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The mitochondrial protein deacetylase sirtuin (SIRT) 3 may mediate exercise

training-induced increases in mitochondrial biogenesis and improvements in reactive

oxygen species (ROS) handling. We determined the requirement of AMP-activated

protein kinase (AMPK) for exercise training-induced increases in skeletal muscle

abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks

increased SIRT3 (p < 0.01) and superoxide dismutase 2 (MnSOD; p < 0.05)

protein abundance in quadriceps muscle of wild-type (WT; n = 13–15), but not

AMPK α2 kinase dead (KD; n = 12–13) mice. We also observed a strong trend for

increased MnSOD abundance in exercise-trained skeletal muscle of healthy humans

(p = 0.051; n = 6). To further elucidate a role for AMPK in mediating these

effects, we treated WT (n = 7–8) and AMPK α2 KD (n = 7–9) mice with

5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR). Four weeks of daily

AICAR injections (500mg/kg) resulted in AMPK-dependent increases in SIRT3 (p <

0.05) and MnSOD (p < 0.01) in WT, but not AMPK α2 KD mice. We also tested the

effect of repeated AICAR treatment on mitochondrial protein levels in mice lacking the

transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α

(PGC-1α KO; n = 9–10). Skeletal muscle SIRT3 and MnSOD protein abundance was

reduced in sedentary PGC-1α KO mice (p < 0.01) and AICAR-induced increases in

SIRT3 and MnSOD protein abundance was only observed in WT mice (p < 0.05).

Finally, the acetylation status of SIRT3 target lysine residues on MnSOD (K122) or

oligomycin-sensitivity conferring protein (OSCP; K139) was not altered in either mouse

or human skeletal muscle in response to acute exercise. We propose an important role

for AMPK in regulating mitochondrial function and ROS handling in skeletal muscle in

response to exercise training.
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Introduction

Mitochondrial density and capacity for oxidative ATP synthe-
sis in skeletal muscle are tightly linked to cellular energetic
demands (Spina et al., 1996; Egan and Zierath, 2013). Pro-
tein deacetylases such as sirtuins (SIRTs) are important modu-
lators of gene expression and protein activity and are involved
in mitochondrial biogenesis. SIRT1 is mainly located in the
nucleus and deacetylates the transcriptional coactivator, per-
oxisome proliferator-activated receptor γ-coactivator 1α (PGC-
1α) (Nemoto et al., 2005), thereby increasing mitochondrial
biogenesis (Puigserver et al., 1998) and improving mitochon-
drial function (Gerhart-Hines et al., 2007). PGC-1α also induces
gene expression of the mitochondrial sirtuin SIRT3 (Schwer
et al., 2002) in muscle cells and hepatocytes (Kong et al.,
2010).

SIRT3 modulates mitochondrial gene expression and func-
tion. SIRT3-driven processes occur via a general deacetylation
of mitochondrial proteins (Lombard et al., 2007), including key
elements of the citric acid cycle and proteins involved in oxida-
tive phosphorylation (Hallows et al., 2006; Schwer et al., 2006;
Wu et al., 2013; Vassilopoulos et al., 2014), or reactive oxygen
species (ROS) handling (Someya et al., 2010; Tseng et al., 2013).
Thus, SIRT1may increase SIRT3 expression via PGC-1α deacety-
lation to facilitate an increase in mitochondrial function and/or
density.

Exercise training and caloric restriction (CR) induce mito-

chondrial biogenesis, but SIRT1-mediated adaptations to exercise

and CR are blunted in AMP-activated protein kinase (AMPK)-
deficient skeletal muscle (Cantó et al., 2010). AMPK is a het-
erotrimeric protein consisting of multiple catalytic (α1, α2) and
regulatory (β1, β2, γ1, γ2, γ3) subunits. AMPK functions as a
major sensor of cellular energy status and can be activated phar-

macologically and in response to muscle contraction and CR
(Koh et al., 2008). Importantly, AMPK directly phosphorylates
PGC-1α (Jäger et al., 2007) which may result in SIRT1-mediated
deacetylation and activation of PGC-1α (Cantó et al., 2009) and
thus link cellular energy status, mitochondrial biogenesis, and
ROS handling.

AMPK activation via 5-amino-1-β-D-ribofuranosyl-
imidazole-4-carboxamide (AICAR) increases SIRT3 mRNA
level in hepatocytes (Buler et al., 2014). While SIRT3 reduces
oxidative stress induced by CR (Someya et al., 2010), AMPK
partly coordinates the cellular response to CR (Shinmura et al.,
2007), supporting the hypothesis that AMPK may regulate
SIRT3.

Exercise training increases ROS processing in skeletal muscle
(Parise et al., 2005) via a mechanism that is incompletely under-
stood. A potential mitochondrial signaling cascade response
involving SIRT3 and FOXO3A-dependent transcription of cata-
lase and MnSOD has been proposed (Jacobs et al., 2008), but the
role of this cascade in exercise-training induced adaptations is
unknown. MnSOD and catalase govern the conversion of super-
oxide to water and oxygen in sequential steps (Reid, 2001). Acti-
vation ofMnSOD is enhanced by SIRT3-dependent deacetylation
at K122, enabling the cell to scavenge ROS (Tao et al., 2010).
Other regulatory acetylation sites have also been reported (Qiu

et al., 2010; Chen et al., 2011), but the importance for each of
these sites in relation to different stimuli remains elusive.

In summary, activation of AMPK via exercise or pharmaco-
logical treatment may phosphorylate PGC-1α, increase SIRT3
protein expression, and enhance the ability of skeletal muscle to
better handle ROS via deacetylation and activation of MnSOD.
Whether this pathway is redundant or exclusively dependent on
AMPK is unknown. Given the functional connection between
AMPK activators and PGC-1α-dependent increases of SIRT3
abundance and its downstream targets, we determined the effects
of exercise training and pharmacological AMPK activation via
AICAR in mouse models overexpressing a kinase dead version
of the catalytic α2 AMPK subunit dominant in skeletal muscle as
well as in skeletal muscle of PGC-1α deficient mice.

