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Electromechanical delay (EMD) was described as a time elapsed between first trigger
and force output. Various results have been reported based on the measurement method
with observed inconsistent results when the trigger is elicited by voluntary contraction.
However, mechanomyographic (MMG) sensor placed far away on the skin from the
contracting muscle was used to detect muscle fiber motion and excitation-contraction
(EC) coupling which may give unreliable results. On this basis, the purpose of this study
was to detect EMD during active muscle contraction whilst introducing an ultrafast
ultrasound (US) method to detect muscle fiber motion from a certain depth of the muscle.
Time delays between onsets of EMG-MMG, EMG-US, MMG-FORCE, US-FORCE, and
EMG-FORCE were calculated as 20.5 +4.73, 28.63 £6.31, 19.21 £6.79, 30.52 + 8.85,
and 49.73 + 6.99 ms, respectively. Intrarater correlation coefficient (ICC) was higher than
MMG when ultrafast US was used for detecton of the At EMG-US and At US-FORCE, ICC
values of 0.75 and 0.70, respectively. Synchronization of the ultrafast ultrasound with EMG
and FORCE sensors can reveal reliable and clinically useful results related to the EMD
and its components when muscle is voluntarily contracted. With ultrafast US, we detect
onset from the certain depth of the muscle excluding the tissues above the muscle acting
as a low-pass filter which can lead to inaccurate time detection about the onset of the
contracting muscle fibers. With this non-invasive technique, understanding of the muscle
dynamics can be facilitated.

Keywords: electromechanical delay, excitation-contraction coupling, series elastic components, contractile
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INTRODUCTION

Electromechanical delay (EMD) was described as a time elapse
between the onset of muscle electrical activation and onset
of force production, reflecting both electrochemical processes
[i.e., synaptic transmission, propagation of the action potential,
excitation-contraction (EC) coupling] and mechanical processes
[i.e., force transmission along the active and passive parts of the
series elastic components (SECs)] (Cavanagh and Komi, 1979;
Esposito et al., 2009, 2011a,b; Hug et al., 2011a,b). Different
results had been reported such as 8.5 ms during supramaximally
stimulated tibial nerve and 125 ms during voluntary elicited con-
tractions (Blackburn et al., 2009; Yavuz et al., 2010). Following the
trigger for contraction, the contractile components (CCs) firstly
stretch the SECs before the force output is evident (Cavanagh
and Komi, 1979; Bell and Jacobs, 1986; Muraoka et al., 2004).

Abbreviations: ACL, Anterior cruciate ligament; ANOVA, Analysis of variance;
CC, Contractile component; CV, Coefficient of variation; EC, Excitation-
contraction; EMG, Electromyography; EMD, Electromechanical —delay;
FORCE, Force output; MMG, Mechanomyography; ICC, Intraclas correla-
tion coefficient; MTU, Muscle-tendon unit; RE, Rectus femoris; RMS, Root
mean square; ROI, Region of interest; SEC, Series elastic component; US,
Ultrasonography.

When the trigger is electrical stimulation, cortical inputs are
bypassed (Shultz and Perrin, 1999), stimulus cross-talk effect is
minimized (Sasaki et al., 2011) and force output occurs at sig-
nificantly shorter time than the voluntary initiated contraction.
During voluntary muscle contraction, cortical input is required
for voluntary motor control and responses occur at a significantly
greater delay (Zhou et al., 1995; Shultz and Perrin, 1999; Hopkins
et al., 2007).

