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Mitochondrial efficiency and insulin resistance
Raffaella Crescenzo , Francesca Bianco , Arianna Mazzoli , Antonia Giacco , Giovanna Liverini and

Susanna Iossa*

Department of Biology, University of Naples “Federico II”, Napoli, Italy

Edited by:

Antonia Lanni, Second University of
Naples, Italy

Reviewed by:

Martin Jastroch, Helmholtz Centre
Munich, Germany
Ranganath Mamidi, Case Western
Reserve University, USA

*Correspondence:

Susanna Iossa, Department of
Biology, Complesso Universitario
Monte S. Angelo, Edificio 7, Via
Cinthia, Napoli I-80126, Italy
e-mail: susiossa@unina.it

Insulin resistance, “a relative impairment in the ability of insulin to exert its effects on
glucose, protein and lipid metabolism in target tissues,” has many detrimental effects
on metabolism and is strongly correlated to deposition of lipids in non-adipose tissues.
Mitochondria are the main cellular sites devoted to ATP production and fatty acid oxidation.
Therefore, a role for mitochondrial dysfunction in the onset of skeletal muscle insulin
resistance has been proposed and many studies have dealt with possible alteration
in mitochondrial function in obesity and diabetes, both in humans and animal models.
Data reporting evidence of mitochondrial dysfunction in type two diabetes mellitus are
numerous, even though the issue that this reduced mitochondrial function is causal in
the development of the disease is not yet solved, also because a variety of parameters
have been used in the studies carried out on this subject. By assessing the alterations in
mitochondrial efficiency as well as the impact of this parameter on metabolic homeostasis
of skeletal muscle cells, we have obtained results that allow us to suggest that an increase
in mitochondrial efficiency precedes and therefore can contribute to the development of
high-fat-induced insulin resistance in skeletal muscle.
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Obesity and the related metabolic disorders, such as insulin resis-
tance and type 2 diabetes, are growing dramatically all over the
world, so that experts are predicting an “obesity pandemic.” In
particular, it has been estimated that in year 2030 about 400
million people will exhibit type 2 diabetes (Wild et al., 2004).
This alarming scenario arises from the prevalence of factors like
consumption of high-fat diets and low physical activity.

Because the terms “insulin resistance,” “type 2 diabetes” and
“mitochondrial efficiency” are central to this discussion, their def-
inition is fundamental. Insulin resistance is defined as “a relative
impairment in the ability of insulin to exert its effects on glu-
cose, protein and lipid metabolism in target tissues,” so that at
physiological concentrations insulin produces a lower biologic
response (Kahn, 1978). Therefore, insulin resistance has many
detrimental effects on metabolism that are the basis for a number
of chronic diseases, including type 2 diabetes, a metabolic disor-
der of multiple etiology characterized by chronic hyperglycemia
with disturbances of carbohydrate, fat, and protein metabolism
resulting from defects in insulin secretion, insulin action, or both
(Alberti and Zimmet, 1998). One fundamental process in the
mitochondria is the oxidative phosphorylation, in which the elec-
trons are removed from organic molecules and transferred to
oxygen and the energy released is used in the synthesis of ATP.
The amount of ATP formed per unit of consumed oxygen is deter-
mined by the efficiency of oxidative phosphorylation (Mogensen
and Sahlin, 2005).

One of the most deleterious effects of obesity is deposition of
lipids in non-adipose tissues, such as liver, skeletal muscle, and
heart. It has been proposed that the accumulation of lipids in
the muscle cell should interfere with insulin signaling, thereby

