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Tetraspanins belong to a family of transmembrane proteins which play a major role in

the organization of the plasma membrane. While all immune cells express tetraspanins,

most of these are present in a variety of other cell types. There are a select few,

such as CD37 and CD53, which are restricted to hematopoietic lineages. Tetraspanins

associate with numerous partners involved in a diverse set of biological processes,

including cell activation, survival, proliferation, adhesion, and migration. The historical

view has assigned them a scaffolding role, but recent discoveries suggest some

tetraspanins can directly participate in signaling through interactions with cytoplasmic

proteins. Given their potential roles in supporting tumor survival and immune evasion,

an improved understanding of tetraspanin activity could prove clinically valuable. This

review will focus on emerging data in the study of tetraspanins, advances in the

clinical development of anti-CD37 therapeutics, and the future prospects of targeting

tetraspanins in hematological malignancy.
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Introduction

Tetraspanins are transmembrane proteins which are ubiquitous among metazoans, with 33 family
members identified inmice and humans (Maecker et al., 1997). The predominant view has been that
tetraspanins are facilitators of signal transduction, providing organization to plasma membrane
domains through lateral interaction with their numerous partners (Maecker et al., 1997; Hemler,
2005; Charrin et al., 2009). However, there is recent evidence that certain tetraspanins also recruit
signaling proteins directly (Lapalombella et al., 2012). Tetraspanins have been reported to regu-
late diverse processes, including cellular migration, adhesion, activation, and apoptosis (Hemler,
2005). Furthermore, several tetraspanins influence cancer metastasis/progression and their func-
tional roles in immune cells could impact anti-tumor immunity (Zoller, 2009; Veenbergen and Van
Spriel, 2011; Hemler, 2014). This review will focus on tetraspanins expressed by immune cells and
discuss therapeutic strategies targeting these proteins in hematological malignancies.

Structure of Tetraspanin Proteins
Tetraspanins contain short N-terminal and C-terminal cytoplasmic tails, a small extracellular
loop (EC1 domain), a large extracellular loop (EC2 domain) and four transmembrane domains
(Figure 1). The EC2 domain contains a region conserved among tetraspanins, but also a highly
variable region that is frequently involved in the specific interactions between tetraspanins and
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various non-tetraspanin partners (Yauch et al., 2000; Charrin
et al., 2001; Shoham et al., 2006; Zevian et al., 2011). It is typical
for tetraspanins to undergo extensive post-translational modifi-
cation. Covalent attachment of palmitate to intracellular cysteine
residues is implicated in mediating tetraspanin-tetraspanin inter-
actions and assembly of tetraspanin-enriched domains that can
support signaling (Berditchevski et al., 2002; Charrin et al., 2002;
Yang et al., 2002, 2004). Furthermore, nearly all tetraspanins
display extensive N-linked glycosylation at extracellular sites
(Maecker et al., 1997). This glycosylation is likely to have func-
tional relevance, as shown with CD82 and CD9, which could only
influence motility or apoptosis when glycosylated (Ono et al.,
1999, 2000). A variety of glycosylation patterns are observed
across cell lines, including those of the same lineage, but it
remains unknown whether these differences have any impact on
tetraspanin function (Schwartz-Albiez et al., 1988; White et al.,
1998).

Tetraspanin Interactions
Numerous cis-interactions occur between tetraspanins and
neighboring plasma membrane proteins within what are known
as tetraspanin-enriched microdomains (Hemler, 2005). These
microdomains may function as signaling platforms, similar to
lipid rafts but generally comprised of distinct components (Claas
et al., 2001; Le Naour et al., 2006a; Mattila et al., 2013; Zuid-
scherwoude et al., 2014). Many tetraspanin interactions depend

FIGURE 1 | Structural features of tetraspanins. Several common features

of tetraspanins are depicted here. They possess 4 transmembrane domains

(which are highly conserved), two short cytoplasmic tails, and two extracellular

portions known as the EC1 domain (small extracellular loop) and EC2 domain

(large extracellular loop). Portions of the EC2 domain are conserved between

various tetraspanins, but it also contains a highly variable region (shown in

red). One of the features of this segment is the presence of 2–4 disulfide

bonds (yellow lines) formed between cysteine residues (yellow circles), the

number of which depend on the particular tetraspanin. The variable region of

the EC2 domain contains binding sites for interactions with partner proteins

and is frequently where epitopes for anti-tetraspanin antibodies are found.