Recently, time delay between EMG signal and FORCE output
(EMD) elicited by electrical stimulation, was partitioned into the
time delays between the EMG and MMG (time index of local
sarcomere motion prior to the elongation of the passive series
elastic components) and MMG and Force (monitor of the overall
events after cross-bridge formation) (Esposito et al., 2011a).
Physiologically, the time delay between EMG-MMG could
describe Ca?T release and sensitivity, its involvement during
the EC coupling and association between dihydropyridine and
ryanodine receptors (Esposito et al.,, 2011a). For detecting the
onset of the fiber motion, MMG signal was used and attributed
to the dimensional changes of the active muscle fibers (Herda
et al., 2010; Esposito et al., 2011a,b; Sasaki et al., 2011; Camic
et al, 2013). Using MMG, it was found as 2.2+ 0.3ms in
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gastrocnemius muscle (Esposito et al., 2011a) and lower than
5ms in biceps muscle (Sasaki et al., 2011) when the trigger was
initiated by electrostimulation. Whether MMG is an appropriate
method for detection of the fiber activation remains unclear
because of its far away placement from the real contracting mus-
cle. Even more, there are reported cross-talk from the adjacent
muscles when MMG sensor was used (Beck et al., 2010). In some
studies, new way of imaging the motion of an in vivo contractile
muscle was introduced by using an ultrafast US scanner (Deffieux
et al., 2006, 2008; Nordez et al., 2009; Lacourpaille et al., 2013).
Using ultrafast US with rate of 4kHz, the onset of the fiber
activation was detected as 6.05 £ 0.64 ms from gastrocnemius
muscle (Nordez et al., 2009) and 3.9 & 0.2 ms from the biceps
muscle (Lacourpaille et al., 2013) in reference to the given time
of electrostimulation. Time delay after fiber activation to the
force output, corresponding to the changes in the tendon was
found as 11.65 £ 1.27 ms in the gastrocnemius (Nordez et al.,
2009) and 11.8 £ 2.2 ms in the biceps muscle (Lacourpaille et al.,
2013). Despite these findings, it still remains unknown, how
much these time delays corresponding to the EC coupling and
force transmission along the SEC coincide with the structural
changes displayed by electrophysiological signals during volun-
tary muscle contraction. To our knowledge, partitioning of the
EMD (EMG-FORCE) into the time delays corresponding to the
time between EMG onset and onset of the fiber motion and onset
of the actual force production have not been investigated using
both MMG and ultrafast US during voluntary muscle contraction.
We hypothesis that using ultrafast US and tracking the onset of
the fiber motion from a certain depth can reveal more reliable
results regarding the time delays corresponding to the muscle
fiber activation and actual force production. MMG sensor may
be disadvantageous because of its far away placement from
the contracting muscle and interspaced non-contractile tissues
between muscle and MMG sensor.

On this basis, we designed the present study to find out EMD
and time delays corresponding to the EC coupling and SEC dur-
ing active muscle contractions when both MMG and ultrafast US
were used for detection of the muscle fiber activation.

MATERIALS AND METHODS

PARTICIPANTS

A group of 14 men, young volunteers were recruited in the
study. They were all healthy subjects without any history of pre-
vious injury, metabolic or neurologic disease. The physical and
anthropometric characteristics of the participants are given in the
Table 1. No one of them were involved in any vigorous exercise on
a daily basis. The human subject ethical approval was obtained
from the relevant committee in the Hong Kong Polytechnic
University and informed consent was obtained from each subject
prior to the experiment.

Experimental protocol

The dominant leg for being tested was defined as a leg with which
the subject preferred to kick a ball. After the anthropometric mea-
surements, subject was seated with a back inclination of 80° and
knee was adjusted at flexion angle of 30° below the horizon-
tal plane on a calibrated dynamometer (Humac/Norm Testing

Table 1 | Physical and anthropometric characteristics of the
participants (n = 14; mean % SD).

Age (years) 28.2 +£3.25
Weight (kg) 71.8+10.16
Height (cm) 172.4 +£5.84
BMI 24.1+£2.62
Mid-sagittal thickness of the RF (mm) 20.4 +2.40

FIGURE 1 | Experimental setup for the measurement of the surface
EMG, MMG, FORCE, and US onsets from the right (dominant) rectus
femoris muscle during isometric contraction of the quadriceps femoris
muscle. The subject is seated with the back inclination of 80° and right
knee was adjusted at flexion angle of 30° below the horizontal plane on a
calibrated dynamometer (Humac/Norm Testing and Rehabilitation System,
Computer Sports Medicine, Inc., MA, USA).

and Rehabilitation System, Computer Sports Medicine, Inc., MA,
USA). Straps across the subject’s trunk were used to stabilize hip
and trunk movement (Figure 1). The 30° was chosen to activate
the muscle with minimum pre-stretching of the muscle fibers
because increased slack within the muscle-tendon unit (MTU)
produced by increasing flexion angles may affect the shortening
velocity of the fastest muscle fibers and consequently effect results
(Sasaki et al., 2011).

