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A commentary on

In silico investigation of the short QT
syndrome, using human ventricle models
incorporating electromechanical coupling
by Adeniran, I., Hancox, J. and Zhang
H. (2013). Front. Physiol. 4:166. doi:
10.3389/fphys.2013.00166

Exceptional scientific work inquires into
new areas or utilizes techniques circum-
venting existing limitations to study.
Alternatively, it may provide insights
extending or complementing existing
understanding, or generate hypotheses
amenable to or worthy of further test-
ing. Adeniran et al. (2013) complete a
sequence of physiological papers ful-
filling several of these criteria. These
address the familial, relatively recently
described, cardiac arrhythmic disease
of short QT syndrome (SQTS) (Gussak
et al., 2000). SQTSs are electrocardio-
graphically characterized by shortened
QT intervals (∼320 ms) and peaked
T-waves despite normal cardiac anatomy
(Patel and Pavri, 2009). They are clini-
cally associated with syncope, shortened
atrial and ventricular effective refrac-
tory periods and increased atrial and,
potentially fatal, ventricular, arrhythmia
(Giustetto et al., 2006). They complement
the commoner long QT syndromes in
terms of arrhythmic mechanisms. Both
likely, albeit differently, involve altered
refractoriness and tissue vulnerability
producing re-entrant, arrhythmic,
substrate.

Adeniran et al. (2013) complete a series
of papers on SQTS1 (Adeniran et al.,
2011) and SQTS3 models (Adeniran et al.,

2012) resulting from genetic alterations in
KCNH2 and KCNJ2 and therefore in repo-
larizing IKr (Sun et al., 2011) and IK1 ionic
currents (Deo et al., 2013) respectively.
Classical physiological analysis demon-
strated that K+ channel openers increase
transmural repolarization dispersion and
shorten ventricular effective refractory
period potentially producing arrhythmo-
genic substrate in left ventricular wedge
preparations (Patel and Antzelevitch,
2008). It is important to bear in mind
that although useful tools in gaining phys-
iological insights, pharmacological agents
can show non-specificities in their actions.
However, analyses using genotypically
accurate animal SQTS models avoiding
such manipulations are lacking. Adeniran
et al. (2011, 2012) had introduced a
first paradigm shift complementing rel-
atively sparse available experimental data
through computational explorations of
the electrophysiological basis for arrhyth-
mia in SQTS. They used Markov and/or
Hodgkin-Huxley formulations developed
from experimental data obtained from
expression systems modeling N588K-
hERG and D172N-Kir2.1 mutations to
replicate SQT1 and SQT3. This demon-
strated increased tissue vulnerability
to premature stimuli and increased
tendencies to form and maintain re-
entrant excitation waves in both idealized
two-dimensional and more realistic three-
dimensional tissue (Adeniran et al.,
2012).

Adeniran et al. (2013) assessed for
potential effects of action potential short-
ening in SQTS upon human ventricular
mechanical dynamics. They explored
whether mechano-electric feedback

involving stretch-activated channels
(Taggart, 1996; Hu and Sachs, 1997;
Calaghan et al., 2003) could conversely
contribute to dissociation between ven-
tricular repolarization and the end of
mechanical systole. This would match
clinical observations (Schimpf et al.,
2008). Stretch-activated channels have
been previously implicated in regulation
of electrical activity by altered contrac-
tility or volume load (Franz, 1996; Lab,
1996). Previous studies modeling arrhyth-
mogenesis in SQTS had not extended to
considering mechanical properties. This
entailed ambitious computational com-
pilation of physiological, anatomical and
biophysical data into a cells-to-systems
reconstruction of cardiac electrophys-
iological activation, contraction and
relaxation.

At the cellular level, an established elec-
trophysiological single cell model recapit-
ulated human ventricular myocyte electri-
cal and membrane channel properties as
well as transmural action potential time-
course heterogeneities across the ventric-
ular wall (Ten Tusscher et al., 2004; Ten
Tusscher and Panfilov, 2006). This yielded
cytosolic [Ca2+], sarcoplasmic reticular
(SR) and cytoplasmic volumes, SR-Ca2+
leak and pump currents, Ca2+ current
from dyadic to bulk cytoplasmic space,
and background, plateau and Na+/Ca2+
exchange membrane Ca2+ current. The
resulting Ca2+-troponin binding coupled
this to a myofilament mechanics model
chosen for its realistic basis in the cross-
bridge cycling model of cardiac muscle
contraction (Rice et al., 2008). This lat-
ter model has replicated a wide range of
experimental data including steady-state
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force-sarcomere length, force-Ca2+ and
sarcomere length-Ca2+ relations. The sim-
ulations compared results from inclusion
or exclusion of stretch-activated current,
ISAC.