Many tetraspanins undergo palmitoylation at cysteine residues located near

the intracellular border of the four transmembrane portions. Additionally, most

tetraspanins also experience N-linked glycosylation at extracellular asparagine

residues (not depicted).

on binding to the extracellular EC2 domain (Yauch et al., 2000;
Charrin et al., 2001; Shoham et al., 2006; Zevian et al., 2011),
although transmembrane domains are also frequently involved
(Charrin et al., 2001, 2003; Shoham et al., 2006). A diverse set of
proteins interact with tetraspanins, including adhesionmolecules
(e.g., integrins), various immunoreceptors, and several intracel-
lular signalingmolecules.Table 1 provides a summary of proteins
reported to interact with hematopoietic-restricted tetraspanins.
A subset of interactions are discussed here, but a number of
excellent reviews cover this topic in greater depth for additional
tetraspanins (Tarrant et al., 2003; Charrin et al., 2009). Although
numerous associations have been documented with other trans-
membrane proteins, there are fewer examples of tetraspanins
interacting with cytoplasmic proteins. This is not surprising,
given their short cytoplasmic tails are generally less than 20
amino acids in length (Maecker et al., 1997). This has contributed
to the thought that tetraspanins do not directly participate in
signal transduction. However, several tetraspanins have been
reported to associate with intracellular signaling proteins. Com-
mon cytoplasmic partners include PI4K and PKC (Berditchevski
et al., 1997; Zhang et al., 2001; Andre et al., 2006), but tetraspanins
have also been shown to interact with several other signaling pro-
teins (Clark et al., 2004; Little et al., 2004; Andre et al., 2006; Le
Naour et al., 2006b; Lapalombella et al., 2012).While tetraspanins
clearly influence signaling, it remains possible that some of these
interactions could be indirect as a result of association with
adapter proteins.

Tetraspanins have been largely discounted as potential cell-
surface receptors on the basis of their structure, which pro-
trudes at most 5 nm into extracellular space (Kitadokoro et al.,
2001; Min et al., 2006). While their interactions do primarily
occur in cis, recent publications have challenged the notion that
tetraspanins cannot also function as receptors. CD9 is reported
to have multiple soluble ligands, both acting as an alternative IL-
16 receptor in mast cells (Qi et al., 2006) and binding PSG17,
a placental protein released during pregnancy that can induce
macrophages to release IL-10, IL-6, and TGFβ (Waterhouse et al.,
2002). CD81 has been identified as an essential receptor for

TABLE 1 | Proteins associated with hematopoietic-specific tetraspanins.

Tetraspanin Interactions References

CD37 Syk, Lyn, SHP1, PI3Kδ, PI3Kγ Lapalombella et al., 2012

MHC-II Angelisová et al., 1994

Dectin-1 Meyer-Wentrup et al., 2007

CD53 α4β1 integrin Mannion et al., 1996

PKC Zhang et al., 2001

CD2 Bell et al., 1992

CD20, MHC-I Szöllósi et al., 1996

MHC-II Angelisová et al., 1994

Unknown tyrosine phosphatase Carmo and Wright, 1995

Tssc6 Glycoprotein IIb/IIIa (α2bβ3 integrin) Goschnick et al., 2006

TSPAN33 ADAM10 Haining et al., 2012
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Hepatitis C virus (Pileri et al., 1998). CD82 has been described as
a receptor for the endothelial cell-surface protein DARC. While
expression of CD82 typically decreases tumor metastasis, this
suppression is eliminated in DARC knockout mice (Bandyopad-
hyay et al., 2006). Despite these occasional reports, the capability
of tetraspanins to bind endogenous ligands in a trans-fashion
remains somewhat controversial in the field.

Anti-tetraspanin antibodies typically induce functional effects
of a degree exceeding that observed in knockout mice, which
often exhibit mild phenotypes (Levy et al., 1998), This may result
from perturbation of tetraspanin-enriched microdomains, given
the extensive network of proteins that interact with tetraspanins
and their partners. The ability to directly influence a multitude of
biological processes is rather unique compared to antibodies tar-
geting most other surface proteins. While a potentially beneficial
trait if it can be exploited, this also means that anti-tetraspanin
therapeutics could have complex effects. For example, anti-CD9
antibodies decrease CXCR4-dependent transendothelial migra-
tion, but also increase adhesion to fibronectin, endothelial cells,
and bone marrow stromal cells (Masellis-Smith and Shaw, 1994;
Leung et al., 2011). To further complicate matters, antibodies
targeting different epitopes may have distinct effects. Anti-CD9
antibody targeting a different epitope does not alter adhesion to
fibronectin (a ligand of α4β1 integrin), instead increasing adhe-
sion to laminin, an α6β1 integrin ligand (Gutierrez-Lopez et al.,
2003). We will further explore the topic of tetraspanin-directed
therapeutic strategies in a later section of this review, following
a discussion of the potential tetraspanin targets expressed within
the immune system.