The rectus femoris muscle (RF) was chosen for testing because
of its surface position. The thickness of the RF muscle was first
measured using a commercial ultrasound scanner (Ultrasound
Diagnostic Scanner, EUB-8500, Hitachi Medical Corporation,
Tokyo, Japan) with a 7.5 MHz linear array ultrasound probe.
For the thickness measurement, the ultrasonographic image was
obtained at approximately 60—-70% of the tight length from the
popliteal crease to the greater trochanter corresponding to the
muscle belly of the RF (Ryoichi et al., 2013). The thickness of the
RF was measured as a distance between upper and inner aponeu-
roses. Measured thickness of the RF muscle was summed with the
thickness of the skin and fat layer and used as a predefined region
for the following US A-mode signal analysis (Figure 2).

The experimental procedure was explained in details and
familiarization session was given to allow the subject to prac-
tice the isometric contractions at very low load just a few times
without producing muscle fatigue. Muscle activity during vol-
untary isometric contractions was recorded simultaneously by
EMG, MMG, Force and ultrafast US while the subject was
seated on the calibrated dynamometer (Humac/Norm Testing
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FIGURE 2 | The aponeuroses appears as hyperechoic strips and the
distance between upper and inner aponeuroses is used for measuring
the thickness and depth of the rectus femoris muscle. Measured real
depth is then used for the calculation of the US onset during isometric
contraction of the quadriceps femoris muscle.

and Rehabilitation System, Computer Sports Medicine, Inc., MA,
USA) with knee flexion angle adjusted at 30°. The test procedure
consisted of 4 isometric contractions of the Quadriceps Femoris
(QF) muscle with resting period of 2 min between contractions
to prevent muscle fatigue. During the test, the subject was asked
to apply maximum isometric contraction as quickly as possible
in 1s and to keep it approximately 3 s. Verbal order was given to
the subject about the start and termination of the muscle con-
traction. The order “start” was given immediately after starting
the collection of A-mode signals in the ultrafast US device. After
the termination of each contraction, the position of the US probe
was checked to ensure that there was not any displacement of
the probe caused by the movement artifact of the muscle during
contraction.

Data acquisition

Two surface EMG bipolar Ag-AgCl electrodes (Axon System,
Inc., NY, USA) for differential EMG detection were placed on
the RF muscle belly, approximately at the 50-60% of the dis-
tance between the spina iliaca anterior superior and superior
patellar margin. To reduce the skin impedance, skin was cleaned
with isopropyl alcohol and abraded with fine sandpaper. The
ground electrode was placed over the tibial crest. For detecting
the MMG signal, a monodirectional accelerometer (EGAS-FS-10-
/V05, Measurement Specialties, Inc., France) was fixed between
two surface EMG electrodes. Together with the accelerometer,
interelectrode distance between two surface EMG electrodes was
30 mm. The surface EMG and MMG signals were amplified by a
custom-designed amplifier with a gain of 2000, filtered separately
by 10-1000 Hz and 5-1000 Hz bandpass analog filters within
the amplifier, respectively. The isometric force generated by the
quadriceps femoris muscle was measured using a dynamome-
ter (Humac/Norm Testing and Rehabilitation System, Computer
Sports Medicine, Inc., MA, USA). The EMG, MMG, and FORCE
signals were digitized with a sampling rate of 4 KHz, and stored

on a personal computer when the subject performed voluntary
isometric contraction.

A commercial ultrasound scanner (Sonix Touch, Analogic
Corporation, USA) with a 7.5 MHz linear array ultrasound probe
(Ultrasonix L14-5/35) was used to collect the ultrasound A-
mode signal, which could reach a very high frame rate. The
US recording was made by a custom program installed in a
programmable ultrasound scanner (Ultrasonix Touch, Analogic
Corporation, Massachusetts, USA) to achieve a very high frame
ultrasound scanning at a selected location. The US probe was
placed as close as possible to the surface EMG electrodes in
longitudinal direction along the muscle fibers of the RF mus-
cle. Ultrasound gel was applied between the skin and probe to
serve as an acoustic coupling medium. To avoid probe motion
artifact which may cause misleading of the real onset (Vasseljen
et al., 2006), US probe was fixed in a foam holder and bandage
was used without unacceptable tightening to prevent sliding of
the probe during contraction. After the placement and fixation
of the ultrasound probe, B-mode image was checked to ensure
that US probe was on the RF muscle. The whole data acquisi-
tion procedure started with the collection of EMG, MMG, and
FORCE signals. Then the collection of A-mode US signals was
started, and the verbal instruction of “start” was given by the
operator. The A-mode US signal was collected at a frame rate
of 4k frames/s for 10s during the voluntary isometric contrac-
tion. After the first frame of A-mode signal was collected, a signal
was generated by the ultasound scanner and outputted as an
external trigger signal, which was inputted into the device for
EMG/MMG/FORCE signal collection. This channel of trigger sig-
nal was used for synchronizing the collection of A-mode US signal
with other signals. The recorded US signal was processed to detect
the root mean square (RMS) value of the selected region of inter-
est (ROI) (Figure 2).This RMS value obtained from each frame
of US signal was then substracted by the RMS value of the first
frame, and the result was used to form new signal represent-
ing the US signal disturbance induced by the muscle contraction
(Figure 3A).