These cellular level findings were built
into predictions for mechanical activ-
ity in two and three-dimensional human
ventricular tissue models. The model-
ing of cardiac tissue mechanics permit-
ted a non-linear elasticity (Marsden and
Hughes, 1994; Holzapfel, 2000) within an
inhomogeneous, anisotropic, incompress-
ible non-linear material (Niederer and
Smith, 2008; Pathmanathan and Whiteley,
2009). Including appropriate stress ten-
sors permitted representation of active
tension driving longitudinal shortening,
wall thickening and rotational twisting
of the ventricular wall (Cheng et al.,
2008; Coppola and Omens, 2008; Lilli
et al., 2013). The geometrical changes
were incorporated into the electrophysio-
logical computations (Pathmanathan and
Whiteley, 2009). The three-dimensional
simulations of human ventricular geom-
etry employed anisotropic fiber orienta-
tion data to a 0.2 mm spatial resolution
obtained from diffusion-tensor magnetic
resonance imaging. This distinguished
endocardial, M-cell and epicardial regions.

The action potential shortening
associated with SQT did appear to
reduce ventricular mechanical function.
Furthermore, this was rectified by an
inclusion of stretch-activated channels.
This prediction justifies future experimen-
tal testing as to whether such channels
indeed exert functional effects on cardiac
electro-mechanical coupling in SQTS1 and
SQTS3. The experimental testing might
then explore involvements of ISAC in nor-
mal as well as SQT hearts. In addition,
at the theoretical level, the present mod-
eling inevitably entails assumptions of
particular implicit physical mechanisms
operating within the reconstructions of
physiological behavior. It did yield pre-
dictions matching previous experimental
force-frequency data over frequencies
including that at which the simula-
tions were conducted. As outlined in the
limitations section of the article, further
validation including improved and more
physiologically detailed representations
of Ca2+ dynamics (Iribe et al., 2006;
Grandi et al., 2010; O’Hara et al., 2011)

as further experimental data becomes
available, will help test uniqueness in
the model’s predictions. Finally, future
predictions of mechanical events might
fully encompass ventricular pressure, P, its
derivative, dP/dt, as well as the timecourse
and amplitude of chamber contraction
and relaxation.

Nevertheless, the approach adopted by
the authors draws attention to the poten-
tial value for modeling that integrates
cellular electrophysiological, Ca2+ home-
ostatic and biomechanical changes with
realistic descriptions of cardiac anatomy
and mechanical properties. At the broader
level we look forward to applications and
developments of such approaches at the
whole organ level in the analysis of other
ion channel exemplars of abnormal car-
diac physiology hitherto mainly studied at
the cellular or tissue levels. These might
include models for the long QT, Brugada
and catecholaminergic polymorphic ven-
tricular tachycardia, syndromes (Thomas
et al., 2008; Martin et al., 2011; Zhang
et al., 2013).

ACKNOWLEDGMENTS
The author thanks the Medical Research
Council and Wellcome Trust, UK and the
MacVeigh Benefaction for kind support.

REFERENCES
Adeniran, I., El Harchi, A., Hancox, J. C., and

Zhang, H. (2012). Proarrhythmia in KCNJ2-linked
short QT syndrome - insights from modelling.
Cardiovasc. Res. 94, 66–76. doi: 10.1093/cvr/cvs082

Adeniran, I., Hancox, J. C., and Zhang, H. (2013).
In silico investigation of the short QT syndrome,
using human ventricle models incorporating elec-
tromechanical coupling. Front. Physiol. 4:166. doi:
10.3389/fphys.2013.00166

Adeniran, I., McPate, M. J. W.,Witchel, H. J., Hancox,
J. C., and Zhang, H. (2011). Increased vulnera-
bility of human ventricle to re-entrant excitation
in hERG-linked variant 1 short QT syndrome.
PLoS Comput. Biol. 7:e1002313. doi: 10.1371/jour-
nal.pcbi.1002313

Calaghan, S. C., Belus, A., and White, E. (2003).
Do stretch-induced changes in intracellular cal-
cium modify the electrical activity of cardiac
muscle. Prog. Biophys. Mol. Biol. 82, 81–95. doi:
10.1016/S0079-6107(03)00007-5

Cheng, A., Nguyen, T. C.,Malinowski, M., Daughters,
G. T., Miller, D. C., and Ingels, N. B. Jr. (2008).
Heterogeneity of left ventricular wall thicken-
ing mechanisms. Circulation 118, 713–721. doi:
10.1161/CIRCULATIONAHA.107.744623

Coppola, B. A., and Omens, J. H. (2008). Role of tissue
structure on ventricular wall mechanics. Mol. Cell.
Biomech. 5, 183–196.