Tetraspanins in the Hematopoietic System

Many of the tetraspanins present on immune cells are also found
in a variety of other tissues, but some display hematopoietic-
restricted expression, including CD37, CD53, Tssc6 (TSPAN32),
and TSPAN33 (Tarrant et al., 2003; Heikens et al., 2007). The
expression patterns of these tetraspanins are summarized in
Table 2. Here we will individually discuss several tetraspanins
present in normal and malignant cells, beginning with the four
proteins primarily found in the hematopoietic system. Func-
tional roles of the hematopoietic-restricted tetraspanins are also
summarized in Table 3.

CD37
This protein is most highly expressed by mature B-cells, although
other immune cells express CD37 to a lesser degree (Link et al.,
1986; Van Spriel et al., 2009; Deckert et al., 2013). It is absent
in the earliest stages of B-cell development and is lost again
following differentiation into plasma cells; a pattern mirrored
by B-cells malignancies originating from various developmen-
tal stages (Barrena et al., 2005). CD37 is highly expressed in
mature B-cell malignancies, such as non-Hodgkin lymphoma
and chronic lymphocytic leukemia (CLL), but is low or absent
in acute lymphoblastic leukemia and multiple myeloma. The
expression pattern of CD37 has led to considerable interest in
targeting this tetraspanin therapeutically (Zhao et al., 2007; Hei-
der et al., 2011; Krause et al., 2012; Dahle et al., 2013; Deckert

TABLE 2 | Expression pattern of tetraspanins in the hematopoietic system.

Tetraspanin Expression

CD37 B-cells (predominantly), T-cells, granulocytes, MO, DCs

CD53 B-cells, T-cells, granulocytes, MO, DC, NK cells, HSCs/HPCs

Tssc6 B-cells, T-cells, granulocytes, MO, DCs, platelets, erythroid cells,

HPCs

TSPAN33 B-cells (activated), erythroid precursors, kidney (PCT, DCT, CD)

CD9 B-cells, T-cells, granulocytes, MO, DCs, platelets/

megakaryocytes, HSCs/HPCs, various non-hematopoietic tissues

CD81 B-cells, T-cells, MO, DCs, NK cells, HPCs, various

non-hematopoietic tissues

CD82 B-cells, T-cells, granulocytes, MO, DCs, HPCs, various

non-hematopoietic tissues

CD151 B-cells, T-cells, neutrophils, MO, DCs, platelets/megakaryocytes,

various non-hematopoietic tissues

MO, monocytes/macrophages; DC, dendritic cell; HSC/HPC, hematopoietic stem

cell/progenitor cell; PCT/DCT, proximal or distal convoluted tubules; CD, collecting ducts.

CD37, expression determined at protein level in human cells (Deckert et al., 2013) and by

mRNA in mice (Van Spriel et al., 2009). CD53, expression by protein in humans (Olweus

et al., 1993; Mollinedo et al., 1997; Barrena et al., 2005; Beckmann et al., 2007). Tssc6,

expression determined at mRNA level in mice (Nicholson et al., 2000; Robb et al., 2001;

Goschnick et al., 2006). TSPAN33, expression determined at both protein/mRNA level in

humans (Luu et al., 2013) and by mRNA levels in mice (Heikens et al., 2007). Broadly

expressed tetraspanins (CD9, CD81, CD82 CD151), expression at protein level (reviewed

by Maecker et al., 1997; Tarrant et al., 2003; Zoller, 2009).

et al., 2013; Beckwith et al., 2014). This subject will be discussed
in detail within a later section of the review.