DATA ANALYSIS

Collected signals were processed off-line using a program writ-
ten in MatLab (version 2008a, USA). Time delays between EMG
and MMG (At EMG-MMG), MMG and FORCE (At MMG-
FORCE), EMG and US (At EMG-US), US and FORCE (At
US-FORCE) and EMG and FORCE (At EMG-FORCE) onsets
were calculated off-line. EMG signal was rectified and condi-
tion of three standard deviations (SDs) from the mean baseline
noise was observed for detecting the onset of each signal. In
order to define a crossing time as the onset time, a condition for
signal to stay 10 ms above the threshold level was set by the pro-
gram and visually examined. The time delays, At EMG-MMG,
At MMG-FORCE, At EMG-US, At US-FORCE, and At EMG-
FORCE were calculated for each contraction and expressed in
milliseconds (Figure 3B).

STATISTICAL ANALYSIS

The data were analyzed with a software package SPSS V.19
(IBM SPSS Statistics for Windows, Version 19.0. Armonk, NY,
USA). The normal distribution of the data was analyzed by the
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A Simultaneously recorded EMG, MMG, FORCE and US signals B Enlarged EMG, MMG. FORCE and US signal for the visually
(before enlargement) examination
~— 50 T T T T T T T T ]
e i, [~/ TIITTTTTIT
o of onset \‘f\‘zf “ |
2 BEuE |
= 500 1 Il L 1 L L ]
= I T TTF
E/ onset \ J r
é 110 | lilﬁi[ \1-
| J Y | 1
. L0 1 [ iR
o
Z . . . . . .
3 FORCE
[z] - —e e —
g ® / ~——{ onset \
[ Jf il s 2l 4 m
p 0F wRey L e ]
- 200 1 1 L 1 1 Il
—_ 40 T T T T T T T T I T P
% 20 TS onset “ﬂ I |.‘ |'|1, ﬂ
= e e 1 18 AT IV
z ot o YA | NI R A
- 20 1 L L 1 L L Hul | Il
1 2 3 4 & L '
Time (s) Time (ms) —_—_—

FIGURE 3 | (A) Presentation of the rectified EMG signal, MMG, US,
and FORCE signals simultaneously recorded during isometric
contraction of the quadriceps femoris muscle. (B) Signals were

calculated offline using designed program in MatLab and visually
examined. Calculated delays between each onset were expressed in
milliseconds.

Kolmogorov-Smirnov test. Values are reported as means & SD. To
check whether there are any differences between the contractions,
One-Way analysis of variance (ANOVA) for repeated measures
was used. To determine the repeatability of all our measurements,
the standard error in measurement (SE) and intraclass correlation
coefficient ICC (2,k) were calculated using the means calculated
between onsets of the 4 voluntary contractions to express agree-
ment between contractions. To test the differences between At
EMG-MMG — At EMG-US and At MMG-FORCE — At US-
FORCE, paired t-test was used. The statistical significance was
set at the 0.05 level. Percentage of each time delay relative to the
overall time delay (EMD) was also reported.

RESULTS
The results about the demographic characteristics of the sub-
jects are demonstrated in the Table1l. To check the normal
distribution of the data, Kolmogorov-Smirnov test revealed that
At EMG-MMG, At EMG-US, At US-FORCE, and At EMG-
FORCE are normally distributed while At MMG-FORCE was
non-normally distributed (P < 0.05). As no differences were
observed between 4 voluntary isometric contractions using One-
Way ANOVA for repeated measures (At EMG-MMG; P > 0.05,
At MMG-FORCE; P > 0.05, At EMG-US; P > 0.05, At US-
FORCE; P > 0.05 and At EMG-FORCE; P > 0.05) average and
SDs were calculated for each time delay.

