These results suggest that a local increase of ET-
1 in the CB may contribute to enhance the CB chemosensory
tone induced by CIH, through a predominant vasomotor mech-
anism. Pawar et al. (2009) found that CIH enhanced the basal
release of ET-1 and produces upregulation of the ET-A receptor,
while the administration of MnTMPyP, which prevent the oxida-
tive stress, reduced the increased release of ET-1 and the enhanced
CB chemosensory responses to hypoxia. In the same way, the
concurrent treatment with the ET-A receptor inhibitor BQ-123

Table 1 | Possible mediator of the CIH effects on CB chemosensory

potentiation.

Mediator References

Endothelin 1 Rey et al., 2006, 2007; Iturriaga, 2013

Endothelin-1 (dependent on ROS) Pawar et al., 2009; Peng et al., 2013

Reduced NO production (reduced
nNOS and eNOS-ir levels).

Marcus et al., 2010; Del Rio et al.,
2011a; Moya et al., 2012

Angiotensin II (dependent on
O2- production signaling through
AT1 receptor)

Lam et al., 2008, 2012; Marcus et al.,
2010; Peng et al., 2011; Fung, 2014

Pro-inflammatory cytokines Iturriaga et al., 2009; Del Rio et al.,
2011b, 2012; Lam et al., 2012

prevented the development of the hypertension in rats exposed
to CIH for 14 days (Allahdadi et al., 2008). Thus, ET-1 seems to
be involved in the enhanced hypoxic CB chemosensory responses
and in the progression of the hypertension following CIH. More
recently, Peng et al. (2013) found that CIH increased the activity
of the endothelin converting enzyme (ECE), which paralleled the
raise of the ET-1 level in the neonatal rat CB. Since MnTMPyP
prevented these effects, they proposed that oxidative stress was
involved in the increased ET-1 expression. In addition, they found
that hypoxia facilitates ET-1 release from CIH-treated CB, but
not from control rat CB. These results support that a ROS-
dependent release of ET-1, which activates the ET-A receptor is
involved in the potentiation of the CB chemosensory responses
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to hypoxia elicited by CIH in neonatal rats. However, it is worth
to note that Del Rio et al. (2011a) and Lam et al. (2006) found
that CIH transiently increases the levels of ET-1 in the adult rat
CB during the first week of CIH, but later ET-1 levels returned
to the control levels, suggesting that ET-1 may contribute to
the enhanced CB responsiveness to hypoxia in the early phase
of CIH.

NITRIC OXIDE
We studied the changes in the expression of eNOS in the CB,
along with the progression of potentiated CB chemosensory
responses to hypoxia in rats exposed to CIH for 7 to 21 days
(Del Rio et al., 2011a). Exposure to CIH for 7 days enhanced
CB chemosensory responses to hypoxia and produced a sig-
nificant decrease in the eNOS immunoreactivity in the CB,
which persisted for 21 days of CIH, suggesting that CIH may
decrease the NO levels in the CB. Thus, we measured NO
production—via nitrite generation in the incubation medium—
from rat CBs exposed to CIH, and found a reduction in the
NO production after 7 days of CIH that correlates with the
reduced eNOS expression (Del Rio et al., 2011a; Moya et al.,
2012). Since NO is an inhibitory modulator of CB chemosen-
sory discharges, we hypothesized that a reduced NO level may
contribute to enhance the basal CB discharges and the chemosen-
sory responses to hypoxia (Moya et al., 2012). This interpretation
is supported by the finding of Marcus et al. (2010), show-
ing that CIH decreased the expression of the nNOS in the
rat CB, suggesting that the removal of the normal inhibitory
NO influence contributes to enhancing the CB chemosensory
responses to hypoxia. We found a marked increase of 3-NT in
the CB from rats exposed to CIH, which correlates with the
enhanced chemosensory responses to hypoxia (Del Rio et al.,
2011a), supporting the idea that oxidative-nitrosative stress plays
a critical role in CB chemosensory potentiation induced by CIH
(Iturriaga et al., 2009; Del Rio et al., 2010). Thus, the available
data suggests that peroxynitrite formation due to the reaction
of NO with the superoxide radical is a critical step in the CB
chemosensory potentiation induced by CIH (Del Rio et al., 2010,
2011a).