CD37-deficient mice exhibit defective IgG1 production in
response to T-cell dependent antigens (Knobeloch et al., 2000),
which is a consequence of decreased survival among IgG1-
secreting B-cells in the days following antigen exposure (Van
Spriel et al., 2012). It was demonstrated that CD37 has an impor-
tant role in clustering α4β1 integrin (also known as VLA-4)
on the plasma membrane. Absence of CD37 impaired integrin-
dependent Akt signaling that is typically activated through inter-
action with follicular dendritic cells expressing a ligand of α4β1
integrin (Van Spriel et al., 2012). Similarly, ligation of CD37 by
the antibody-derived peptide SMIP-016 also modulates the Akt
pathway in B-cells (Lapalombella et al., 2012). However, SMIP-
016 induces both pro-apoptotic Akt inactivation and oppos-
ing pro-survival phosphoinositide 3-kinase δ (PI3Kδ) activation.
Analysis of its sequence suggested that the cytoplasmic tails
of CD37 contained weak ITIM and ITAM-like motifs. Muta-
tional studies support this function, providing evidence that
the N-terminal ITIM can recruit SHP1 (which is capable of
dephosphorylating/inactivating Akt) and the C-terminal ITAM
can recruit PI3Kδ. While pro-survival and pro-apoptotic path-
ways are simultaneously induced by CD37 ligation, cellular death
is favored. This is associated with increased BIM, a BH3-only
Bcl-2 family protein that is critically important for its role in
controlling mitochondrial-induced apoptosis. Figure 2 displays
the signaling pathway implicated by the mechanistic studies of
Lapalombella et al., which explains why several anti-CD37 thera-
peutics drive apoptosis in leukemia cells (Zhao et al., 2007; Hei-
der et al., 2011; Krause et al., 2012; Lapalombella et al., 2012;
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TABLE 3 | Function of hematopoietic-restricted tetraspanins.

Tetraspanin Reported functions

CD37 B-cell immunity:

(1) Promotes T-cell dependent B-cell responses by mediating α4β1 integrin signaling in B-cells to support survival of IgG1-secreting cells

(Knobeloch et al., 2000; Van Spriel et al., 2012)

(2) Negatively regulates IgA production by B-cells (Van Spriel et al., 2009)

a. In macrophages, CD37 negatively regulates fungal-induced Dectin-1 stimulation (and subsequent IL-6 production), which may contribute to

increased IgA production (Meyer-Wentrup et al., 2007)

T-cell immunity:

(1) Complex role, but its involvement in DC migration makes CD37 essential for normal T-cell responses (Gartlan et al., 2013). However, it also…

a. negatively regulates TCR signaling in vitro (Van Spriel et al., 2004)

b. negatively regulates peptide/MHC presentation (Sheng et al., 2009)

CD53 Potential role in regulation of TNFα production (Bos et al., 2010)

May promote cell survival (Voehringer et al., 2000; Yunta and Lazo, 2003)

Tssc6 Negatively regulates TCR signaling (Tarrant et al., 2002)

Important for normal T-cell responses in vivo, yet appears to negatively regulate T-cell activation in vitro similar to CD37 (Gartlan et al., 2010)

Platelet aggregation, by controlling GPIIb/IIIa signaling (Goschnick et al., 2006)

TSPAN33 Unknown role in erythropoiesis (Heikens et al., 2007; Haining et al., 2012)

DC, dendritic cell; TCR, T-cell receptor; GPIIb/IIIa, glycoprotein IIb/IIIa.

Deckert et al., 2013; Beckwith et al., 2014). It is unknown why
recruitment/activation of SHP1 (which promotes cellular death)
is favored over that of PI3Kδ, although binding of anti-CD37
antibodies could cause conformational changes that alter how
CD37 interacts with its partners. It should be noted that all of
these therapeutic antibodies target the same epitope on CD37,
thus distinct effects may be observed with antibodies directed at a
different epitope. Apoptosis induction of this degree is unprece-
dented among anti-tetraspanin antibodies, raising questions as
to whether cellular death is directly attributable to CD37 func-
tion or if there is an alternative explanation (Hemler, 2014).
Using a secondary anti-Fc antibody to crosslink CD37/SMIP
complexes could drastically alter organization of the tetraspanin
microdomain. In addition, co-ligation of inhibitory FcγRIIb
could contribute to apoptosis similar to how the effects of anti-
CD9 antibodies in platelets were not CD9-driven but instead
resulted from Fcγ receptor engagement (Worthington et al.,
1990). While the impact of Fcγ receptor engagement cannot
be completely ruled out, particularly in regard to cytotoxicity
in CLL B-cells which express FcγRIIb, the pre-B 697 cell line
used for mutant CD37 studies is unlike mature B-cells in that it
lacks FcγRII (Suzuki et al., 2002; Lapalombella et al., 2012). Fur-
thermore, newer CD37-targeted antibodies induce leukemia cell
apoptosis without the need for a secondary anti-Fc crosslinker
(Krause et al., 2012; Beckwith et al., 2014).