The averages £ SD for the At EMG-MMG, At MMG-FORCE,
At EMG-US, At US-FORCE, and At EMG-FORCE were

calculated as 20.5 +=4.73 ms, 28.63 = 6.31 ms, 19.21 £ 6.79 ms,
30.52 + 8.85ms, and 49.73 % 6.99 ms, respectively (Table 3). The
relative contribution of the At EMG-MMG, At MMG-FORCE,
At EMG-US, and At US-FORCE to the overall time delay (At
EMG-FORCE, EMD considered as 100%) were expressed in
percentage and found as 41.1%, 57.1%, 38.9%, and 60.92%,
respectively (Table3). To compare two different methods for
detection of the muscle fiber activation onset, paired ¢-test did
not reveal any significant difference between At EMG-MMG
and At EMG-US (20.5 £4.73; 19.21 £6.79, p > 0.05) and At
MMG-FORCE and At US-FORCE (28.63 = 6.31; 30.52 + 8.85,
p > 0.05). Significant differences were found between At EMG-
MMG and At MMG-FORCE (p < 0.05) and At EMG-US and
At US-FORCE (p < 0.05).

The SE values calculated for the At EMG-MMG, At MMG-
FORCE, At EMG-US, At US-FORCE, and At EMG-FORCE were
0.9, 1.18, 1.15, 1.59, and 1.3 ms, respectively. However, between
4 contractions, intraclass correlation coefficient (ICC, 2k) was
found to be the highest for the At EMG-US (ICC: 0.75) and At
US-FORCE (ICC: 0.7) while ICC values for the At EMG-MMG,
At MMG-FORCE and At EMG-FORCE were found to be 0.48,
0.58, and 0.64, respectively. Results are shown in Table 2.

DISCUSSION

In our study, we synchronized ultrafast US with surface EMG,
MMG and FORCE signals to detect time delays between EMG and
MMG (At EMG-MMG), MMG and FORCE (At MMG-FORCE),
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EMG and US (At EMG-US), US and FORCE (At US-FORCE)
and EMG and FORCE (At EMG-FORCE: EMD) during volun-
tary isometric contraction of the QF muscle. The high temporal
resolution (4 kHz) of the US enabled to determine the onset of
the fiber activation displayed as a signal of the first architectural
change from the real anatomical depth of the RF muscle whilst
preceding the surface EMG signal which was generated by volun-
tary isometric contraction of the QF muscle. In detection of the
fiber activation, there was found higher repeatability using ultra-
fast US than the MMG. This method may provide more accurate
information about the time course of the EC coupling and SEC
when US probe is used to detect fiber activation during voluntary
isometric contractions.

In our study, we attributed At EMG-US to the EC coupling
during voluntary isometric contraction. Using ultrafast US, we
were detected fiber activation after 19.1 & 6.4 ms (SEM 1.15)

Table 2 | Repeatability (ICC, 2k) between 4 isometric contractions of
the quadriceps femoris muscle.

ICC between 4 repeated contractions

Time delays (At) 95% confidence interval

between onsets

ICC, 2k Lower bound Upper bound
At EMG-MMG 0.488 —0.156 0.816
At MMG-FORCE 0.570 0.03 0.846
At EMG-US 0.751 0.437 0.910
At US-FORCE 0.707 0.338 0.895
At EMG-FORCE (EMD) 0.632 0.169 0.868

preceding the onset of the EMG signal and this time delay
was contributed 38.9% to the EMD. Using ultrafast US, other
researchers detected fiber activation 6.05 £ 0.64 ms (52.5 & 5.9%
of EMD) in gastrocnemius (Nordez et al., 2009) and 4.43 &+
1.95ms (56% of EMD) in biceps brachii (Hug et al., 2011a) after
the time of the given electrostimulation, 2.2 £ 0.3 ms after EMG
onset initiated by electrostimulation to the gastrocnemius mus-
cle (Esposito et al., 2011a) and 21 ms in deep multifidus muscle
after voluntary movement (Vasseljen et al., 2006). However, in our
study, time delay At EMG-MMG also attributed to the EC cou-
pling (Esposito et al., 2011a) was found to be 20.50 £ 4.73 ms,
contributing 41.2% to the overall time delay (EMD) but with
lower repeatibility (ICC: 0.48) than the At EMG-US (ICC: 0.75).
On the other hand, using paired t-test, there was no statisti-
cally significant difference between EMG-MMG and EMG-US
measurement methods (p > 0.05).