Materials and Methods

Exercise Training—Humans
Skeletal muscle samples were obtained from young male sub-
jects previously described in an earlier study (Frøsig et al., 2004).
The exercise training study was performed in compliance with
the Helsinki II Declaration, with approval from the local ethics
committee (#KF 01-070/96). Exercise training consisted of 15 ses-
sions of one-legged knee extensor endurance training over the
course of 3 weeks. The duration of the exercise sessions started
at 1 h per session and was gradually increased to 2 h per ses-
sion for the final 5 sessions. Needle biopsies were obtained under
local anesthesia (2% lidocaine) from the right and left vastus lat-
eralis muscles before training and 15 h (n = 8) after the final
exercise bout.

Acute Exercise—Humans
Vastus lateralis muscle samples were obtained from healthy
young men before and after an acute bout of one-legged knee-
extensor exercise. Selected data from this experiment have been
published previously (Treebak et al., 2014). This study was
approved by the local ethics committee (#KF 1277313) and com-
plied with the Helsinki II Declaration. Seven subjects volunteered
to perform an acute bout of one-legged knee-extensor exercise
at 80% of peak work load for 1 h during the morning after an
overnight fast. In the 1-h exercise bout, peak work load was
increased to 100% for 5min intervals after 15min and again after
35min. Needle biopsies from the right and left vastus lateralis
muscle were obtained before (Pre) and immediately after (Post)
exercise cessation as described (Treebak et al., 2014).

Animal Experiments
All animal experiments complied with the European Conven-
tion for the protection of Vertebrate Animals used for Exper-
iments and Other Scientific Purposes (Council of Europe 123,
Strasbourg, France, 1985) and were approved by the Danish Ani-
mal Experimental Inspectorate (#2012-15-2934-26 and #2012-
15-2934-307).

Exercise Training—Mice
Female mice (9–15 weeks of age) overexpressing a kinase dead
(KD) α2 AMPK subunit in skeletal muscle (Mu et al., 2001)
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or WT littermates underwent 6.5 weeks of endurance exer-
cise training (n = 12–15/group). Selected data from these
experiments have been published previously (Brandauer et al.,
2013). Mice had free access to running wheels for voluntary
running 7 days/week. Running distance was recorded using a
cycle odometer (#BC1009, Sigma Sport R©, Germany). WT and
AMPK α2 KD mice performed similar amounts of voluntary
running (Brandauer et al., 2013). In addition, mice were exer-
cised 1 h/day at 16 m/min on a motorized treadmill (Exer-3/6,
Columbus Instruments) on weekdays as described (Brandauer
et al., 2013). The treadmill was horizontal the first week, and
the incline was increased by 2.5◦ per week up to 10◦ where it
remained for the duration of the study. The morning following
the final exercise bout, mice were anesthetized by an intraperi-
toneal (i.p.) injection using Avertin (250mg tribromoethanol/kg
body weight). Quadriceps muscles were removed, snap-frozen in
liquid nitrogen, and stored at−80◦C until further analyses.

AICAR Treatment Studies
To determine whether AICAR-induced increases in SIRT3 and
other mitochondrial proteins depend on AMPK, male AMPK
α2 KD and WT mice (11–12 weeks of age) received a daily
subcutaneous injection of 500mg/kg body weight AICAR or
0.9% NaCl solution for 4 weeks (n = 7–8) as described
(Brandauer et al., 2013). Mice were anesthetized via i.p. injec-
tion of Avertin (250mg/kg body weight) 24 h following the last
AICAR/vehicle treatment to avoid any confounding effects of the
last AICAR/saline injection. Quadriceps muscle was obtained,
snap-frozen in liquid N2, and stored at −80◦C. Samples from a
previously published study of male and female whole-body PGC-
1α KO and WT mice were also analyzed. The mice in this study
were treated with AICAR under the same conditions as described
above (Leick et al., 2009, 2010a). In order to determine the acute
effect of a single injection of AICAR, we analyzed samples orig-
inating from a previous study (Leick et al., 2010a). Male and
female PGC-1α KO mice and WT littermates (n = 6–8) were
injected subcutaneously with a single dose of AICAR (500mg/kg
body weight) or saline. Quadriceps muscles were taken 4 h after
the injection, snap-frozen in liquid N2 and stored at−80◦C.

Acute Exercise in Previously Trained or Untrained
Mice
To assess the effects of acute exercise in trained and untrained
mouse skeletal muscle, female C57BL/6JBom (Taconic, Den-
mark) mice (9–10 weeks of age) underwent 5.5 weeks of
endurance exercise training (n = 26) or served as sedentary con-
trols (n = 24). The training consisted of voluntary running with
free access to wheel cages 7 days/week with running distance
being recorded by a cycle odometer (#BC1009, Sigma Sport R©,
Germany). In addition, mice were exercised 1 h/day on week-
days with accelerating speeds from 8 to 18m/min on a motor-
ized treadmill (Exer-3/6, Columbus Instruments) or placed on
a “mock” treadmill for the sedentary control group. The tread-
mill was horizontal the first week, and the incline was increased
by 2.5◦ per week up to 10◦ at the final week to account for
increased performance and to ensure a continuous training stim-
ulus. Untrained control animals were acclimatized to treadmill

running for 15–20min with accelerating speeds from 8 to 18
m/min at a 5◦ incline for three consecutive days, with 1 day of
rest prior to the acute exercise experiment. On the experimen-
tal day, both trained and sedentary control mice were divided
into three groups: non-exercised controls (n = 8 sedentary, 9
trained), and mice performing either moderate-intensity (n =

8 sedentary, 8 trained) or high-intensity acute exercise (n =

7 sedentary, 8 trained), resulting in six experimental groups.
Based on the recorded running distances of each mouse, mice
were assigned to one of the three groups so that the average
amount of training performed in the training period was similar
between the three groups (i.e., 5.1 ± 0.6 km/day; mean ± SEM).
Mice then performed an acute treadmill exercise bout for 1 h or
served as sedentary controls. “Moderate intensity” was defined
as 12m/min at 0◦ incline, while “high intensity” was defined as
18 m/min with a 10◦ incline. Mice were euthanized by cervical
dislocation immediately after the acute exercise bout. Quadriceps
muscles were quickly removed, snap frozen in liquid nitrogen,
and stored at –80◦ until further analysis.