causing insulin resistance. In agreement with this hypothesis,
a strong association between fat accumulation in skeletal mus-
cle (and liver) and insulin resistance has been found in men
(McGarry, 2002). In addition, high levels of intramyocellular
lipids (IMCL) and muscular insulin resistance have been found
in type 2 diabetic patients (Goodpaster et al., 2001) and in high-
risk non-diabetic subjects with a family history of diabetes (Jacob
et al., 1999; Perseghin et al., 1999). However, high IMCL levels
do not necessarily lead to insulin resistance, since they are also
present in skeletal muscle from endurance-trained athletes, who
are highly insulin-sensitive (Goodpaster et al., 2001; Schrauwen-
Hinderling et al., 2006). The emerging idea is that increased
intramuscular fat turns to be deleterious when an increase in the
supply of lipids to skeletal muscle is not balanced by an increase
in the oxidative pathways, so that toxic intermediates, such as
ceramides and diacylglycerol, accumulate in the cell and interfere
with the insulin signaling system (Kelley and Mandarino, 2000;
Shulman, 2000). Therefore, in the above picture, a prominent role
is played by the level of cellular oxidative capacity of fatty acids.

Mitochondria are the main cellular sites devoted to fatty acid
oxidation. Therefore, a role for mitochondrial dysfunction in the
onset of skeletal muscle insulin resistance has been proposed and
several studies have dealt with possible alteration in mitochon-
drial function in obesity and diabetes, both in humans and animal
models.

Studies in humans have shown that type 2 diabetes patients
exhibited alteration in mitochondrial morphology, as well as a
decrease in the activity of the respiratory chain (Kelley et al.,
2002; Ritov et al., 2010). Other studies showed a coordinated
reduction in the expression of genes encoding key enzymes in
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oxidative mitochondrial metabolism in diabetic patients and in
high-risk non-diabetic subjects with a family history of dia-
betes (Mootha et al., 2003; Patti et al., 2003). Petersen et al.
(2003) reported a 40% decrease in oxidative metabolism in elderly
subjects, that were also characterized by elevated levels of mus-
cular fat and by muscular insulin resistance, thus suggesting that
an age-associated decline in mitochondrial function might con-
tribute to the development of insulin resistance. They also found
that IMCL and ATP synthase were, respectively, 80% higher and
30% lower in insulin resistant subjects (Petersen et al., 2004).
Szendroedi et al. (2007) found that in vivo ATP synthesis rate
was decreased by 27% in diabetic patients, while in other stud-
ies in vivo mitochondrial function was compromised by ∼45%
in type 2 diabetic patients, although IMCL content was simi-
lar between the groups, suggesting that impaired mitochondrial
function may be a more important determinant of diabetes than
IMCL levels (Schrauwen-Hinderling et al., 2007; Phielix et al.,
2008). Taken together, these studies are consistent in showing that
in vivo mitochondrial function is reduced in insulin resistant sub-
jects and/or type 2 diabetic patients. This decrease could lead to
accumulation of fat in muscle, but also provide lesser amount of
ATP for membrane transports and signal transduction pathways,
thereby contributing to the development of insulin resistance.

However, other observations argue against the hypothesis that
mitochondrial dysfunction underlies the development of type 2
diabetes mellitus or muscular fat accumulation (Hancock et al.,
2008; Han et al., 2011). In fact, several studies present findings in
support of the concept that muscular fat accumulation may pre-
cede the development of mitochondrial dysfunction and/or that
insulin resistance arises when mitochondrial function is unaf-
fected or even improved (Turner et al., 2007; Hoeks et al., 2008;
Ara et al., 2011). For example, an improved or unchanged mito-
chondrial oxidative capacity has been found after consumption of
a high-fat diet in mice or rats exhibiting insulin resistance (Turner
et al., 2007; Hoeks et al., 2008). These data suggest that high-fat
diets, although leading to insulin resistance in rodents, are not
accompanied by mitochondrial dysfunction, but rather they lead
to improved mitochondrial oxidative capacity. Other researchers
looked at the time course of changes in mitochondrial function
in skeletal muscle in response to high-fat feeding. Chanseaume
et al. (2007) showed a transiently enhanced activity of the oxida-
tive phosphorylation after 14 days, but a significant decrease at
day 40. Laurent et al. (2007) showed in rats that ATP synthesis
rates decreased by 50% within 24 h, returned to normal values
after 2–3 weeks on the high-fat diet, and again decreased by 30–
50% after 1 month. Finally, Bonnard et al. (2008) showed that
1 month of high-fat, high-sucrose diet feeding induced glucose
intolerance in mice, without mitochondrial dysfunction, that was
evident after 16 weeks. Taken together, these studies are consistent
with the hypothesis that mitochondrial dysfunction may be a con-
sequence rather than cause of muscular fat accumulation, but this
does not exclude the possibility that mitochondrial dysfunction
could in turn induce insulin resistance.