While the expression of CD37 is low in non-B cells (Van Spriel
et al., 2009; Deckert et al., 2013), it still has important functions
in T-cells, dendritic cells, and macrophages (Van Spriel et al.,
2004; Meyer-Wentrup et al., 2007; Sheng et al., 2009; Gartlan
et al., 2010, 2013). CD37 associates with Dectin-1 and appears
to negatively regulate its activity in anti-fungal response, as IL-
6 production is dramatically increased in CD37−/− macrophages
followingDectin-1 stimulation (Meyer-Wentrup et al., 2007). It is
possible that this regulation is accomplished through recruitment

of phosphatases by CD37, which can associate with its N-terminal
domain (Lapalombella et al., 2012). IL-6 production by CD37−/−

cells likely supports the generation of IgA-secreting plasma cells,
leading to excessive IgA secretion that ultimately provides these
mice with resistance to fungal infections (Van Spriel et al., 2009).
CD37 plays a complex role in T-cell responses, as made evident
by the seemingly contradictory results of in vitro and in vivo
studies. In vitro, CD37−/− dendritic cells are hyperstimulatory
toward T-cells, and the data imply that CD37 negatively regu-
lates peptide-MHC presentation (Sheng et al., 2009; Gartlan et al.,
2010). Furthermore, CD37 in T-cells may play a negative reg-
ulatory role in T-cell receptor (TCR) signaling. CD37-deficient
T-cells proliferate more rapidly in response to TCR stimulation,
which could be a result of decreased Lck phosphorylation (Van
Spriel et al., 2004). While the in vitro data imply a negative regu-
latory role for CD37 in T-cell responses, the opposite is observed
using in vivo models. Mice deficient for CD37 are more sus-
ceptible to infection with murine malaria (Gartlan et al., 2010)
and fail to reject syngeneic tumor cells transfected to express a
foreign antigen (Gartlan et al., 2013). These discrepancies are
explained by the observation that dendritic cells from CD37−/−

mice have impaired migratory and adhesion capabilities, which
clearly overshadows other potential contributions of CD37 (Gart-
lan et al., 2013). It remains unclear whether the hyperproliferative
phenotype of CD37-deficient T-cells is relevant beyond in vitro
studies, but providing CD37−/− mice with wildtype dendritic
cells did not appear to significantly increase the number of IFNγ

producing T-cells relative to wildtype mice.

CD53
The tetraspanin CD53 is expressed by virtually all immune cells
(Tarrant et al., 2003), a subset of hematopoietic stem cells (Beck-
mann et al., 2007), and in a variety of hematological malignan-
cies (Barrena et al., 2005). CD53 mRNA transcripts increase in
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FIGURE 2 | Signaling pathway associated with CD37 ligation by

SMIP-016. Lapalombella et al. described a number of cytoplasmic proteins

which can associate with CD37, as depicted in the diagram. Ligation by

SMIP-016 leads to phosphorylation Tyr13 within an ITIM-like motif found in the

N-terminal cytoplasmic tail, which associates with a complex of proteins that

includes Syk, Lyn, and SHP1 (which likewise become phosphorylated). In

addition, SMIP-016 induces phosphorylation of an ITAM-like motif (containing

Tyr274 and Tyr280) located in the C-terminal cytoplasmic tail that recruits

PI3Kδ. Mutational studies suggest that the events requiring the N-terminal ITIM

drive apoptosis, while the C-terminal tail has a role in promoting cell survival.

The proposed mechanism of anti-CD37 induced cellular death involves a

balance between these signals, with preferential SHP1 activation driving

apoptosis. SHP1 is capable of inactivating both PI3K and Akt. SMIP-016

decreases the nuclear localization of Akt, preventing phosphorylation of

FoxO3a (and promoting retention in the nucleus) to allow transcription of

pro-apoptotic BIM. An opposing signal is transduced through PI3Kδ recruited

to the C-terminal ITAM, activating Akt and resulting in the downstream

phosphorylation of GSK3β (which permits nuclear translocation of pro-survival

β-catenin). However, the contribution of PI3Kδ to survival can be eliminated by

either combination with a PI3K inhibitor or deletion of the ITAM-containing

C-terminal domain of CD37. While both pro-survival and pro-apoptotic

signaling pathways that are activated upon ligation by anti-CD37 SMIP-016,

those that promote cellular death predominate. Several other CD37-targeted

antibodies directly induce leukemia cell death, presumably in a similar fashion

as SMIP-016/TRU-016. However, they do not require additional receptor

crosslinking (by use of anti-Fc antibody to amplify the signal) as was observed

with SMIP-016.