It is important to investigate time delays during voluntary
muscle contractions rather than electrically induced contractions
because there was reported that reduction in output from the
motor cortex impairs EC coupling. (Goodall et al., 2009) The
EC coupling names the process by which the depolarization at
the T-system induces the release of Ca?* from the cistern of sar-
coplasmic reticulum. This process links the action potential to
the force producing reactions (Gonzales and Rios, 2002). When
EC coupling process is directly detected from the certain mus-
cle depth using ultrafast US and tracking the onset of the fiber
activation, it may enable to predict how EC coupling process is
reflected out by the measure “ time” up to the point when SECs
start to move. A number of the studies were used MMG signal
to detect dimensional changes of the active muscle fibers but it

Table 3 | Averages + SD of the four contractions, percentage (%EMD) and standard error in measurement (SEM) for each time delay; At
EMG-MMG, At MMG-FORCE, At EMG-US, At US-FORCE, and At EMG-FORCE (EMD).

Time delays between EMG and MMG, MMG and FORCE, EMG and US, US and FORCE and EMG and FORCE (EMD) for each subject

Subjects At EMG- %EMD At MMG- %EMD At EMG- %EMD At US- %EMD At EMG-FORCE,
MMG (ms) FORCE (ms) US (ms) FORCE (ms) EMD (ms)
1 17.9+5.18 43.20 23.5+1.20 56.70 24.92 +£6.83 60.10 16.47 £3.09 39.79 41.4+4.86
2 15+£5.79 33.97 29.15+4.21 65.90 12.87+4.77 28.90 31.27+6.34 70.831 44.15+6.11
3 29.924+7.42 53.60 23.92+3.87 42.90 24.55+4.06 43.90 31.15+£7.81 55.92 55.7+8.07
4 18.25+7.35 33 36.87 +826 66.70 21.9+5.48 39.70 33.22+7.67 60.27 55.12 +4.96
5 16.85+5.19 48.50 12.3+10.79 35.44 14.47 £4.27 41.40 20.22+10.78 58.28 34.7+10.97
6 15.15+4.15 33.30 30.25+1.92 66.50 20.07 £13.28 44 25.324+12.18 56 454+16.5
7 16.45+6.54 33.70 32.32+1.92 66.30 13.0+£9.33 26.60 36.77+7.39 73.34 48.7+5.21
8 17.72 £10.96 35.10 32.7+11.82 64.80 7.7+3.7 15.20 42.72+14.16 84.72 50.42 +£12.31
9 26+8.76 46.20 30.2+4.28 53.70 19.95+7.75 35.40 36.25+12.55 64.50 56.2+5.24
10 20.27 +£8.58 36.50 34.95+15.14 63.20 27.57+6.24 49.80 27.65+7.93 50.06 55.22 +£8.09
M 27.1+5.33 43.90 34.5+5.81 56 18.45+1.21 29.80 43.15+8.66 70.04 61.6+7.86
12 20.55+4.15 43.80 26.37 £4.37 56.10 31.97+0.97 68.10 14.82 £6.73 31.67 46.8+5.84
13 25.1+8.36 50.80 24.3+4.67 49.10 11.3+84 22.80 38.1+£10.17 77.12 49.4+4.81
14 20.8+2.78 40.40 29.47 £4.50 57.10 20.25+10.23  39.20 31.15+10.78 60.60 51.4+4.31
Mean 20.5 41.10 28.63 57.10 19.21 38.90 30.52 60.92 49.73
SD 4.73 7 6.31 9.50 6.79 14.20 8.85 14.29 6.99
SEM 0.9 1.18 1.15 1.59 13
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was reported that small to moderate level of cross-talk is present
between MMG signals from different locations when detected
from the quadriceps femoris muscles during isometric contrac-
tion (Beck et al., 2010). This cross-talk was attributed to the
tissues between muscle and MMG sensor acting as a low-pass fil-
ter (Beck et al., 2010). Subcutaneous fat may be thick enough to
act as low-pass filter, reducing the gain factor of the MMG sig-
nal (Herda et al., 2010). To some extend, we can also attribute
the MMG signal to the reflection of the muscle fiber activation,
but tissues above the muscle acting as low-pass filter and low
repeatability using MMG signal in our study (ICC: 0.48), may
reduce its significance to be used as a detector of the fiber activa-
tion. Since quadriceps femoris muscle consists of 4 parts emerging
into the only one tendon, adjacent muscles on the sides, vastus
medialis and lateralis, and vastus intermedius below the RF, may
also produce force tremor as a very important issue when mus-
cles are simultaneously contracted. Indeed, in the present study,
the reason for having a bigger time delay (even if not statistically
significant) of the EMG-MMG (20.5 &£ 2.22 ms) then the EMG-
US (19.21 £ 3.43ms) could be explained by the tissues above
the muscle acting as low-pass filter and consequently increas-
ing the time delay detected by MMG. Therefore, we strongly
believe that US synchronized with surface EMG can provide more
accurate informations about the timing of the EC coupling and
confirm its relative contribution to the overall time delay. Further
investigations with bigger sample size are needed to improve
the accuracy and repeatability of the synchronized recording
of the surface EMG and US during the voluntary muscle
contractions.

