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Calcium transient in cardiomyocytes is regulated by multiple protein kinases and
phosphatases. PP2A is a major protein phosphatase in the heart modulating Ca2+
handling through an array of ion channels, antiporters and pumps, etc. The assembly,
localization/translocation, and substrate specificity of PP2A are controlled by different
post-translational mechanisms, which in turn are linked to the activities of upstream
signaling molecules. Abnormal PP2A expression and activities are associated with
defective response to β-adrenergic stimulation and are indication and causal factors in
arrhythmia and heart failure.
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INTRODUCTION
Cyclic and effective cardiac contraction and relaxation depend on
the appropriately timed generation and spread of cardiac electri-
cal activity. At the cellular level, excitation-contraction (E-C) cou-
pling is initiated by action potential depolarization resulting, via a
cascade of events, in an increase in intracellular calcium concen-
tration, which ultimately leads to activation of myofilament and
muscle contraction; subsequent removal of intracellular calcium
via a number of mechanisms results in detachment of myosin
cross-bridges and relaxation. Excitation and contraction involve
multiple trans-membrane (e.g., ion channels) and intracellular
proteins (e.g., Ca2+ handling and sarcomeric proteins) and are
highly regulated by multiple extra- and intra-cellular signaling
pathways that frequently converge at protein phosphorylation.

Studies of reversible protein phosphorylation in the heart date
back to early seventies of last century when it was reported that
cardiac troponin I (cTnI) was phosphorylated and dephospho-
rylated in the same manner as the protein substrates involved in
glycogen metabolism (England et al., 1972; Stull et al., 1972). cTnI
is the inhibitory component of heterotrimeric troponin com-
plex and a major phosphoprotein in ventricular myocytes. cAMP
dependent protein kinase (PKA), a downstream effector of β-
adrenergic stimulations, phosphorylates cTnI at serine 23 and 24
(Cole and Perry, 1975; Solaro et al., 1976). Phosphorylation of
cTnI promotes Ca2+ release from the myofilament and promotes
cardiac relaxation (Robertson et al., 1982; Kentish et al., 2001).
PP2A came into spotlight of heart research following another line
of observation in late 1980s and early 1990s. It was found that an
extract from black sea sponge, okadaic acid, has positive inotropic
effect on electro-mechanic properties of ventricular muscle and
enhances pacemaker activities in rabbit SA node preparation
(Kodama et al., 1986; Kondo et al., 1990). Okadaic acid inhibits

protein phosphatase PP2A at very low concentration leading to
increased phosphorylation in numerous proteins of mammalian
cells, including a number of ion channels and myofilament reg-
ulatory proteins. Thus, PP2A coordinates cardiac excitation and
contraction.

The catalytic subunit of PP2A is highly conserved from yeast
to humans and is homologous to the counterpart of PP1 com-
plex, another major protein phosphatase in mammalian cells,
which consists of catalytic and regulatory/targeting subunit with
more than more than 200 isoforms (Depaoli-Roach et al., 1994;
Peti et al., 2013). PP1 and PP2A are responsible for greater than
90% of protein dephosphorylation in the heart and they often
share the same protein substrates and serine/threonine sites of
dephosphorylation (Luss et al., 2000). However, their relative
contributions to specific protein substrates o are often different,
which is reflected in dephosphoryation of L-type Ca2+ channels
(PP2A preferred) and phospholamban (PP1 preferred). For a long
time, mammalian protein phosphatases had been considered con-
stitutively active with the regulatory function fulfilled solely by
protein kinases. This notion has become obsolete with discov-
ery of multiple regulatory mechanisms for protein phosphatases,
especially those that link phosphatase activities to extracellular
cues (Cohen, 1988). The importance of regulation of phos-
phatases in heart pathophysiology becomes more obvious when
altered PP2A expression and activities are closely associated with
heart diseases (Ai and Pogwizd, 2005; Ke et al., 2008; Wijnker
et al., 2011).