response to stimulation (Amiot, 1990; Mollinedo et al., 1998),
although its protein levels decrease in neutrophils despite hav-
ing increased transcript, so this data should be interpreted care-
fully (Mollinedo et al., 1998). There is substantial evidence that
CD53 has an important role in the immune system. In humans,
CD53 deficiency is associated with recurrent candida, intestinal,
and upper respiratory tract infections (Mollinedo et al., 1997).
With this clinical study it is unclear whether the altered CD53
expression resulted from mutation of the gene itself or a more
complex regulatory defect, but it was reported to be decreased or
absent in multiple cell types. In another study, a single nucleotide

polymorphism in the CD53 gene strongly correlated with serum
TNFα, suggesting this tetraspanin could have some role in medi-
ating cytokine production (Bos et al., 2010). Furthermore, it has
been implicated in the regulation of apoptosis by several stud-
ies. Elevated CD53 transcript was observed in radiation-resistant
lymphoma cell lines (Voehringer et al., 2000). In addition, lig-
ation of CD53 by antibody increased Akt phosphorylation and
protected lymphoid tumor cell lines from death while under con-
ditions of serum starvation (Yunta and Lazo, 2003). CD53 also
associates with PKC (Zhang et al., 2001), which becomes acti-
vated following treatment with anti-CD53 antibody (Bosca and
Lazo, 1994). With all anti-tetraspanin antibodies, however, con-
clusions about function should be made cautiously as their effects
could be either agonistic or antagonistic.

Tssc6 (TSPAN32)
The expression of Tssc6 mRNA is observed in hematopoetic
progenitors, B-cells, T-cells, myeloid cells, and erythroid cells
(Nicholson et al., 2000). What little we know of its function has
been learned from the knockout mouse model (Tarrant et al.,
2002). Despite being expressed widely among cells of hematopo-
etic origin, few phenotypic changes were observed in Tssc6−/−

mice. There were no defects in hematopoietic cell development
(erythroid, lymphoid, or myeloid), response by neutrophils to
acute infection was normal, and immunoglobulin production
at baseline or after immune challenge was unaltered. Similar to
CD37−/− T-cells, however, Tssc6−/− T-cells exhibit increased
proliferation in response to TCR stimulation and dendritic cells
are hyperstimulatory to T-cells (Tarrant et al., 2002; Gartlan et al.,
2010). Tssc6−/− mice also have poor CD8+ responses during
infection, which is significantly worse in CD37−/−Tssc6−/− mice
(Gartlan et al., 2010). This discrepancy between in vitro and
in vivo data has not yet been addressed as it has been in CD37−/−

mice, but it would be unsurprising if migratory/adhesion defects
were similarly involved given that tetraspanins commonly have
a role in mediating these activities. While evident that these
tetraspanins have certain complimentary functions, it should
also be noted that Tssc6−/− mice produce immunoglobulins
normally (and the CD37−/− phenotype is not more severe in
CD37−/−Tssc6−/− mice), and thus they also possess unique roles
in the immune system.

TSPAN33
The final hematopoietic-restricted tetraspanin to be discussed
in this review, TSPAN33, was originally described in erythroid
precursors (Heikens et al., 2007; Haining et al., 2012). Interest-
ingly, TSPAN33 maps to a hotspot for deletions in acute myeloid
leukemia and myelodysplastic syndrome, although the signifi-
cance of this is unknown (Chen et al., 2005). Knockout of the
gene coding for TSPAN33, also called Penumbra, led to ane-
mia to approximately 30% of mice between 6 and 17 months of
age (Heikens et al., 2007). While young mice were not anemic,
they did display an increase in erythrocytes with a “target cell”
appearance, perhaps indicative of structural defects that could
increase their rate of destruction. Splenomegaly was noted to be
more common, even in non-anemic mice, and was accompanied
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by an increase in splenic erythrocytes. It is plausible that the
splenomegaly was due to extramedullary hematopoiesis occur-
ring as a compensatory mechanism in response to erythrocyte
loss. TSPAN33 was later described as interacting with ADAM10,
a metalloprotease involved in cell maturation that could poten-
tially influence erythrocyte development in TSPAN33−/− mice
(Haining et al., 2012).