Tissue Processing and Western Blot Analyses
All muscle samples were processed using steel bead homogeniza-
tion (Tissue Lyser II, Qiagen) in ice-cold lysis buffer (pH 7.4;
10% glycerol; 1% IGEPAL; Hepes, 50mM; NaCl, 150mM; NaF,
10mM; EDTA, 1mM; EGTA, 1mM; sodium pyrophosphate,
20mM; sodium orthovanadate, 2mM; sodium-pyrophosphate
1mM; nicotinamide 5mM; Thiamet G 4µM and protease
inhibitors (SigmaFast, Sigma Aldrich) according to manufac-
turer’s instructions). Protein concentrations were determined
using BCA assays (Thermo Scientific, #23223 and #23224). Equal
amounts of protein were resolved by SDS-PAGE and trans-
ferred to polyvinylidene difluoride (PVDF) membranes (Milli-
pore, Denmark) as described (Brandauer et al., 2013). Western
blots were executed in a balanced design, with samples from
all experimental conditions present on all gels, and identical
internal control samples included on each blot. The internal
control sample was prepared as a pool of all samples from a
given experiment. All samples on individual gels were normal-
ized to the internal control sample in order to permit com-
parison of samples resolved on separate gels. Following trans-
fer, samples were subjected to immunoblot analysis to detect
protein abundance using following antibodies against SIRT3
(Cell Signaling, #5490S), SIRT1 (Millipore, #07-131), MnSOD,
(Millipore, #06-948), MnSOD K122 acetylation (kindly pro-
vided by Prof. David Gius, Northwestern University Feinberg
School of Medicine, Chicago, Illinois; see Tao et al., 2010) and
Catalase (R&D Systems, #AF3398). Protein abundance of the
oxidative phosphorylation complexes was determined using anti-
bodies against Complex I (NDUFB8, Invitrogen, #459210), Com-
plex II (Fp subunit, Invitrogen, #459200), Complex III (Core
subunit I, Invitrogen, #459140), Complex IV (Subunit I, Invitro-
gen, #459600), Complex V (i.e., F1F0 ATP synthase; oligomycin-
sensitivity conferring protein [OSCP] subunit (Santa Cruz, #sc-
74786), cytochromeC (BDBiosciences #556433) andOSCPK139
acetylation (kindly provided by Prof. David Gius). The specificity
of the MnSOD K122 and OSCP K139 antibody used in this study
has been verified (Tao et al., 2010; Vassilopoulos et al., 2014) and
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was confirmed by “split-blot” analyses, where samples prepared
from the same mouse quadriceps muscle or human vastus lat-
eralis muscle was resolved in three adjacent wells. After transfer
to PVDF, the membrane was cut through the center well and
the membrane halves were probed with the total MnSOD/OSCP
or MnSOD K122/OSCP K139 antibodies, respectively. Complete
alignment of the bands was confirmed (Figure 7).

Quantitative Polymerase Chain Reaction (qPCR)
qPCR was performed as described (Brandauer et al., 2013). RNA
from quadriceps muscles was extracted using Trizol (Invitro-
gen, #15596-018) and reverse transcription was performed using
iScript cDNA synthesis kit (BioRad, #170-8891). Real-time qPCR
was performed using 2µl of template cDNA, 300 nM of sense
and antisense oligonucleotides and SYBR Green PCR Master
Mix (AH Diagnostic, #600882) in a final volume of 10µl. Flu-
orescence measurements and data analysis were performed on
the CFX96 real time system (BioRad). Gene expression was
determined using primer sequences: SIRT3 forward primer:
5′-TACAGAAATCAGTGCCCCGA-3′ and reverse primer: 5′-
GGTGGACACAAGAACTGCTG-3′; MnSOD forward primer:
5′-ACTGAAGTTCAATGGTGGGG- 3′ and reverse primer: 5′-
GCTTGATAGCCTCCAGCAAC- 3′ and normalized by input
cDNA (Qubit ssDNA assay kit, Invitrogen, #Q10212).

Statistics
Statistical analyses were performed by either 2 × 2 analysis of
variance (ANOVA), by 2 × 3 ANOVA, or by 2 × 2 repeated-
measures ANOVA as appropriate. The Tukey test was used post-
hoc. If statistical interactions were borderline significant (0.05 <

p < 0.1) and the observed power was low (<0.5), individual t-
tests were performed as noted in the description of the results.
As incomplete sample sets are excluded from statistical analyses
in repeated-measures ANOVA, statistical analyses performed on
data from the human training study were only performed on 6
sets of samples. Statistical significance was set at p < 0.05. All
data are reported as mean± SEM.

Results

Exercise Training in Mice Increases SIRT3 and
MnSOD in an AMPK-Dependent Manner
To verify the potency of the exercise training program and to
assess the importance of AMPK on exercise-induced mitochon-
drial adaptations in skeletal muscle, we performed Western blot
analyses on mitochondrial Complex I through V (OSCP) and
cytochrome C on samples fromWT and AMPK α2 KDmice that
had completed 6.5 weeks of endurance exercise training. WT and
AMPK α2 KD mice performed similarly in average distance run
(Brandauer et al., 2013), average duration of exercise/day (WT,
140 ± 16min/day; KD, 168 ± 29min/day; p = 0.38) and aver-
age running speed (WT, 1.39± 0.04 km/h; KD, 1.27± 0.07 km/h,
p = 0.15).