Deo, M., Ruan, Y., Pandit, S. V., Shah, K., Berenfeld,
O., Blaufox, A., et al. (2013). KCNJ2 mutation

in short QT syndrome3 results in atrial fib-
rillation and ventricular proarrhythmia. Proc.
Natl. Acad. Sci. U.S.A. 110, 4291–4296. doi:
10.1073/pnas.1218154110

Franz, M. R. (1996). Mechano-electrical feedback
in ventricular myocardium. Cardiovasc. Res. 32,
15–24.

Giustetto, C., DiMonte, F., Wolpert, C., Borggrefe,
M., Schimpf, R., Sbragia, P., et al. (2006). Short
QT syndrome: clinical findings and diagnostic-
therapeutic implications. Eur. Heart J. 27,
2440–2447. doi: 10.1093/eurheartj/ehl185

Grandi, E.,Pasqualini, F. S., and Bers, D. M.
(2010). A novel computational model of the
human ventricular action potential and Ca tran-
sient. J. Mol. Cell. Cardiol. 48, 112–121. doi:
10.1016/j.yjmcc.2009.09.019

Gussak, I., Brugada, P., Brugada, J., Wright, R.
S., Kopecky, S. L., Chaitman, B. R., et al.
(2000). Idiopathic short QT interval: a new
clinical syndrome. Cardiology 94, 99–102. doi:
10.1159/000047299

Holzapfel, G. A. (2000). Nonlinear Solid Mechanics:
A Continuum Approach for Engineering, 1st Edn.
Chichester: Wiley.

Hu, H., and Sachs, F. (1997). Stretch-activated ion
channels in the heart. J. Mol. Cell. Cardiol. 29,
1511–1523. doi: 10.1006/jmcc.1997.0392

Iribe, G., Kohl, P., and Noble, D. (2006). Modulatory
effect of calmodulin-dependent kinase II
(CaMKII) on sarcoplasmic reticulum Ca2+
handling and interval-force relations: a mod-
elling study. Philos. Trans. A Math. Phys.
Eng. Sci. 364, 1107–1133. doi: 10.1098/rsta.
2006.1758

Lab, M. J. (1996). Mechanoelectric feedback (trans-
duction) in heart: concepts and implications.
Cardiovasc. Res. 32, 3–14.

Lilli, A., Baratto, M. T., Meglio, J. D., Chioccioli,
M., Magnacca, M., Talini, E., et al. (2013). Left
ventricular rotation and twist assessed by four-
dimensional speckle tracking echocardiography
in healthy subjects and pathological remodeling:
a single center experience. Echocardiography 30,
171–179. doi: 10.1111/echo.12026

Marsden, J. E., and Hughes, T. J. R. (1994).
Mathematical Foundations of Elasticity. Englewood
Cliffs, NJ: Dover Publications and Prentice-Hall.

Martin, C. A., Guzadhur, L., Grace, A. A., Lei, M.,
and Huang, C. L.-H. (2011). Mapping of reentrant
spontaneous polymorphic ventricular tachycardia
in a Scn5a+/- mouse model. Am. J. Physiol. Heart
Circ. Physiol. 300, H1853–1862. doi: 10.1152/ajp-
heart.00034.2011

Niederer, S. A., and Smith, N. P. (2008). An
improved numerical method for strong cou-
pling of excitation and contraction models in the
heart. Prog. Biophys. Mol. Biol. 96, 90–111. doi:
10.1016/j.pbiomolbio.2007.08.001

O’Hara, T., Virág, L., Varró, A., and Rudy, Y. (2011).
Simulation of the undiseased human cardiac
ventricular action potential: model formulation
and experimental validation. PLoS Comput. Biol.
7:e1002061. doi: 10.1371/journal.pcbi.100206