A recent publication challenges the notion that TSPAN33 is
primarily expressed in erythroid precursors (Luu et al., 2013).
The authors report it is highest (by mRNA and protein) in acti-
vated B-cells, and is comparatively low in human bone marrow
and absent in other lineages of activated leukocytes. Consis-
tent with this, TSPAN33 protein was also observed in Burkitt
lymphoma cell lines and was uniformly expressed in diffuse
large B-cell lymphoma biopsies. Elevated TSPAN33 transcripts
were also detected in systemic lupus erythematosus and rheuma-
toid arthritis patient samples, pathological states where activated
B-cells are expected to be present. In addition, this tetraspanin
appears to be expressed in the kidney (proximal/distal convo-
luted tubules and collection ducts), albeit at lower levels than
activated B-cells. Although this would mean that TSPAN33 is
not entirely restricted to hematopoietic cells in humans, its speci-
ficity would remain higher than most tetraspanins and it may
still have utility as a therapeutic target. While the expression
of TSPAN33 was low in bone marrow, the authors did not
examine cells of the erythrocyte lineage in isolation. Deposited
microarray data agrees with the original reports that TSPAN33
is highly expressed in mouse erythroid precursors, but this pat-
tern does not appear to be mirrored in human bone marrow
(Seita et al., 2012). This could partly explain the disagreement
between these studies. Overall, these contradictory results are
intriguing but will require further confirmation. The introduc-
tion of improved, validated antibodies for studying TSPAN33
will certainly help, as the quality of currently available reagents is
underwhelming.

Other Tetraspanins
A number of additional tetraspanins are functionally relevant to
immune cells. However, they are expressed in many different tis-
sues, thus have reduced utility as therapeutic targets in hemato-
logical malignancy. Therefore, we will only briefly discuss a small
subset of these proteins. In particular, CD9, CD81, CD82, and
CD151 have known roles in the immune system. It is well appre-
ciated that CD81 interacts with CD19 and acts as a co-receptor in
B-cell receptor signaling, but it appears to have roles in T-cells
as well (Maecker and Levy, 1997; Levy, 2014). Antibodies tar-
geting either CD81 or CD9 have both been reported to deliver
co-stimulatory signals to T-cells in a CD28-independent manner
(Tai et al., 1996; Witherden et al., 2000). CD81 and CD82 have
been shown to associate with one another, CD4, and CD8 in T
cells (Imai et al., 1995). In B-cells, CD82 has also been shown to
associate with CD19 (Horváth et al., 1998).

The prognostic significance of CD9 expression varies between
different types of cancer. Low expression in solid tumors is
sometimes associated with poor prognosis, while in other cases
the opposite is true (Romanska and Berditchevski, 2011). In
hematological malignancy, CD9 expression has been studied in

multiple myeloma and monoclonal gammopathy of unknown
significance (MGUS), which precedes myeloma development.
Barrena et al. observed that CD9 expression was higher in sam-
ples from patients with MGUS (Barrena et al., 2005). A later
retrospective study investigated CD9 expression in bone mar-
row aspirates from 81 myeloma patients by flow cytometry and
discovered that more patients with inactive disease expressed
CD9 (60.7%) than those with active disease (33.9%) (De Bruyne
et al., 2008). Absence of CD9 expression at diagnosis also cor-
related with decreased survival. Interestingly, the transfection of
myeloma cell lines with CD9 was reported to increase their sus-
ceptibility to lysis by NK and T-cells (Shallal and Kornbluth,
2000), offering a potential explanation for how CD9 downreg-
ulation could benefit tumor cells. Transfection of myeloma cell
lines with CD9 also increases their sensitivity to the proteosome
inhibitor bortezomib, which is frequently used in the treatment
of myeloma, suggesting that loss of CD9 can influence drug
resistance (Hu et al., 2014).

CD151 is known to interact with α3β1 integrin, through which
this tetraspanin has been reported to mediate neutrophil motil-
ity (Yauch et al., 1998). Similar to CD37 and Tssc6, CD151 is
also implicated in the negative regulation of T-cell activation.
CD151−/− murine T-cells are hyperproliferative in response to
TCR-stimulation (Wright et al., 2004). Likewise, CD151−/− den-
dritic cells are hyperstimulatory to T-cells, although this appears
to be through regulation of co-stimulation rather than influenc-
ingMHC/peptide presentation as CD37 does (Sheng et al., 2009).
However, conclusions from these in vitro data should be made
carefully, given that T-cells from CD37−/− and Tssc6−/− mice
have similar phenotypes, yet poor T-cell responses are observed
in vivo (Van Spriel et al., 2004; Sheng et al., 2009; Gartlan et al.,
2010, 2013).