We found no interaction effects in any of the data sets pre-
sented in Figures 1A–F, likely due to low statistical power. How-
ever, if individual t-tests were performed between control and
trained mice, we found significant (p < 0.05) increases in

Complexes I, II, and IV protein abundance in the WT mice only.
Collectively, these data suggest a regulatory role for AMPK in
mediating the effects of endurance exercise training on mito-
chondrial protein expression.

Endurance exercise training increased SIRT3 protein abun-
dance in skeletal muscle from WT, but not AMPK α2 KD mice
(p < 0.01; n = 12–15) (Figure 2A). On the other hand, no sta-
tistical differences in SIRT3 mRNA levels were observed between
genotypes or in response to exercise training (Figure 2B). Exer-
cise training tended to increase skeletal muscle MnSOD protein
levels in WT relative to KD mice (WT, 49%; AMPK α2 KD, 11%;
genotype × treatment interaction effect, p = 0.079; observed
power 0.294; Figure 2C). A t-test showed an exercise-induced
increase in skeletal muscle MnSOD protein level in WT (p <

0.05), but not AMPK α2 KD mice. MnSOD mRNA levels were
unchanged in response to exercise training in both genotypes
(Figure 2D). Endurance exercise did not alter SIRT1 (Figure 2E)
or catalase protein levels (Figure 2F). Thus, AMPK is required
for upregulation of SIRT3 andMnSOD protein levels in response
to exercise training.

Skeletal Muscle MnSOD Protein Abundance is
Increased Following Endurance Exercise Training
in Human Skeletal Muscle
We employed a model of one-legged endurance exercise training
to study SIRT3 and MnSOD protein abundance in trained and
untrained human skeletal muscle. A repeated-measures ANOVA
revealed no significant changes in SIRT3 protein content fol-
lowing exercise training in humans (n = 6; Figure 3A). When
samples were analyzed to determine MnSOD content, a border-
line significant interaction effect (leg × intervention; p = 0.051,
n = 6; observed power; 0.471; Figure 3B) was observed. A t-
test comparing the control leg to the trained leg after the exercise
intervention revealed MnSOD protein was increased in trained
skeletal muscle (p < 0.05). Collectively, our data indicate that
protein content of MnSOD is upregulated in response to exercise
training in human skeletal muscle.

Repeated AMPK Activation by AICAR Increases
SIRT3 and MnSOD Protein in an AMPK- and
PGC-1α-Dependent Manner
To more directly confirm a role for AMPK in the regu-
lation of skeletal muscle SIRT3 and MnSOD protein abun-
dance, we treated WT and AMPK α2 KD mice with AICAR,
a pharmacological AMPK activator. We performed Western
blot analyses for proteins involved in oxidative phosphoryla-
tion to determine the efficacy of the AICAR treatment. Simi-
larly to the results observed in the exercise training studies, any
AICAR-induced increase in skeletal muscle abundance of oxida-
tive phosphorylation complex proteins was blunted in AMPK
α2 KD mice (Figures 4A–F). However, no significant interac-
tion effects were found for Complex I-V, most likely due to low
statistical power. When individual t-tests were performed, signif-
icant increases in protein content were found in the WT group
for Complexes I, IV, and V. Treatment with AICAR increased
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FIGURE 1 | Exercise training increase mitochondrial oxidative

phosphorylation complexes in an AMPK α2-dependent manner. Protein

levels of oxidative phosphorylation complexes, (A) Complex I, (B) Complex II,

(C) Complex III, (D) Complex IV, (E) Complex V (oligomycin-sensitivity

conferring protein subunit, OSCP), and (F) Cytochrome C were evaluated in

quadriceps muscle of sedentary (control) or exercise trained female WT and

AMPK α2 KD mice (n = 13–15). Values are mean ± SEM. * indicates vs. WT

control (p < 0.05) analyzed by unpaired t-tests.

abundance of cytochrome C in the WT mice (p < 0.01) in
an AMPK-dependent manner (treatment× genotype interaction
effect p < 0.05), and protein levels were lower in AMPK α2 KD
mice (p < 0.01; Figure 4F).

AICAR treatment resulted in AMPK α2-dependent increases
in SIRT3 protein levels (treatment × genotype interaction effect
p < 0.05; n = 7–8; Figure 5A) whereas mRNA expression
increased independent of genotype (p < 0.01; Figure 5B).
Likewise, MnSOD protein levels increased in an AMPK α2-
dependent manner (treatment × genotype interaction effect p <

0.05; n = 7–8; Figure 5C) while MnSOD mRNA expression
increased in response to AICAR independent of AMPK α2 (p <

0.01, n = 6–8; Figure 5D). Together, these data support the
hypothesis that AMPK activation governs post-transcriptional
regulation of SIRT3 and MnSOD protein levels. Repeated treat-
ment with AICAR did not increase SIRT1 or catalase protein
levels (Figures 5E,F).