PP2A AND ITS REGULATION BY UPSTREAM SIGNALS IN
THE HEART
PP2A actually refer to a large family of distinct heterotrimeric
protein phosphatases that share a common core enzyme
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FIGURE 1 | PP2A heterotrimer and the subunits. Both A and C subunit
have two isoforms, α and β. The catalytic C subunit can be tyrosine
phosphorylated at tyrosine 307 and methylated at Leucine 309. ∗The B
subunit is expressed and identified in cardiomyocytes.

consisting of a scaffolding (A) and a catalytic (C) subunits that
associate with a B subunit (Figure 1). A subunit contains multi-
ple HEAT repeats and forms a horse shoe structure that bind to
both B and C subunits (Groves et al., 1999). HEAT repeat exists in
proteins with different functions that form helical structures and
provide structural flexibility to PP2A-A subunit (Grinthal et al.,
2010). Formation of the PP2A heterotrimer follows a sequen-
tial pattern in that the core enzyme AC arises first and then
binds to the B subunit. The Tyrosine 307 and Leucine 309 show
reversible phosphorylation and methylation that determine the
phosphatase localization and substrate specificity (Chen et al.,
1992; Chung et al., 1999). Methylation of Leucine 309 diverts the
C-terminal carboxyl group from a repulsive negative charge inter-
action and facilitates assembly of ABC holoenzyme (Cho and Xu,
2007).

The regulatory subunits of PP2A have many members with
large sequence diversity and are coded by at least 17 distinct genes.
At least 11 of them are expressed in cardiomyocytes with Bα and
γ the most studied cardiac isoforms (Figure 1). Bα is abundant
in cytoplasm in cardiomyocyte that associates with ankyrin-B,
an adapter protein required for normal subcellular localization
of the Na/Ca exchanger, Na/K ATPase (Bhasin et al., 2007).
Overexpression of Bα leads to reduced phosphorylation cTnI,
myosin-binding protein C and phospholamban, and repressed
response of L-type Ca2+ channel current to stimulation of isopro-
terenol (Kirchhefer et al., 2014a). Bγ is expressed in the nuclear.
In mouse model deficient in Bγ, an incomplete ventricular sep-
tum occurs during development. PR72 binds to Ca2+ resulting
in conformational changes in the scaffolding subunit. Another
Ca2+ responsive B subunit expressed in cariomyocytes is stri-
atin that directly interacts with calmodulin (Chen et al., 2014;
Hwang and Pallas, 2014). It remains unclear if PP2As containing
these B subunits control cyclic dephophorylation on any pro-
tein substrates. A genome wide association studies has identified
a deletion mutation that links abnormal striatin mRNA accu-
mulation to arrhythmogenic right ventricular cardiomyopathy in
canine model (Meurs et al., 2010).

Both PP1 and PP2A have native inhibitors in mammalian cells.
Inhibitor I of PP1 is a phosphoprotein regulated by β-adrenergic
stimulation and is important for modulation of Ca2+ re-uptake
through phospholamban. I1 and I2 PP2A are specific PP2A
inhibitors (Li et al., 1995). Their expression and functional role
in cardiomyocytes is underexplored. PP2A is also up-regulated by

small molecular weight chemicals, both native and artificial. C2

and C6 ceramides activates PP2A in different types of mammalian
cells (Dobrowsky et al., 1993). FTY720 (fingolimod) is a synthetic
analog of C2 and C6 ceramide and an immunosuppressor used
for treatment of multiple schlerosis (Kappos et al., 2006). Like
C2 and C6 ceramide, FTY720 activates PP2A without knowing
exactly what the molecular mechanism of activation. P21 activated
kinase-1 (Pak1), an upstream activator for PP2A, is activated by
FTY720 and C2/C6 ceramides on vitro and in vivo (Ke and Solaro,
2008; Egom et al., 2010; Liu et al., 2011b).

Accumulating evidence has indicated that PP2A activities are
up-regulated by stimulation of the inhibitory G proteins, Gi
through different intermediate signaling processes (Ke et al.,
2008). Treatment of ventricle cardiomyocytes with agonists that
turn on receptors coupled to inhibitory G proteins (Gi/Go)
leads to reduced phosphorylation on PKA substrates without
any change in intracellular cAMP, suggesting phosphatases are
responsible for reduction in protein phosphorylation (Gupta
et al., 1993, 1994). In cardiomyocytes, methylation of PP2Ac is
reduced when the cells are treated with pertussis toxin and the
same result is generated by inhibition of p38 MAP kinase (Liu
and Hofmann, 2002, 2003). Cdc42 and Rac1 have been shown to
be the downstream effectors for Gi in cardiomycytes and other
mammalian cells. The constitutively active Pak1, the downstream
effectors for Cdc42 and Rac1 induces activation of PP2A and
dephosphorylation of myofilament regulatory proteins (Ke et al.,
2004). PI3K is another possible link between Gi and PP2A activi-
ties that enhances carboxylmethylation at leu309 (Longman et al.,
2014) (Figure 2).