ANGIOTENSIN II
The role of Angiotensin II on the enhanced CB chemosensory
responses induced by CIH has been extensively reviewed by Fung
(2014). The CB constitutively expresses the renin-angiotensin
system (RAS), and responds to Ang II due to the functional
AT-1 receptor expression in the CB glomus cells (Fung et al.,
2001). Lam et al. (2014) found that CIH increased the expres-
sion of angiotensinogen and AT1 receptor in the rat CB glomus
cells. They also found that the elevation of intracellular Ca2+
in response to exogenous Ang II was enhanced in glomus cells
from CIH-rats. The pretreatment with losartan abolished the
Ang II-induced Ca2+ response, suggesting an involvement of
AT1 receptors, and attenuated the levels of gp91 (phox) and
macrophage infiltration in the CB. Thus, the unregulated RAS
expression may play a role in the enhanced CB chemosen-
sory activity and local inflammation via AT1 receptor activation
during CIH.

PRO-INFLAMMATORY CYTOKINES
Among the molecules up regulated in the CB by CIH, such as
ET-1, Ang II, VEGF and iNOS (Rey et al., 2006, 2007; Lam
et al., 2008, 2012, 2014; Del Rio et al., 2010, 2011a,b), pro-
inflammatory cytokines have been proposed as mediators of the
CB chemosensory potentiation induced by CIH (Lam et al., 2008;
Iturriaga et al., 2009; Del Rio et al., 2011a, 2012) and cardiovascu-
lar pathologies in OSA patients (Vgontzas et al., 2004; Minoguchi
et al., 2005; Biltagi et al., 2008; Ryan et al., 2009). Accordingly, we
studied the time-course of the changes in the immunohistological
levels of TNF-α, IL-1β, and IL-6 in the CB, along with the pro-
gression of the enhanced CB chemosensory responses to hypoxia
in rats exposed to CIH for 7 to 21 days (Del Rio et al., 2011a).
We found that CIH progressively increases the levels of TNF-α
and IL-1β in the rat CB without modifying their plasma levels.
On the contrary, Lam et al. (2012) reported that exposure of rats
to intermittent hypoxia for 7 days increases the levels of IL-1β,
TNF-α, and IL-6 in the CB, and found macrophage infiltration,
which was reduced by daily treatment with the anti-inflammatory
drugs dexamethasone or ibuprofen. Oxidative stress increases the
synthesis of pro-inflammatory cytokines, mediated by the acti-
vation of the transcriptional factors NF-κB, activator protein
1 and HIF-1α (Prabhakar and Semenza, 2012). In response to
oxidative stress, it is known that HIF-1α produced the translo-
cation of NF-κB to the nucleus augmenting the expression of
pro-inflammatory genes such as IL-1β, TNF-α, and ET-1 (Reuter
et al., 2010). Accordingly, we found that CBs from rats exposed
to CIH for 21 days showed higher levels of the p65 sub-unit of
NF-κB suggesting a plausible role for this factor in the upregu-
lation of the pro-inflammatory cytokines during CIH (Del Rio
et al., 2012). We tested the hypothesis that CIH induced a ROS-
dependent increased TNF-α and IL-1β levels in the CB, which
may contribute to the CB chemosensory potentiation (Del Rio
et al., 2012). Accordingly, we studied the effects of ibuprofen
on TNF-α and IL-1β levels in the rat CB, the potentiation of
the CB chemosensory and ventilatory hypoxic responses and the
development of systemic hypertension (Del Rio et al., 2012).
Ibuprofen prevented the overexpression of the cytokines, the
enhanced hypoxic ventilatory response and the hypertension, but
failed to block the enhanced CB chemosensory responses. Thus,
our studies suggest that the upregulation of TNF-α and IL-1β in
the CB induced by CIH is linked to oxidative stress, as well as
the enhanced CB chemosensory responsiveness to hypoxia, but
the chemosensory potentiation does not depend on the increased
TNF-α and IL-1β levels in the CB. However, pro-inflammatory
cytokines contribute to enhance the hypoxic ventilatory response
and the hypertension induced by CIH, suggesting that multiple
mechanisms may participate in the cardiorespiratory alterations
induced by CIH.