We next assessed whether increases in SIRT3 and MnSOD
following AICAR treatment depend on functional PGC-1α sig-
naling. AICAR treatment increased skeletal muscle protein level
of SIRT3 and MnSOD in WT, but not in PGC-1α KO mice
(treatment × genotype interaction effect p < 0.05; n = 9–10;
Figures 6A,B), and total protein of SIRT3 and MnSOD was gen-
erally reduced in control PGC-1α KO mice (p < 0.01; n = 9–10;
Figures 6A,B). SIRT1 and catalase protein levels were similar in

the WT and PGC-1α mice and remained unaltered in response
to repeated AICAR treatment (Figures 6C,D). These data sug-
gest that SIRT3 and MnSOD protein abundance is regulated
in a signaling axis involving both AMPK and PGC-1α. In an
attempt to establish indirect evidence that upregulation of SIRT3
andMnSOD protein with AICAR is mediated through transcrip-
tional regulation of the SIRT3 and MnSOD genes by a PGC-
1α-dependent mechanism, we measured mRNA levels of SIRT3
and MnSOD in PGC-1α KO animals treated repeatedly with
AICAR over 4 weeks. Although mRNA levels of both SIRT3 and
MnSOD were reduced in the PGC-1α KO animals, no increase
with AICAR was detected in either genotype (Figures 6E,F). To
determine whether an acute AICAR injection would increase
mRNA levels of SIRT3 and MnSOD, we analyzed samples from
PGC-1α KO and WT mice taken 4 h after a single injection of
AICAR/saline (Leick et al., 2010a). As in the repeated-AICAR
experiment, PGC-1α KO mice had lower mRNA levels of SIRT3
and MnSOD, but AICAR did not increase SIRT3 or MnSOD
mRNA (Figures 6G,H).

Combined Effects of Endurance Exercise Training
and Acute Exercise on Mitochondrial Protein
Acetylation State in Mouse Quadriceps Muscle
SIRT3 is involved in the activation of MnSOD by deacety-
lating K122. Deacetylation of this residue would be expected
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FIGURE 2 | Exercise training increases SIRT3 and MnSOD protein

in mouse skeletal muscle in an AMPK α2-dependent manner. (A)

SIRT3 protein, (B) SIRT3 mRNA (n = 11–14), (C) MnSOD protein, (D)

MnSOD mRNA (n = 11–14), (E) SIRT1 protein, and (F) Catalase protein

levels were measured in quadriceps muscle of control or exercised

trained female WT and AMPK α2 KD mice (n = 13–15 for protein

measurements). Quadriceps muscles were obtained the day after the

final bout of exercise. Values are mean ± SEM. An interaction effect

(p < 0.05; treatment × genotype) was present in (A). * indicates vs. WT

control (p < 0.05; analyzed by independent t-test), ** indicates vs. WT

control (p < 0.01), and † indicates genotype effect within trained groups

(p < 0.05).

to occur if superoxides are produced in mitochondria during
exercise. To determine whether SIRT3-mediated deacetylation
of mitochondrial proteins in skeletal muscle is dependent on

training status, and whether acute exercise in sedentary and
exercise trained muscle would lead to a differentiated acety-
lation response, C57BL/6JBom mice were exercise trained or
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FIGURE 3 | One-legged knee-extensor endurance exercise training

increases MnSOD protein levels in human vastus lateralis muscle.

Male individuals performed 15 sessions of 1–2 h of one-legged knee

extensor endurance exercise training over a period of 3 weeks. SIRT3 and

MnSOD protein levels were measured from biopsies obtained before training

and 15 h after the last bout of exercise (n = 8). (A) SIRT3 and (B) MnSOD

protein levels. A borderline interaction effect of leg × intervention (p = 0.051)

was found for MnSOD protein levels (observed power 0.471). * indicates vs.

control leg after training (p < 0.05; paired t-test). Values are mean ± SEM.

Statistical analyses were performed for n = 6 due to incomplete sample sets.

maintained as sedentary controls. On the day of tissue collec-
tion, mice were subjected to an acute 1-h bout of “moderate” or
“high” intensity exercise or served as sedentary controls. Thus,
usingmuscle samples from this experiment in addition to an anti-
body against acetylated K122 of MnSOD known to be important
for MnSOD activity (Tao et al., 2010), the putative improved abil-
ity of trained muscle to handle ROS could be determined. To test
the specificity of antibodies against total MnSOD and MnSOD
K122 in skeletal muscle, we performed “split-blot” analyses and
found bands from both antibodies to align in mouse and human
skeletal muscle (Figure 7A). OSCP K139 antibody specificity has
been previously validated (Vassilopoulos et al., 2014), and we fur-
ther verified total OSCP and OSCP K139 specificity in skeletal
muscle tissue by performing “split-blot” analyses and confirming
that bands for OSCP and OSCP K139 align in human and mouse
skeletal muscle (Figure 7B).

First, we confirmed that exercise training increases SIRT3
protein content in mouse quadriceps muscle (Figure 8A).
Unexpectedly, 60min of high-intensity acute exercise caused
further increases in SIRT3 protein abundance in both previ-
ously sedentary and trained mice (Figure 8A). This increase
in protein content was not accompanied by a parallel
increase in SIRT3 mRNA in these samples relative to sam-
ples from any of the other groups (data not shown). Con-
trary to the AMPK α2 KD/WT exercise training study
described above (Figures 2E,F), SIRT1 and catalase protein lev-
els increased in response to exercise training. No additional
change occurred in response to acute exercise (Figures 8B,C).
Furthermore, MnSOD protein levels increased with exer-
cise training (Figure 8D) to a similar degree as WT mice
in the AMPK α2 KD/WT training study (Figure 8D vs.
Figure 2C).

Although the importance of mitochondria as a source of
superoxides during muscle contraction has been questioned
(McArdle et al., 2004), we assessed acetylation level of MnSOD
in response to exercise training and an acute bout of exercise. We
detected increased acetylation of MnSOD K122 in the samples
from exercise-trained animals, whereas acetylation levels were
unaffected by acute exercise (Figure 8E). When MnSOD K122
acetylation status was normalized to total MnSOD protein abun-
dance, acetylation status remained unchanged across conditions
(Figure 8F).

