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MicroRNAs (miRNAs) are non-coding RNAs that can regulate the expression of mRNAs
and proteins by degrading mRNA molecules or by inhibiting their translation. It has been
predicted that miRNAs regulate approximately 60% of protein-coding genes that could be
involved in a wide range of biological processes. Research over the last 5 years suggests
that miRNAs play important roles in skeletal muscle function and several miRNAs have
been identified as modulators of myogenesis, muscle mass, and nutrient metabolism
in physiological and pathological states. In addition, some miRNAs can be incorporated
into intracellular vesicles, released into the circulation, transported to other cells, and
possibly function in other organs in an endocrine manner. This phenomenon might
explain the interactions between skeletal muscles and other organs. Thus, far, several
muscle-secreted miRNAs have been identified and their involvement in muscle biology
has been debated. Based on the recent understanding, this perspective article describes
the potential valuable role of miRNAs in skeletal muscle function, delineates its limitations,
and outlines its future perspectives.
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INTRODUCTION
In recent years, there has been a significant advancement in our
understanding of the importance and role of non-coding RNAs
in several biological processes. Several non-coding RNAs, besides
transfer and ribosomal RNAs, are involved in the transcriptional
and translational regulation of other RNAs; these are referred to as
functional RNAs. Among non-coding RNAs, microRNAs (miR-
NAs), which are small non-coding RNAs (approximately 19–22
nucleotides in length), are diverse and regulate over 1500 tar-
get mRNAs (Kozomara and Griffiths-Jones, 2011) by perfectly
or partially hybridizing to complementary binding sites located
in the 3′ untranslated regions of the mRNAs and by inhibiting
translation via mRNA cleavage or steric hindrance. miRNAs hold
promise for presenting new findings in cellular and molecular
biological systems and contribute to the biomedical field by act-
ing as biomarkers for clinical diagnosis and as drug targets for
the treatment of diseases. The role and regulation of miRNAs in
skeletal muscle function have also been evaluated; however, mul-
tiple aspects remain to be elucidated. The identification of an
association between miRNAs and skeletal muscle function after
several years of research has been a turning point in skeletal mus-
cle research. Here, I discuss the advancements in skeletal muscle
miRNA-based research and provide a perspective on its potential
future implications.

MicroRNA IN MUSCULAR PHYSIOLOGY AND PATHOLOGY
Research has suggested that miRNA-mediated gene regulation
is a fundamental mechanism of post-transcriptional regulation
and that it may have diverse functional effects. It has previ-
ously been shown that the levels of several proteins do not

frequently correspond to the levels of their mRNA; this phe-
nomenon could be partly attributed to translational regulation
by miRNAs. For instance, the mRNA expression level of peroxi-
some proliferator-activated receptor gamma coactivator 1 alpha
(PGC1-α) was markedly increased following exercise although
the protein amount was not changed (Watt et al., 2004; Gibala
et al., 2009), could be attributed to translational regulation by
miRNAs. Indeed, earlier studies on muscular miRNA have shown
that the levels of both miR-23 and miR-696, which hybridize
with PGC1-α mRNA and reduce the protein amount, decrease
in response to acute or chronic exercise (Safdar et al., 2009; Aoi
et al., 2010). Approximately 60% of protein-coding genes may
be regulated by miRNAs (Friedman et al., 2009). Therefore, miR-
NAs can influence the biological phenotype with regard to overall
development, maintenance of homeostasis, cell death, carcino-
genesis, and age-related changes by regulating protein content.
Studies on skeletal muscles have suggested that several miR-
NAs could also function as modulators of myogenesis, muscle
mass, and nutrient metabolism in skeletal muscle (Chen et al.,
2006; Small et al., 2010; Dey et al., 2011; Gagan et al., 2011;
Zhang et al., 2012; Hitachi et al., 2014), thus raising questions
regarding the association of miRNAs with exercise-induced phys-
iological changes, muscular pathogenesis, and age-related muscle
dysfunction (Figure 1).

A tissue-specific miRNA is defined as a miRNA that is
expressed in a specific tissue at levels that are >20-fold higher
than its mean level in all other tissues (Lee et al., 2008). Several
miRNAs are highly enriched in muscle tissue and are often
referred to as myomiRs. Four myomiRs, namely, miR-1, miR-
133a, miR-133b, and miR-206, together account for nearly 25% of
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FIGURE 1 | Current understanding and hypothesis regarding the

regulation and function of miRNAs in skeletal muscle. The expression of
several miRNAs changed according to various conditions such as physical
activity, nutrients, diseases, and aging. In contrast, several miRNAs could
function as modulators of myogenesis, muscle mass, and nutrient

metabolism. Some of miRNAs can be taken up into intracellular vesicles and
secreted into extracellular fluid. Circulating miRNAs migrate to skeletal
muscle as well as other organs and may regulate certain functions. In
addition, specific c-miRNAs may be useful in determining precise
muscle-related events.