Physical activity is a major regulator of mitochondrial function
in muscle, and exercise potently activates mitochondrial biogen-
esis, while chronic inactivity is associated with reduced mito-
chondrial number (Hoppeler and Fluck, 2003; Little et al., 2011).

FIGURE 1 | A possible link between insulin resistance and impaired

mitochondrial performance.

Obesity and other metabolic disorders are linked with reduced
activity levels and increased sedentary behavior (Hamilton et al.,
2007; Levine et al., 2008). Thus, it is possible that some mitochon-
drial defects reported in overweight or obese insulin-resistant
subjects can be explained, in part, by low levels of physical activ-
ity. In this respect, animal models are very useful tools, since rats
kept in laboratory display a sedentary behavior, due to standard
housing conditions (Spangenberg et al., 2005), and therefore it
is possible to perform studies aiming at the elucidation of the
link between insulin resistance and mitochondrial functioning,
without the confounding effect of changes in physical activity.
Another possible reason of the apparent discrepancy among the
various results published on the above issue is the choice of the
parameter to be studied in evaluating mitochondrial function. In
fact, if the hypothesis is that reduced mitochondrial oxidation
of fatty acids causes ectopic fat deposition, that in turn elicits
insulin resistance, all the factors contributing to mitochondrial
lipid burning must be taken into account. The mitochondrial
oxidation of metabolic fuels depends not only on organelle num-
ber and organelle activity, but also on energetic efficiency of the
mitochondrial machinery in synthesizing ATP from the oxidation
of fuels (Figure 1). Changes in each of these three factors could
theoretically affect lipid oxidation and should be monitored to
confirm or reject the hypothesis (Figure 1).

Many reported studies on the issue of mitochondrial dys-
function in insulin resistant states have focused the attention
on mitochondrial impairment in terms of reduced mass and/or
oxidative activity. However, it is well-known that the amount of
fuels oxidized by the cell is dictated mainly by ATP turnover rather
than by mitochondrial oxidative activity (Boveris et al., 2000) and
therefore, in resting skeletal muscle, changes in organelle number
and/or activity could be without consequence for cellular bioen-
ergetics, while modifications in mitochondrial energetic efficiency
certainly alter the amount of oxidized fuels, even if ATP turnover
does not vary. In fact, the efficiency with which dietary calories
are converted to ATP is determined by the coupling efficiency
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of oxidative phosphorylation. If the respiratory chain is highly
efficient at pumping protons out of the mitochondrial inner
membrane, and the ATP synthesis is highly efficient at convert-
ing the proton flow through its proton channel into ATP (from
ADP), then the mitochondria will generate maximum ATP and
minimum heat per calorie. These mitochondria are said to be
“tightly coupled.” In contrast, if the efficiency of proton pump-
ing is reduced and/or more protons are required to make each
ATP molecule, then each calorie will yield less ATP but more heat.
Such mitochondria are said to be “loosely coupled.” Therefore,
the coupling efficiency determines the balance of calories used
to perform work (ATP) or for heat generation. It remains to
be established whether, under high-fat conditions, cellular ATP
demand is altered, a parameter that can only be assessed in the
living animal (Amara et al., 2008).