We also tested the hypothesis that acetylation of OSCP on
the K139 residue is a marker of cellular energy stress, and that
exercised trained muscle would be less susceptible to exercise-
induced changes in K139 acetylation. OSCP protein abundance
increased with exercise training in mouse quadriceps muscle
(Figure 8G), in addition to a pronounced increase in acetylation
of OSCP K139 (Figure 8H). When OSCP acetylation level was
normalized to total OSCP protein, K139 acetylation increased
with exercise training (Figure 8I). Contrary to our hypothesis,
OSCP K139 acetylation relative to total OSCP was unaffected by
acute exercise (Figures 8H,I).

Acetylation Patterns in Human Vastus Lateralis

with Acute Exercise
To compare the MnSOD and OSCP acetylation response
obtained in exercised mouse quadriceps muscle with acutely
exercised human skeletal muscle, we determined the acetylation
level of these proteins in samples obtained from strenuously exer-
cised vastus lateralismuscle of healthy youngmen. Acute exercise
did not alter total protein abundance of either MnSOD or OSCP,
nor did this intervention alter relative protein acetylation directly
following exercise cessation (Figures 9A–F).
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FIGURE 4 | Repeated treatment with AICAR increases abundance of

mitochondrial electron transport chain proteins in an AMPK

α2-dependent manner. WT and AMPK α2 KD male mice were given daily

subcutaneous injections with AICAR (500mg/kg body weight) or saline for 4

weeks. (A–E) Protein abundance of oxidative phosphorylation Complexes

I–V and (F) Cytochrome C was measured in quadriceps muscle (n = 7–8). A

significant interaction effect (treatment × genotype; p < 0.05) was observed

for Cytochrome C. Values are mean ± SEM. * indicates vs. WT saline

(p < 0.05) analyzed by t-tests, ** indicates vs. WT saline (p < 0.01), and ††

indicates genotype effect within AICAR treated animals (p < 0.01).

Discussion

AMPK is a cellular “fuel gauge” that integrates and communi-
cates disruptions in cellular energy charge to downstream tar-
gets (Hardie, 2011). One key signaling pathway by which AMPK
exerts its effects is via the AMPK-PGC-1α-SIRT3 axis, which
likely affects mitochondrial function and gene expression to
adapt to metabolic changes (Hallows et al., 2006; Schwer et al.,
2006; Someya et al., 2010; Tseng et al., 2013; Wu et al., 2013; Vas-
silopoulos et al., 2014). Here, we present evidence that AMPK is
required for the increase in skeletal muscle SIRT3 and MnSOD
protein abundance in addition to proteins in the mitochondrial

respiratory complexes following exercise training and repeated

AICAR treatment.
AMPK plays a critical role in mediating AICAR-induced

increases in mitochondrial protein abundance (Jørgensen et al.,
2007). The present study confirms these findings and provides
additional evidence that AMPK is required to fully beget exercise

training-induced increases in mitochondrial oxidative phospho-
rylation complexes. This observation is in line with recent data

showing that exercise training-induced adaptations in skeletal
muscle on mitochondrial Complexes I-V are dependent on the
upstream AMPK kinase, LKB1 (Tanner et al., 2013). Other stud-
ies employing the same (Abbott and Turcotte, 2014) or similar
mouse models of AMPK deficiency (Röckl et al., 2007) as in the
present investigation did not detect AMPK-dependent defects in
the ability to increase mitochondrial protein content. However,
these studies only assessed citrate synthase activity and did not
report the abundance of electron transport chain proteins.

The one-legged endurance exercise training model represents
a well-controlled method to study contraction-mediated adapta-
tions in vastus lateralismuscle in humans (Andersen et al., 1985;
Frøsig et al., 2004). Despite a relatively small sample size, we
found near-significant increases in skeletal muscle MnSOD pro-
tein level in the trained, but not untrained leg of healthy volun-
teers. Conversely, SIRT3 protein levels were not increased. This
is in conflict with emerging evidence that SIRT3 expression is
increased in exercise-trained human and rodent skeletal muscle
(Lanza et al., 2008; Palacios et al., 2009). While an early cross-
sectional study reported higher protein activity of MnSOD in
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FIGURE 5 | Increases in quadriceps SIRT3 protein levels after

repeated AICAR treatment are abolished in AMPK α2 KD mouse

skeletal muscle. Levels of (A) SIRT3 protein, (B) SIRT3 mRNA, (C)

MnSOD protein, (D) MnSOD mRNA, (E) SIRT1 protein, and (F)

Catalase protein were determined in quadriceps muscle from WT and

AMPK α2 KD male mice (n = 7–8) treated with daily subcutaneous

injections of AICAR (500mg/kg body weight) or saline for 4 weeks.

Values are mean ± SEM. Interaction effects (treatment × genotype)

were present in (A) (p < 0.05) and (C) (p < 0.01). * indicates vs. saline

within genotype (p < 0.05), ** indicates vs. saline within genotype

(p < 0.01), and †† indicates genotype effect within AICAR treated

samples (p < 0.01).
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FIGURE 6 | AICAR-induced upregulation of SIRT3 and MnSOD protein

in mouse skeletal muscle is dependent on PGC-1α. WT and PGC-1α

KO mice received daily subcutaneous injection of AICAR (500mg/kg body

weight) or saline for 4 weeks. Quadriceps muscles were obtained the day

after the last injection. (A) SIRT3 protein, (B) MnSOD protein, (C) SIRT1

protein, (D) Catalase protein, (E) SIRT3 mRNA, (F) MnSOD mRNA

(n = 9–10). mRNA levels of (G) SIRT3 and (H) MnSOD were obtained from

quadriceps muscles from WT and PGC-1α KO mice 4 h after a single

injection of saline or AICAR (500mg/kg body weight, n = 6–8). Values are

mean ± SEM. Interaction effects (treatment × genotype) were present for

data in (A, C) (p < 0.05), ** indicates vs. WT saline (p < 0.01), †† indicates

genotype effect vs. WT (p < 0.01).
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FIGURE 7 | Validation of antibodies targeting acetylated residues of MnSOD and OSCP. Validation of antibodies targeting (A) acetylated residue K122 of

MnSOD and total MnSOD and (B) OSCP acetylation at residue K139 and total OSCP in mouse and human skeletal muscle by “split-blot” analysis.

skeletal muscle of individuals with high aerobic fitness (Jenkins
et al., 1984), some longitudinal studies have called these findings
into question (Tiidus et al., 1996; Tonkonogi et al., 2000).