REGULATION OF Ca2+ HANDLING PROTEINS BY PP2A
The calcium transient starts through depolarization-activated
Ca2+ channels. The inward calcium current triggers Ca2+
release from the sarcoplasmic reticulum mediated primarily by
ryanodine receptors. The Ca2+ binds to troponin C of tro-
ponin/tropomyosin complex and activates myofilaments. During
relaxation, cytosolic Ca2+ is pumped back into sarcoplasmic
reticulum by SR Ca ATPase (SERCA) and is removed from the
cells by Na+/Ca2+ exchanger. Protein kinases and PP2A associate
with all of these key regulatory machinery and shape the dynamics
of Ca2+ flow (Table 1, Figure 2).

PP2A IS A MAJOR PHOSPHATASE FOR L-TYPE CA2+ CHANNELS (LTCC)
The voltage gated influx of Ca2+ through LTCC is highly respon-
sive to β-adrenergic stimulation. PKA phosphorylates LTCC at the
cytoplasmic, carboxyl end of alpha subunit of LTCC at Ser1928,
Ser1866 (Chen et al., 2002; Hall et al., 2006), phosphorylation
of S1512 and S1570 by Cam Kinase II may also play an auxil-
iary role modulating the channel activities (Blaich et al., 2010).
The β-adrenergic effect on LTCC is reversed by PP2A, which asso-
ciates with the channels at the PKA sites (Davare et al., 2000). In
pacemaker cells, activation of PP2A by its upstream signal, Pak1,
represses isoproterenol stimulated enhancement of the channel
activities (Ke et al., 2007).

THE ROLES OF PP2A ON RYANODINE RECEPTOR (RyR) REGULATION
Ca2+ induced Ca2+ release through LTCC and ryanodine recep-
tors is enhanced by β-adrenergic signaling cascades. Ser2808 and
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FIGURE 2 | Regulation of Ca2+ transient by protein kinases and

phosphatases. Protein kinases and phospahtases are associated with key
Ca2+ transient regulatory proteins, which in turn are linked to upstream
signaling cascades. A balance of protein kinase and phosphatase activities

is required to maintain normal cardiac functions. Breakdown of the balance
occurs at different levels: genetic mutations, gene expressions,
post-translational modifications and excessive or deficient
neuro-hormonal cues.

Table 1 | Major targets regulating Ca2+ transient and regulated by PP2A.

Targets Reported

phosphorylation

sites

Protein

kinases

Protein

phosphatases

Effects of PP2A on

channel activities

References

L type Ca2+ channels Ser1928
Ser1866

PKA PP2A ↓ Chen et al., 2002; Hall et al., 2006
Davare et al., 2000; Shi et al., 2012

Ryanodine receptors Ser2808

Ser2030

PKA, CamKII PP2A

PP1

↓↑ Marx et al., 2000; Xiao et al., 2005, 2006;
Meng et al., 2007; Liu et al., 2011a; Zhang
et al., 2012
Liu et al., 2014

Phospho-lamban Ser16 and
Thr17

PKA
CamKII

PP1
PP2A

Release of inhibition
on SERCA

MacDougall et al., 1991; Luo et al., 1994;
Jackson and Colyer, 1996; Chu and
Kranias, 2002

Connexin 43 Ser368
Ser262

PKC
PKA

PP2A
PP1

↓ Doble et al., 2000; Ai and Pogwizd, 2005;
Srisakuldee et al., 2009

NCX ? PKA
PKC

PP2A
PP1

↓? Wei et al., 2003, 2007
Schulze et al., 2003; Zhang and Hancox,
2009

Ser2030 are considered as the PKA sites. Early studies suggest
that hyperphosphorylation of RyR at Ser 2808 is responsible
for increased leak for Ca2+ and associated with heart fail-
ure. Surprisinglya recent study has shown that in genetically
modified mice with Ser2808 rendered unphosphorylatable,

Ca2+ leak increases, instead of decrease with exacerbation of
Ca2+-dependent cardiomyopathy (Liu et al., 2014). On the other
hand, Yang et al. recently indicate that a reduced degradation of
β2-AR due to Rnd3 deficiency results in enhanced PKA activi-
ties and increased Ca2+ leak from RyR (Yang et al., 2015). PP1
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and PP2A form complexes on ryanodine receptors. In saponin
permeabilized myocytes, exposure of PP1 and PP2A dramatically
increased Ca sparks with a significant decrease of SR Ca store
(Terentyev et al., 2003). On the other hand, targeting of PP2A
regulatory subunit B56α by microRNA miR-1 leads to hyper-
phosphorylation of RyR at the CamKII sites and increases Ca2+
release and promote cardiac arrhythmogenesis (Terentyev et al.,
2009; Belevych et al., 2011). PP2A is also responsible for dephos-
phorylation of RyR from the CamKII sites which have now been
considered to play an even more important roles enhancing Ca2+
leak from the channel.