Patel, C., and Antzelevitch, C. (2008). Cellular
basis for arrhythmogenesis in an experimen-
tal model of the SQT1 form of the short
QTsyndrome. Heart Rhythm 5, 585–590. doi:
10.1016/j.hrthm.2008.01.022

Frontiers in Physiology www.frontiersin.org February 2015 | Volume 6 | Article 44 | 2

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Huang Electromechanical consequences of SQT syndrome

Patel, U., and Pavri, B. B. (2009). Short QT syn-
drome: a review. Cardiol. Rev. 17, 300–303. doi:
10.1097/CRD.0b013e3181c07592

Pathmanathan, P., and Whiteley, J. P. (2009). A
numerical method for cardiac mechano electric
simulations. Ann. Biomed. Eng. 37, 860–873. doi:
10.1007/s10439-009-9663-8

Rice, J. J., Wang, F., Bers, D. M., and de Tombe, P.
P. (2008). Approximate model of cooperative acti-
vation and crossbridge cycling in cardiac muscle
using ordinary differential equations. Biophys. J.
95, 2368–2390. doi: 10.1529/biophysj.107.119487

Schimpf, R., Antzelevitch, C., Haghi, D.,Giustetto,
C., Pizzuti, A., Gaita, F., et al. (2008).
Electromechanical coupling in patients with
the short QT syndrome: further insights
into the mechanoelectrical hypothesis of
the U wave. Heart Rhythm 5, 241–245. doi:
10.1016/j.hrthm.2007.10.015

Sun, Y., Quan, X.-Q., Fromme, S., Cox, R. H., Zhang,
P., Zhang, L., et al. (2011). A novel mutation in
the KCNH2 gene associated with short QT syn-
drome. J. Mol. Cell. Cardiol. 50, 433–441. doi:
10.1016/j.yjmcc.2010.11.017

Taggart, P. (1996). Mechano-electric feedback in the
human heart. Cardiovasc. Res. 32, 38–43.

Ten Tusscher, K. H. W. J., Noble, D., Noble, P. J., and
Panfilov, A. V. (2004). A model for human ventric-
ular tissue. Am. J. Physiol. Heart Circ. Physiol. 286,
H1573–H1589. doi: 10.1152/ajpheart.00794.2003

Ten Tusscher, K. H. W. J., and Panfilov, A. V.
(2006). Alternans and spiral break up in a human
ventricular tissue model. Am. J. Physiol. Heart
Circ. Physiol. 291, H1088–H1100. doi: 10.1152/ajp-
heart.00109.2006

Thomas, G., Killeen, M. J., Grace, A. A., and Huang,
C. L.-H. (2008). Pharmacological separation of
early afterdepolarizations from arrhythmogenic
substrate in �KPQ Scn5a murine hearts mod-
elling human long QT 3 syndrome. Acta Physiol.
192, 505–517. doi: 10.1111/j.1748-1716.2007.
01770.x

Zhang, Y., Wu, J., Jeevaratnam, K., King, J., Guzadhur,
L., Ren, X., et al. (2013). Conduction slowing con-
tributes to spontaneous ventricular arrhythmias
in intrinsically active murine RyR2-P2328S hearts.
J. Cardiovasc. Electrophysiol. 24, 210–218. doi:
10.1111/jce.12015

Conflict of Interest Statement: The author declares
that the research was conducted in the absence
of any commercial or financial relationships
that could be construed as a potential conflict of
interest.

Received: 11 October 2014; accepted: 29 January 2015;
published online: 11 February 2015.
Citation: Huang CL-H (2015) Computational anal-
ysis of the electromechanical consequences of short
QT syndrome. Front. Physiol. 6:44. doi: 10.3389/fphys.
2015.00044
This article was submitted to the journal Frontiers in
Physiology.
Copyright © 2015 Huang. This is an open-access
article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, dis-
tribution or reproduction in other forums is permit-
ted, provided the original author(s) or licensor are
credited and that the original publication in this
journal is cited, in accordance with accepted aca-
demic practice. No use, distribution or reproduc-
tion is permitted which does not comply with these
terms.

Frontiers in Physiology www.frontiersin.org February 2015 | Volume 6 | Article 44 | 3

http://dx.doi.org/10.3389/fphys.2015.00044
http://dx.doi.org/10.3389/fphys.2015.00044
http://dx.doi.org/10.3389/fphys.2015.00044
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

	Computational analysis of the electromechanical consequences of short QT syndrome
	Acknowledgments
	References