In our study, SIRT3 or ROS defense protein abundance was
unaltered by exercise training in AMPK α2 KD mice. These
results are inconsistent with the notion that SIRT3 may be
induced by exercise in an AMPK-independent manner (Gurd
et al., 2012). While 7 days of chronic electrical stimulation
increased SIRT3 level in rat hind limb muscles, AICAR treat-
ment had no effect (Gurd et al., 2012). Apart from obvious species
and protocol differences between the two studies, these findings
could also suggest additional, possibly time-sensitive, regulatory
mechanisms of SIRT3 protein levels.

Activation of SIRT1 via deletion of poly (ADP-ribose)
polymerase-1 (PARP-1), a major NAD-consuming enzyme,
increases mitochondrial content (Bai et al., 2011). In the present
study, SIRT1 and catalase protein abundance was not consistently
increased with exercise training, despite a substantive increase in
skeletal muscle SIRT3 protein levels in WT mice. These findings
corroborate earlier reports showing that SIRT1 expression is not
strongly correlated with contraction-induced changes in mito-
chondrial protein abundance (Chabi et al., 2009; Ringholm et al.,
2013). A proportionally larger increase in SIRT1 activity, rather
than protein abundance, may explain the enhanced response
to endurance training and AICAR in WT mice in our study.
For example, high-intensity interval training increases overall
SIRT1 activity, despite decreasing SIRT1 protein concentration
in humans (Gurd et al., 2010). However, SIRT1 is an NAD-
dependent sirtuin, and we have previously reported that AMPK
α2 KD, PGC-1α KO, and corresponding WT littermates respond
similarly in increasing protein abundance of nicotinamide phos-
phoribosyltransferase, the rate-limiting enzyme in NAD recy-
cling, in response to exercise training (Brandauer et al., 2013).
These data suggest that the differential response in mitochon-
drial protein abundance following exercise training is unrelated
to SIRT1 activation via NAD. Interestingly, PARP-1 deletion leads
to an activation of SIRT1, but not SIRT3, suggesting possible

differences in sirtuin activation in different cellular compart-
ments (Bai et al., 2011).

While SIRT3 and MnSOD protein abundance increased in
response to exercise training in WT mice, SIRT3, and MnSOD
mRNA levels were unaffected in both genotypes. On the other
hand, repeated AICAR treatment increased SIRT3 and MnSOD
protein levels in an AMPK α2-dependent manner, while mRNA
levels of SIRT3 and MnSOD were increased in both WT and
AMPK α2 KD mice. These data strongly suggest that AMPK is
involved in post-transcriptional regulation of SIRT3 andMnSOD
gene products with AICAR. Although previous studies have
failed to demonstrate a role for AMPK α2 in regulating gene
expression in mouse skeletal muscle after acute exercise (Jør-
gensen et al., 2005; Brandauer et al., 2013), we cannot rule out
that AMPK could be important for promoting gene transcription
of SIRT3 and MnSOD after exercise. Further studies are needed
to clarify the differential effects of AICAR and exercise training
on mRNA expression of these two genes.

We assessed the necessity of PGC-1α in mediating AICAR-
induced increases in SIRT3 and MnSOD protein levels. While
SIRT3 and MnSOD mRNA levels did not increase in WT or
whole-body PGC-1αKOmice with either a single dose of AICAR
or in response to repeated AICAR treatment, SIRT3 andMnSOD
protein abundance with repeated AICAR treatment increased in
WTmice but was abolished in PGC-1αKOmice. These mice also
had drastically reduced SIRT3 andMnSOD protein abundance in
untreated muscle, further underscoring the importance of PGC-
1α in the maintenance of mitochondrial integrity. Although no
data from exercise-trained PGC-1α KO muscle are presented
here, exercise training restores muscle MnSOD concentration
in a PGC-1α-independent manner in young mice (Geng et al.,
2010), whereas the exercise training response onMnSOD protein
levels has been found to be PGC-1α-dependent in oldmice (Leick
et al., 2010b; Olesen et al., 2013).

Our data on mitochondrial protein abundance should be
interpreted in context with previously published literature on
fiber type switching following exercise training or AICAR
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FIGURE 8 | Acute exercise does not result in deacetylation of MnSOD

K122 or OSCP K139 in mouse skeletal muscle. C57BL/6JBom mice

were exercise trained for 5.5 weeks (“Trained”) or kept as sedentary controls

(“Sedentary”). On the day of tissue collection, both groups were further divided

into three groups that either rested (“Control”) or performed 60min of treadmill

running at either 12 m/min (0◦ incline; “Moderate”) or 18m/min (10◦ incline;

“High” intensity). (A) SIRT3, (B) SIRT1 and (C) Catalase protein abundance

was measured in quadriceps muscles after 1 h of treadmill exercise. (D) Total

MnSOD, (E) MnSOD K122 acetylation levels and (F) MnSOD K122

acetylation levels normalized to total MnSOD levels. (G) Protein levels of the

Complex V subunit, F1F0 ATP synthase oligomycin-sensitivity conferring

protein (OSCP), (H) OSCP K139 acetylation levels and (I) OSCP K139

acetylation/total OSCP. Values are mean ± SEM. */** indicates main effect vs.

sedentary (p < 0.05/0.01), ‡ main effect vs. control (p < 0.01), n = 7–9.