PP2A IS NOT A MAJOR PROTEIN PHOSPHATASE FOR
PHOSPHOLAMBAN
SERCA, a calcium transport ATPase for Ca2+ reuptake from
cytosol to SR partners with phospholamban that is phosphory-
lated at Ser16 and threonine17 by PKA and CamKII, respectively.
Phospholamban inhibits SERCA activities and the inhibition is
released by PKA phosphorylation and Ser16. PP1 is the major
phosphatase that removes phosphate from both locations. PP2A
plays a minor role (30%) of dephosphorylation (MacDougall
et al., 1991). In mice with overexpression of the regulatory
subunit of PP2A, the isoproterenol stimulated phosphorylation
of phosholamban and cTnI is partially reduced with increased
basal contractility of the heart, likely due to elevated diastolic
Ca2+ level and increased myofilament activities (Kirchhefer et al.,
2014a).

THE ACTIVITIES OF CONNEXIN 43 ARE INHIBITED BY PP2A
The gap junction channel protein connexin 43 conducts ions
and other small molecules between two adjacent myocytes. The
conductivity of connexin 43 is enhanced by PKA and reduced
by PP2A as demonstrated by intercellular dye coupling (Ai and
Pogwizd, 2005; Ai et al., 2011).

PP2A AND Na/Ca EXCHANGER
The cardiac Na/Ca2+ exchanger (NCX) is involved in the extru-
sion of cytosolic Ca2+ with a major role in the decay phase of the
intracellular Ca2+ transient. PP1 and PP2A form complex with
Na/Ca exchanger (Schulze et al., 2003). Stimulation of PKA activ-
ities by dibutyryl cyclic AMP and inhibition of PP2A by okadaic
acid inhibits NCX activities (Lin et al., 1994). However, studies
from other groups reported mixed results regarding the role of
β-adrenergic stimulation on NCX activities (Zhang and Hancox,
2009). Wei et al. indicated that hyperphosphorylation of NCX is
associated with an increased NCX current. In failing heart, low
phosphatase activity and hyperphosphorylation is responsible for
impaired sensitivity to β-adrenergic stimulation (Wei et al., 2007).

ABERRANT EXPRESSION, LOCALIZATION, AND ACTIVITIES
OF PP2A IN ARRHYTHMIA AND HEART FAILURE
The importance of PP2A in the heart resides in its capacity to
antagonize the effects of β-adrenergic stimulation with reduction
of the amplitude of Ca transient and meanwhile increasing the
Ca2+ sensitivity of myofilament in force development. Therefore,
abnormality in PP2A expression, localization and activities are
frequently associated with heart failure. However, the role of

PP2A as a causal or beneficial factor in heart failure remains
unclear.

EXPRESSION AND ACTIVITIES OF PP2A IN HEART FAILURE
In a rat model with chronic isoproterenol infusion that lead to
cardiac hypertrophy and heart failure, PP2A activities increased
significantly at day 2 (Boknik et al., 2000). In HF induced by
tachypacing in sheep, increased PP1 and PP2A activities are asso-
ciated with diminished response to β-adrenergic stimulation in
amplitude of Ca2+ transient compared to normal heart (Briston
et al., 2011). Overexpression of the catalytic subunit of PP2A
(PP2A-C) by transgenic approach in mouse heart leads to left
ventricular hypertrophy and reduced contractility along with an
increase of PP2A activities in myocardium (Gergs et al., 2004).
A more detailed analysis of expression and localization of dif-
ferent PP2A B subunits in cardiomyocytes from normal and
failing hearts indicate that proper targeting and localization of
PP2A holoenzyme are important for normal cardiac functions
(DeGrande et al., 2013). On the other hand, in human heart with
ischemic cardiomyopathy (ICM) and dilated cardiomyopathy
(DCM), expression of both PP2A-C and PP2A-B α are reduced
by half or more compared to the non-failing heart. Studies in
transgenic mice over-expressing the regulatory subunit Bα indi-
cate that this subunit directs PP2A core enzyme to Ca2+ release
channels and myofilament regulatory proteins (Kirchhefer et al.,
2014a). Although there is no change in PP2A activities in the
ICM and DCM samples, the total protein phosphatase activi-
ties and PP1 activities increases with reduced phosphorylation on
cTnI (Wijnker et al., 2011). Hyperphosphorylation of ryanodine
by enhanced β-adrenergic stimulation and reduced phosphatase
activities results in “Ca2+ leak” from sarcoplasmic reticulum in
failing heart (Marx et al., 2000; Reiken et al., 2001).