To our knowledge, data on the energetic efficiency in skele-
tal muscle mitochondria in conditions of obesity-induced insulin
resistance are scarce. By using a rat model of high-fat diet-induced
obesity, we have evidenced that after 1 and 2 weeks of high-fat
feeding (Crescenzo et al., 2014a,b), skeletal muscle mitochondrial
efficiency is increased, thus giving rise to a reduced burning of
energy substrates. This modification of mitochondrial efficiency
takes place at a time point when insulin sensitivity is still main-
tained (Crescenzo et al., 2014a,b). Therefore, these results could
be consistent with a role for mitochondrial impairment in the
onset of insulin resistance. In fact, if mitochondria are more
coupled, less substrates need to be burned to obtain the same
amount of ATP. At the same time, high-fat feeding is associated
with increased lipid supply to skeletal muscle (Crescenzo et al.,
2014b), so that a condition of imbalance could occur, since lipid
supply exceeds lipid burning and gives rise to ectopic lipid depo-
sition. In agreement with this suggestion, we have also found
increased levels of skeletal muscle triglycerides (Crescenzo et al.,
2014b). Interestingly, when high-fat diet intake was carried out
for 7 weeks, insulin resistance developed but the alteration in
mitochondrial efficiency disappeared (Lionetti et al., 2007). One
possible explanation could be related to changes in lipid compo-
sition of the mitochondrial membranes induced by the high-fat
intake, one of the factors contributing to mitochondrial proton
leak and hence to mitochondrial efficiency (Jastroch et al., 2010).

A similar increase in mitochondrial efficiency is also evident
after 2 weeks of feeding a high-fat-high fructose diet (Crescenzo
et al., 2014b) but in the presence of insulin resistance. Since
mitochondrial energetic efficiency is higher both in rats with
normal insulin sensitivity (high-fat-fed rats) and in those with
decreased insulin sensitivity (high-fat-high fructose-fed rats) we
can hypothesize that this mitochondrial modification is not
caused by, but could contribute to, the onset of insulin resistance.
In agreement with this suggestion, the content of skeletal muscle
ceramides (known to be mediators of altered insulin signaling,
Coen and Goodpaster, 2012) is higher in rats fed high-fat diet but
even higher in rats fed high-fat-high fructose diet and therefore it
is possible that in the latter group of rats its concentrations have
reached a threshold level to be able to partly block insulin trans-
duction pathway. In addition, in rats fed a low-fat, fructose-rich
diet we have found a reduced insulin signaling system in skele-
tal muscle concomitant to an increase in mitochondrial efficiency

and cellular levels of ceramides after 8 weeks of dietary treatment
(Crescenzo et al., 2013).

In support of the link between mitochondrial efficiency and
insulin resistance in skeletal muscle during high-fat feeding are
the results showing that the naturally occurring iodothyronine,
3,5-diiodo-L-thyronine (T2) increases mitochondrial proton leak
(Lombardi et al., 2007, 2009), thus decreasing mitochondrial effi-
ciency, and when given to high-fat-fed rats is able to reverse
high-fat-induced insulin resistance (de Lange et al., 2011; Moreno
et al., 2011).

Another condition of obesity and related insulin resistance is
the progression of aging. In agreement with results obtained on
diet-induced obesity, when studying age-induced obesity in rats,
we have found an increase in skeletal muscle mitochondrial effi-
ciency, in parallel with the development of insulin resistance, in
the transition from young (60 days) to middle age (180 days)
(Iossa et al., 2004), and a further increase from middle age to old
age (2 years) (Crescenzo et al., 2014c).

CONCLUDING REMARKS
In summary, results reporting evidence of mitochondrial dys-
function in type 2 diabetes mellitus are numerous, even though
the issue that this reduced mitochondrial function is causal in the
development of the disease is not yet solved, also because a vari-
ety of parameters have been used in the studies carried out on this
subject. By assessing the alterations in mitochondrial efficiency as
well as the impact of this parameter on metabolic homeostasis
of skeletal muscle cells we have obtained results that allow us to
suggest that an increase in mitochondrial efficiency precedes and
therefore can contribute to the development of high-fat induced
insulin resistance in skeletal muscle.
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