miRNA expression in skeletal muscles in both humans and mice
(Sempere et al., 2004; McCarthy, 2008). In addition, miR-208,
miR-486, and miR-499 are encoded by muscle-specific genes such
as ankyrin and myosin heavy chain (McCarthy et al., 2009; Small
et al., 2010). The presence of miR-378 at high levels in muscle
has been validated in several studies (Davidsen et al., 2011; Gagan
et al., 2011). Therefore, skeletal muscle research is focused on the
regulation of miRNAs and their association with muscle func-
tions. A growing amount of evidences has suggested that these
muscle-specific miRNAs, along with other miRNAs, affect various
phenotypic changes in skeletal muscles, including exercise adap-
tation, immobilization, and muscular diseases (Eisenberg et al.,
2007; Allen et al., 2009; Safdar et al., 2009; Aoi et al., 2010; Nielsen
et al., 2010; Davidsen et al., 2011; Roberts et al., 2012; Russell
et al., 2013; Alexander et al., 2014). In addition, expression of
several miRNAs has been shown to be altered during aging in
animals and humans (Hamrick et al., 2010; Mercken et al., 2013;
Nielsen et al., 2014b; Rivas et al., 2014). Changes in the expression
of some age-regulated miRNAs are reversed by calorie restriction,

which is often adopted as a daily habit to prevent the develop-
ment of age-related events and diseases (Mercken et al., 2013); this
finding supports the significance of miRNA in aging. Recently,
additional miRNAs that possibly play critical roles in muscle dis-
orders related to diabetes, cancer, and inflammation have also
been identified (Jiang et al., 2013; Chen et al., 2014; Georgantas
et al., 2014; Rowlands et al., 2014; Sato et al., 2014). These find-
ings provide novel information regarding the regulatory system
of miRNAs, as described by several authors on this “research top-
ics” (Zacharewicz et al., 2013; Aoi and Sakuma, 2014; Hitachi and
Tsuchida, 2014; Sharma et al., 2014).

Another important characteristic of miRNAs is that a sin-
gle miRNA regulates the expression of approximately hundreds
of mRNAs and proteins by degrading mRNA molecules or by
inhibiting their translation (Bartel, 2004; Djuranovic et al., 2012;
Pasquinelli, 2012). This feature suggests that some miRNA’s are
functionally redundant and that the loss of functional regula-
tion of a single miRNA does not always result in alterations in
the expression of its target protein. Indeed, it has been observed
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that certain phenotypes are preserved despite impairments in spe-
cific regulatory miRNAs (Jin et al., 2009; Concepcion et al., 2012;
Heyer et al., 2012), which is indicative of a cross-talk within
complicated network of miRNAs involved in the modulation
of skeletal muscle function. Thus, various miRNAs complement
and cooperate with each other, making them essential molecular
systems that maintain cellular homeostasis.

CIRCULATING microRNA AND SKELETAL MUSCLE
Several miRNAs are secreted from cells into the circulation or
are taken up from circulation into cells, suggesting that mini-
mal miRNA degradation occurs due to RNases present in body
fluids (Mitchell et al., 2008). This may be attributed to the
protection of miRNAs from RNases by intracellular small vesi-
cles such as exosomes, microvesicles, and apoptotic bodies, or
by their binding with non-vesicle-associated proteins such as
lipoprotein particles (Vickers et al., 2011; Raposo and Stoorvogel,
2013). Modulation of the function of recipient cells by circulating
miRNAs (c-miRNAs) could explain the communication between
skeletal muscles and other organs in physiological and patho-
logical conditions (Figure 1). It has been suggested that exercise
transiently or adaptively changes the level of c-miRNAs in ani-
mals and humans (Baggish et al., 2011; Aoi et al., 2013; Bye
et al., 2013; Sawada et al., 2013; Nielsen et al., 2014a), leading to
post-transcriptional regulation of proteins associated with energy
metabolism and angiogenesis in adipocytes, hepatocytes, and
endothelial cells. The circulating levels of several muscle-enriched
miRNAs are also altered in muscle disorders (Miyachi et al., 2010;
Mizuno et al., 2011; Roberts et al., 2013) and may be involved
in such pathologies. In addition, such c-miRNAs have a potential
role as useful biomarkers owing to their stability in body fluids,
which could determine the various interactions between tissues
and reflect their physiological and pathological states. c-miRNAs
have been evaluated as biomarkers for clinical diagnosis, partic-
ularly in cancer studies. As previously mentioned, since several
specific miRNAs are associated with skeletal muscles, determin-
ing their c-miRNA levels may be useful for the estimation of
muscle-related events.