REDUCED PP2A ACTIVITIES ARE ASSOCIATED WITH ARRHYTHMIA
AND ATRIAL FIBRILLATION (AF)
As reduced density of L-type Ca2+ current is characteristic of
AF, increased PP2A activities were considered as an cause for
the cardiac condition (Christ et al., 2004). Further analysis indi-
cates that reduction of L-type calcium current density is due to a
transcriptional downregulation of the pore forming alpha (1c)-
subunit of LTCC, while single channel peak average current is
1.7-fold higher in AF than the control due to a 3.1-fold higher
open probability of LCC. Inhibition of PP2A by okadaic acid
only increases Ica in control but not in AF, suggesting phos-
phorylation of LCC in AF is high (Klein et al., 2003). Down
regulation of PP2A-Bα by microRNA miR-1 is associated with
elevated phosphorylation of RyR at CamKII site, but not the PKA
sites with enhanced frequency of spontaneous Ca2+ sparks and
arrhythmogenic oscillations of intracellular Ca2+(Terentyev et al.,
2009).

POST-TRANSLATIONAL MODIFICATIONS AND MUTATION OF PP2A
ASSOCIATED WITH HEART FAILURE
Kirchhefer et al. reported that Bα of PP2A is phosphorylated at
Ser41 by PKC α and phosphorylation at this site lead to reduction
of the phosphatase activities. In failing human heart, phospho-
rylation of Bα is 7-fold higher (Kirchhefer et al., 2014b). The
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A subunit is also phosphorylated and phosphorylation attenu-
ates assembly of PP2A heterotrimer and reduces PP2A activities
characterized by increased phosphorylation occurred to a large
number of proteins in cells expressing the peudophosphorylated
constructs. Unlike phosphorylated Bα, in a rat model of heart fail-
ure phosphorylation at this subunit is reduced leading to higher
PP2A activities. In transgenic mice expressing a truncated A sub-
unit that is a dominant negative mutant disrupting normal PP2a
assembly, dilated cardiomyopathy developed with increased end-
diastolic and end-systolic dimensions and decreased fractional
shortening (Brewis et al., 2000).

THE ROLES OF PP2A IN SENSITIZING β-ADRENERGIC STIMULATION
Loss of response to β-adrenergic stimulation is a hall mark of
end stage heart failure. Previously, it is believed that increased
phosphatase activity is a major cause for desensitizing β-
adrenergic stimulation as the β-adrenergic stimulation are effec-
tively and rapidly damped by enhanced phosphatase activities.
Accumulating evidence suggest that this may not be true because
in failing heart, phosphorylation on L-type Ca2+ channels, ryan-
odine receptors and NCX are usually high. Phosphatases, espe-
cially PP2A can make them more responsive to β-adrenergic
signals by bringing down phosphorylation levels. Recent studies
by Zheng et al suggest that pyruvate restores β-adrenergic sensi-
tivity of L-type Ca2+ channels in failing rat heart through PP2A
(Zheng et al., 2013).

PERSPECTIVE
Structural diversity and complex regulation of PP2A constitute a
significant challenge in understanding its function in the heart.
Emerging evidence begins to point out connections between
specific PP2A heterotrimers and their protein substrates in car-
diomyocytes, but definitive results are still scarce. Application of
general PP2A inhibitors for heart diseases may not be applica-
ble as these inhibitors usually are tumorigenic. However, cardiac
conditions including heart failure may become ameliorated by
elevating PP2A activities. FTY720 (fingolimod), a FDA recently
approved drug activates PP2A and target novel anti-adrenergic
signaling pathways mediated by Pak1 (Egom et al., 2010). FTY720
protect heart against ischemia-reperfusion induced arrhythmia
and has demonstrated anti-hypertrophic effect in mouse TAC
model (Liu et al., 2011b, 2013). Its roles in modulation of Ca2+
transient in failing heart in animal models and in humans deserve
further investigation.
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