administration. AMPK and PGC-1α are vital regulators of cel-
lular metabolic adaptations, and a functional AMPK α2 sub-
unit appears to be required to fully realize training-induced
IIb to IIa/x fiber type conversion (Röckl et al., 2007). Repeated

AICAR treatment alone may be insufficient to change skeletal
muscle fiber type (Bamford et al., 2003; Putman et al., 2003),
although data from dystrophic mice indicates that AICAR may
cause a phenotypic shift toward a more slow-twitch, oxidative
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FIGURE 9 | Acetylation status of MnSOD K122 and OSCP K139 is

unaffected by acute exercise in human skeletal muscle. Male subjects

performed an acute bout (1 h) of one-legged extensor exercise at 80% peak

work load after an over-night fast and vastus lateralis muscle biopsies from

both legs were obtained before (Pre) and immediately after (Post) the

exercise bout (n = 7). (A) MnSOD protein, (B) MnSOD K122 acetylation and

(C) MnSOD K122 acetylation/MnSOD total protein abundance. (D) OSCP

protein, (E) Acetylation status of OSCP K139 and (F) OSCP K139

normalized to total OSCP protein abundance. Values are mean ± SEM. No

significant effects were observed.

fiber type under some circumstances (Ljubicic et al., 2011). PGC-
1α is not only a major stimulator of mitochondrial biogenesis
but also promotes type II to type I fiber type conversion (Lee
et al., 2006), along with other factors such as calcineurin (Naya
et al., 2000). Our data and these lines of evidence further sup-
port the notion that AMPK and PGC-1α are centrally important
regulators of metabolic and contractile performance of mam-
malian skeletal muscle. However, the finding that AICAR treat-
ment increasesmitochondrial biogenesis, but may not necessarily
change fiber type suggests that these processes may commonly
occur in tandem but not be regulated by the same physiological
stimuli.

SIRT3 is known to have deacetylase activity in the mito-
chondrion (Lombard et al., 2007). MnSOD activity is regulated
through deacetylation via SIRT3 and plays an important role in
handling and regulating ROS levels in mitochondria (Ahn et al.,
2008; Tao et al., 2010). MnSOD has multiple acetylation sites
(Rardin et al., 2013) where key lysine residues (e.g., K68 and
K122) are deacetylated in response to exercise and cellular stress

(Tao et al., 2010). To elucidate the interplay between aerobic fit-
ness and stress induced by acute exercise, trained or untrained
WT mice were subjected to an acute bout of “moderate” or
“high”-intensity exercise, or assigned to a non-exercise control
group. Despite the substantial increase in SIRT3 protein abun-
dance, acetylation of regulatory lysine residue K122 of MnSOD
or K139 of OSCP was not reduced in exercise-trained and/or
acutely exercised mice at the various exercise intensities. Rather,
when normalized to total protein levels, MnSOD K122 acety-
lation was unaltered between exercise trained and untrained
mice, whereas acetylation status of K139 on OSCP was increased.
This exercise training-induced increase in MnSOD implicates an
enhanced cellular ROS handling capacity. However, our data on
MnSOD and OSCP acetylation following acute exercise are not
in obvious agreement with reported exercise-induced reductions
in acetylation of these sites (Vassilopoulos et al., 2014). One dif-
ference between the two exercise protocols is that all mice in
the present study completed the “moderate” and “high” inten-
sity exercise bouts, while the exercise protocol in the previous
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study (Vassilopoulos et al., 2014) was exhaustive. Exhaustive exer-
cise may be required to detect an appreciable deacetylation of
MnSOD and OSCP at these lysine residues. The lack of exercise-
induced changes in MnSOD and OSCP acetylation was com-
pared with human skeletal muscle samples obtained in con-
junction with a one-legged exercise protocol. Under these con-
ditions, we also failed to observe a differential regulation of
MnSOD K122 and OSCP K139 between the exercised and seden-
tary legs. Thus, the effects of acute exercise on MnSOD and
OSCP deacetylationmay vary across different experimental mod-
els and organisms. Further studies are warranted to determine the
exact factors regulating SIRT3-regulated protein deacetylation
with acute exercise.

The substantial increase in K139 acetylation we found after
exercise training in mice may seem counterintuitive. One expla-
nation for this observed increased OSCP acetylation could be
that total cellular mitochondrial content is enhanced. Exercise
training may thus have resulted in an ATP-generating potential
that surpasses the actual need for ATP, leading to ATP synthase
inhibition via OSCP acetylation. Another possibility is that lysine
residues other than K139 on OSCP or lysines on other subunits
of the ATP synthase are important for ATP synthase activity,
and that acetylation status of these is changed in response to
training.

The fact that concentrations of the mitochondrial SIRT3 pro-
tein were more than 3-fold higher in exercise-trained com-
pared with untrained mice presents an intriguing observation.
Why increased deacetylase protein concentration would result
in unchanged or even increased acetylation levels in MnSOD or
OSCP, respectively, is not immediately clear. In this context, a
previous study reported that SIRT3 reduces mitochondrial pro-
tein synthesis via deacetylation of the ribosomal proteinMRPL10
(Yang et al., 2010). Such an adaptation would induce an ATP-
“sparing” effect that would preserve ATP pools for cross-bridge
cycling and maintaining calcium homeostasis. In short, an acute
increase in SIRT3 protein or activity is consistent with an inhibi-
tion of protein synthesis and other energetically costly processes
by AMPK activation (Jensen et al., 2009; Hardie, 2011; White and
Schenk, 2012).

In conclusion, we provide evidence for both AMPK and
PGC-1α in regulating protein abundance of SIRT3 and MnSOD.
These proteins are important for the regulation of mito-
chondrial adaptation and the handling of ROS, respectively.
The interactive effects of acute and chronic exercise on
MnSOD and OSCP acetylation status constitute an unex-
plored avenue, with implications for intensity- and duration-
dependent mitochondrial adaptations that warrant further
investigation.
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