It has previously been reported that several muscle-specific
miRNAs can be detected in plasma and serum; the levels of
these miRNAs are altered in some muscle disorders. Serum lev-
els of several muscle-enriched miRNAs such as miR-1, miR-133,
and miR-206 are elevated in Duchenne muscular dystrophy in
humans and animals (Cacchiarelli et al., 2011; Mizuno et al., 2011;
Hu et al., 2014). In addition to these miRNAs, other candidate
c-miRNAs, such as miR-378 and miR-31 have been suggested to
be associated with dystrophy in a recent human study (Vignier
et al., 2013). Furthermore, circulating levels of muscle-enriched
miRNAs such as miR-1, miR-206, and miR-499 are higher in
patients with chronic obstructive pulmonary disease, who often
exhibit reduced muscle fiber size and proportions compared with
those of normal healthy subjects (Donaldson et al., 2013). Roberts
et al. (2013) showed that the dystrophy-associated miRNAs dys-
tromiRs exist in a protein-bound form but not in the extracellular
vesicles. Levels of muscle-specific miRNAs (miR-1, miR-133a,
miR-133b, and miR-206) are also higher in the serum of patients
with rhabdomyosarcoma tumors than in the serum of control

subjects (Miyachi et al., 2010). In muscular atrophy, the levels
of miR-23a are decreased and miR-23a is secreted into the extra-
cellular space after being taken up by exosomes (Hudson et al.,
2014). In contrast, the majority of the miRNAs that are highly
expressed in skeletal muscle are difficult to detect in circulation
under normal physiological condition. Further, these miRNAs
exhibit no changes in response to exercise (Baggish et al., 2011;
Nielsen et al., 2014a), except for miR-486, the levels of which
is decreased in response to acute and chronic moderate exer-
cise associated with lower aerobic performance (Aoi et al., 2013).
However, other researchers reported that the levels of several
c-miRNAs are elevated after strenuous/prolonged exercise such
as running a marathon and that, in particular, alterations in the
levels of c-miR-1, c-miR-133a, c-miR-206, and c-miR-208 are
closely associated with performance and muscle damage parame-
ters (Baggish et al., 2014; Gomes et al., 2014; Mooren et al., 2014).
These conflicting results could be attributed to variations in the
kind, intensity, and duration of exercises evaluated in the differ-
ent studies. It has been shown that levels of common miRNAs
are influenced by both exercise and myopathy, rendering it diffi-
cult to establish the use of certain miRNAs as reliable biomarkers
for muscle disease. This warrants the development of further
parameters upon consideration of miRNAs as diagnostic tools.

LIMITATIONS AND PROSPECTS FOR FUTURE STUDIES
The understanding of the role of microRNA in the field of skele-
tal muscle research has developed rapidly by examining muscle
tissue and blood samples obtained not only from animal models
but also from healthy human volunteers and patients. However,
despite the rapid progress, several aspects regarding miRNAs are
still unclear. Typical technical issues like the small size (length
of approximately 20 nucleotides) and the sequence similarity
between different miRNAs make it difficult to accurately quan-
tify the levels of miRNAs and design specific probes and primers.
miRNAs can exert their function even if they do not completely
hybridize with their targets (Bartel, 2009; Fabian et al., 2010),
which may be one of the reasons why several miRNAs show
changes in expression that are common among exercised, dys-
trophied, and aging muscles. In addition, the development of
protocols for quantification of c-miRNA in circulation is under-
way. It is important to avoid hemolysis during sampling not only
because it is difficult to extract miRNAs from serum or plasma,
but also because blood cells contain various miRNAs and can
significantly affect the c-miRNA level (Pritchard et al., 2012).
Strenuous exercise frequently induces hemolysis by mechani-
cal, osmotic, and oxidative stress (Telford et al., 2003; Sentürk
et al., 2005; Peeling et al., 2009), which could affect the profile
of c-miRNAs.

Although a limited number of experimental systems have eval-
uated c-miRNAs (Kosaka et al., 2010; Mittelbrunn et al., 2011;
Vickers et al., 2011; Hudson et al., 2014), mechanisms under-
lying the uptake of c-miRNAs into certain cells, their secretion,
and their release into the circulation are still unclear. c-miRNA-
binding proteins in exosomes and other extracellular vesicles need
to be studied further. It should also be considered that miRNAs
can bind to lipoproteins in circulation, in case of physiological
and pathological conditions that affect the level of lipoproteins

www.frontiersin.org January 2015 | Volume 5 | Article 495 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Striated_Muscle_Physiology/archive


Aoi Association between miRNA and muscle

which could easily change with exercise and age. Furthermore,
an approach involving the identification of miRNAs from other
body fluids such as saliva, urine, and sweat to establish them as
biomarkers is necessary for relatively simpler diagnosis, without
the need for muscle biopsy or blood collection in clinical set-
ting and in the field of athletics. Further research involving the
characterization of detailed mechanisms and the physiological
and pathological changes in miRNAs based on appropriate eval-
uation/assessment protocols is warranted. Nevertheless, the field
of miRNA research is attractive and is expected to present more
novel findings for researchers.
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