In our study, we defined time delay At US-FORCE as a moni-
torization of the overall events after the onset of the fiber activa-
tion up to the time of the actual force production and attributed
to the time course of the viscoelasticity of the SEC. Others defined
this time also as an elastic charge time and attributed to the time
interval between the onset of force production and joint motion
(Winter and Brookes, 1991). In our study, it was found as 30.5 £
8.8 ms, contributing 60.9% to the EMD, more than the EC cou-
pling (38.9%) and with higher repeatability using US (ICC:0.7)
then the MMG (ICC: 0.5). The time delay between MMG and
FORCE output (At MMG-FORCE) was also attributed to the
time after fiber activation up to the actual force production
(Esposito et al., 2011a) and force transmission along the SEC
of the MTU (Nordez et al., 2009). In electrically stimulated gas-
trocnemius muscle, the time delay between MMG and FORCE
was found as 42.44 £ 3.07 ms. (Esposito et al., 2011a). Using
high-rate US, the time delays corresponding to the aponeuro-
sis and tendon of the gastrocnemius muscle were found as 2.37
and 3.22 ms, respectively, in total contributing 47.5 = 6.0% to the
EMD and lesser than EC coupling (Nordez et al., 2009). This time
delay was also found as 4.43 & 1.95 ms in biceps brachii muscle
(Hug et al., 2011a). We have found that time delay correspond-
ing to SEC was bigger than the EC coupling time and significantly
different for both MMG and US trials (p < 0.05). Again, using
the electrostimulation on the biceps brachii muscle, this time
delay was increased from 7.9 ms to 19.6 ms as elbow was moved
into deeper flexion while muscle-tendon length decreases. Author
attributed this increase to the extend of slack and the shortening

velocity of the fastest muscle fibers because muscle fibers should
initially take up the slack and consequently to produce the move-
ment (Sasaki et al., 2011). When measurements were performed
in electrically stimulated muscles, none of these results could be
compared with our results because we used voluntary isometric
contraction as a trigger. On the other hand, the active effective-
ness of the force transmission cannot be presented by electrically
stimulated muscle without voluntary control. However, electri-
cal stimulation delivers supramaximal stimulus which produces
recruitment of different muscle fibers (Zhou et al., 1995) and con-
sistent contractions (Hopkins et al., 2007). This might be reason
why there was not found difference between time delays corre-
sponding to the EC coupling and SEC when onset of the fascicle
motion and tendon was detected by high rate US during elec-
trostimulation of the biceps brachii muscle (Hug et al., 2011a).
Measurements during active contraction may also reflect active
stiffness characteristics of the SEC (Wilson et al., 1991). In our
study, when MMG signal is accepted as an onset of the fiber
activation, we can see that At MMG-FORCE is the biggest part
(57.1%) of the EMD. When US onset is accepted as the onset of
the fiber activation, At US-FORCE was contributed 60.9% to the
EMD, also as a biggest part of the EMD. From our results, we
can say that both viscous and elastic characteristics of the SECs
preoccupy the biggest part of the EMD when tested during active
muscle contraction. These time intervals, calculated between fiber
activation and force output determines the time course required
for the stretching of the tendon and aponeuroses (passive ele-
ments of the SEC) (Norman and Komi, 1979; Muraoka et al.,
2004) during active muscle contraction. When At MMG-FORCE
and At US-FORCE were compared with each other, no statis-
tical significance was found, but higher repeatability was found
using US than the MMG. It shows that ultrafast US could better
reveal actual timing corresponding to the EC coupling and time
required after fiber activation up to the force output. To the date,
to our knowledge, this is the first study presenting duration of the
viscoelasticity of the SECs during active muscle contraction using
ultrafast US and comparing it with the MMG. Additionally, ultra-
fast US should be used in order to detect onset of the aponeurosis
and tendon separately during active muscle contraction.