CONTRIBUTION OF CENTRAL CARDIORESPIRATORY
CENTERS AND ARTERIAL VESSELS TO THE HYPERTENSION
INDUCED BY CIH
The sympathetic hyperactivity induced by CIH is likely to be
the result of the enhanced CB chemosensory drive, but we can-
not preclude excitatory effects of CIH on other structures of
the chemorefelex pathway. Indeed, the same molecules that are
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involved in the enhanced CB chemosensitivity (e.g., Ang II, ET-1,
and NO) could act at multiple sites to contribute to CIH-induced
arterial blood pressure rise (e.g., higher CNS centers, peripheral
arteries vessels). The chemosensory petrosal neurons that inner-
vate the CB glomus cells project to the NTS in the brainstem,
which is the main integrative nucleus for visceral inputs. The NTS
send projections to the RVLM that contain the pre-sympathetic
neurons projecting to the pre-ganglionar neurons in the spinal
cord. RVLM neurons participate in the control of BP, and in the
CB-mediated activation of the sympathetic responses (Guyenet
et al., 2010). It has been shown that CIH increased the expres-
sion of the neuronal activation markers c-Fos, and FosB/�Fos in
the NTS and RVLM. Indeed, Greenberg et al. (1999) found that
CIH-exposure of rats for 30 days increased c-fos labeling in the
NTS and the RVLM. More recently, several studies reported that
CIH increases FosB/�FosB in the subfornical organ, the median
preoptic nucleus, the paraventricular nucleus, the NTS and the
RVLM (Knight et al., 2011; Cunningham et al., 2012; Bathina
et al., 2013). Thus, other structures outside the brainstem might
contribute to intermittent hypoxia-induced hypertension (e.g.,
paraventricular nucleus of the hypothalamus, as shown by Sharpe
et al., 2013). The available evidences strongly suggests that oxida-
tive stress is the key mediator of the enhanced CB chemosensory
responses to hypoxia and the hypertension induced by CIH, but
the actions of the oxidative stress on the BP regulation in rats
exposed to CIH may occur in multiple sites of the chemoreflex
pathway, including the NTS, RVLM, and/or the arterial blood
vessels. Indeed, it has been proposed that superoxide anions in
the brainstem contribute to elevate the arterial blood pressure in
rat models of neurogenic hypertension such as the stroke-prone
spontaneously hypertensive rat (Kishi et al., 2004) and Ang II
induced hypertension (Chan and Chan, 2012). Although it is well
known that oxidative stress, produced by Ang II and NADPH
activation, in the brainstem elicits sympathetic activation, the
role played by the oxidative stress induced by CIH in the pro-
gression of the hypertension is less known. In addition, Marcus
et al. (2012) found that CIH impairs the vasodilatory responses in
small arteries isolated from the skeletal muscle circulation in rats,
an effect blocked by losartan, a Ang II type 1 receptor blocker.
Intermittent hypoxia also caused an increase in the ratio of Ang
II type 1 receptors (responsible for vasoconstriction and trophic
effects) to Ang II type 2 receptors (responsible for vasodilation
and anti-trophic properties) in peripheral arteries. On the other
hand, oxidative stress has also been involved in the impaired
vasodilatation in response to ACh in rats exposed to CIH. Indeed,
the treatment of CIH-exposed rats with Tempol restores the nor-
mal vascular function (Phillips et al., 2006). Moreover, Dopp et al.
(2011) reported that concomitant treatment with allopurinol, a
xanthine oxidase inhibitor, attenuated the impairment of ACh
induced vasodilatation in gracillis arteries of rats exposed to CIH
for 14 days.

CONCLUSIONS AND FUTURE DIRECTIONS
The pathophysiological mechanisms involved in the develop-
ment of hypertension in OSA are not fully understood. It is
widely accepted that the CIH-induced oxidative stress contributes
to enhance the CB chemosensory reactivity to oxygen and to

the progression of the hypertension (Figure 1). Several studies
have shown that concomitant administration of antioxidants,
SOD mimetic, anti-inflammatory agents, ETA, and AT-1 receptor
blockers, all of them reducing the levels of ROS formation and/or
blocking the downstream signaling pathways induced by CIH,
effectively prevents the enhanced CB chemosensory as well as the
development of the hypertension. In addition, results showing
that ablation of the CBs before the exposure to CIH significantly
prevent the development of the hypertension strongly suggest a
main role of the CB in the progression of the hypertension follow-
ing CIH. However, the effect of the oxidative stress on the arterial
blood pressure in rats exposed to CIH may also occur in multi-
ple sites of the chemoreflex pathway, including the CB, the central
cardiorespiratory centers and/or the arterial vessels. Thus, under-
standing how the oxidative stress and the molecules activated by
CIH may interact at the CB and systemic levels would provide
insights into the generation of the cardiovascular complications
of OSA.
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