In our study, we defined the EMD (At EMG-FORCE) as a
time elapse between the onset of the surface EMG signal and
actual force production when elicited by voluntary isometric con-
traction. It was found as 49.7 £ 6.99 ms with relatively low SEM
and tendency to be repeatable (ICC: 0.64). Different methods
have been used for measuring the EMD and this creates con-
siderable difficulty when attempts are made to compare data.
However, we could say that our results were not differed in huge
extend from others which were reported as 39.6 ms (Winter and
Brookes, 1991), 38.7 ms (Zhou et al., 1995), 57.2 ms (Howatson
et al., 2009), 37.8-56.5ms (Zhou, 1996) and 40-60 ms (Hug
et al., 2011b). There are many reasons affecting the EMD such
as recruitment of the fiber type depending on the contraction
velocity, inhomogenous muscle activation, muscle and tendon
stiffness, rate of force production, gender, temperature, fatigue
and hormonal characteristics (Winter and Brookes, 1991; Yavuz
et al., 2010; Hug et al., 2011b; Ce et al., 2013; Earp et al., 2014).
Muscle and tendon stiffness are very important factors, mostly
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changed after orthopedic surgery caused by the scar tissue devel-
opment, inproper body ergonomics, and malalignment. It was
shown that EMD of the hamstring muscle significantly increased
after harvesting hamstring tendon what can affect the knee safety
and performance (Ristanis et al., 2009). On the other hand, it was
also reported that EMD of the vastus medialis oblique muscle was
longer then vastus lateralis muscle in patients with patellofemoral
pain syndrome (Chen et al., 2012). Thus, from the previous
reports and present study, we suggest that monitoring of the EMD
could be useful for both diagnostic and rehabilitation purposes.
Even more important if EMD is measured during the active mus-
cle contraction because ligament afferents play an important role
in the regulation of the functional articular stability, continuous
control of muscle activities and programming the muscle stiffness
(Mora et al., 2003). Thus, synchronization of the surface EMG
with ultrafast US and force sensors should be increasingly utilized
to detect differences caused by disabilities in order to create more
effective rehabilitation programs. The repeatability of the EMD
during active muscle contractions should be improved in further
investigations.

There are some limitations which are needed to be mentioned
when interpreting results to our study. Analysing the signals dis-
played by active contraction might be challenging. Even if we
had been given verbal instructions to the subject to keep itself
relaxed before exerting contraction, sitting on the chair of the
dynamometer for the certain period and many sensors attached
on the leg as well as increased attention might be reasons for hav-
ing discomfort which may cause increase of the baseline noise of
the signal. In some contractions, baseline noise was such small
that onset could be detected earlier but this was not case in
most contractions in our study. Therefore, we set the thresh-
old of the three SDs of the mean baseline noise and used it
consistently during our signal analysis. Other important consid-
eration should be given to our interpretation of the force output
because force is exerted as a sum of all parts of the quadri-
ceps femoris muscle. We used time delays to determine EMD
but future studies should be focused on the separate detection
of the time delays from each part of the QF muscle and to find
out their relative contributions to the EMD during active muscle
contractions.

CONCLUSION

In conclusion, using ultrafast US to detect fiber activation and
synchronizing it with the surface EMG and FORCE sensors,
revealed more reliable results than using the MMG sensor. With
ultrafast US, we can detect onset from the certain depth of the
contracting muscle excluding the tissues above the muscle acting
as low-pass filters which can lead to inaccurate time detection of
the onset of the contracting muscle fibers. Monitoring the EMD
and its components which are time course of EC coupling and
SECs during active muscle contraction, could better unveil spinal
and supraspinal pathologies and their pathologic reflection on the
peripheral nervous system and muscle dynamics. Thus, synchro-
nization of the surface EMG with ultrafast US and force sensors
should be increasingly utilized to detect differences caused by dis-
abilities in order to create more effective rehabilitation programs.
Further investigations are needed to improve the accuracy and

repeatability of the synchronized recording method during the
voluntary muscle contractions.
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