Targeting Tetraspanins in Hematological
Malignancy

Antibody-based strategies for treating cancer have rapidly
increased in prevalence since anti-CD20 rituximab was intro-
duced to the clinic. More than a dozen antibodies have been
approved by the U.S. Food and Drug Administration (FDA) for
cancer therapy and hundreds of ongoing human trials are reg-
istered at clinicaltrials.gov (Scott et al., 2012). The first attempts
to develop a tetraspanin-targeted therapy predate the approval of
rituximab by nearly a decade, when 131I –labeled murine anti-
CD37 antibody was tested in a small cohort of non-Hodgkin
lymphoma (NHL) patients (Press et al., 1989). While the early
results were promising, targeting CD20 was quickly becoming
the favored approach and CD37 was subsequently neglected for
many years. Anti-CD37 therapy has experienced a recent resur-
gence, with five different targeting approaches being explored in
B-cell malignancies.While several tetraspaninsmay be promising
targets for cancer therapy, CD37 is by far the furthest in terms
of clinical development (as summarized in Table 4). Thus, we
will begin by reviewing advances in anti-CD37 therapy, to be fol-
lowed by a broader discussion of tetraspanin-targeted therapy in
hematological malignancy.
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TABLE 4 | Clinical development of anti-CD37 therapies.

Therapeutic Type Clinical trials Description

Otlertuzumab (TRU-016) mAb-derived polypeptide A. Phase 1/1b (NCT00614042) A. Treatment naïve/relapsed CLL (Byrd et al., 2014) and relapsed NHL

(Pagel et al., 2015)

B. Phase 1/2 (NCT01188681) B. TRU-016 + bendamustine vs. bendamustine in relapsed CLL (Robak

et al., 2013)

C. Phase 1b (NCT01644253) C. TRU-016 + rituximab in treatment naïve CLL

D. Phase 1 (NCT01317901) D. TRU-016 + rituximab + bendamustine in relapsed NHL (Gopal et al.,

2014)

BI 836826 (mAb 37.1) Fc-engineered IgG1 Phase 1 Details not yet available. Trials in both CLL and NHL are anticipated

IMGN529 antibody-drug conjugate Phase 1 (NCT01534715) NHL patients with relapsed/refractory disease

Betalutin 177Lu radioimmunotherapy Phase 1/2 Relapsed NHL patients (Kolstad et al., 2014)

Otlertuzumab (TRU-016)
CD37 is highly expressed on the surface of human B-cells (where
its antigen density is at least 15 times greater than on non-B
leukocytes) and it is present in the vast majority of CLL and
NHL cases (Deckert et al., 2013), making it an attractive tar-
get for immunotherapy. Several CD37-targeting antibody-based
therapeutics have been developed which are currently being eval-
uated in the clinic (Zhao et al., 2007; Heider et al., 2011; Deckert
et al., 2013). Otlertuzumab was the first of these to begin clinical
trials. This therapeutic is a humanized, antibody-derived CD37-
targeting peptide developed using the ADAPTIR™ platform.
Mono-specific ADAPTIR molecules are built from a single-chain
variable fragment (a binding domain formed by linking the heavy
and light chain variable regions of an immunoglobulin), fused to
the hinge region and Fc domain of human IgG1 (Figure 3). These
molecules form antibody-like dimers that are smaller than IgG1
(intended to increase tissue penetration), but otherwise retain
similar pharmacokinetics and activity as traditional IgG1. Pre-
clinical studies using SMIP-016, a tool molecule not fully human-
ized (but containing human IgG1 Fc), demonstrated superior NK
cell-mediated antibody dependent cellular cytotoxicity (ADCC)
compared to anti-CD20 rituximab. This therapy also directly
killed CLL tumor cells through induction of caspase-independent
apoptosis when in the presence of anti-Fc crosslinker (Zhao
et al., 2007). As discussed earlier, SMIP-016 was shown to induce
both pro-apoptotic Akt inactivation and (to a lesser extent) pro-
survival PI3Kδ activation (Lapalombella et al., 2012). The simul-
taneous activation of these opposing signaling pathways provides
an opportunity to utilize unique combination strategies for anti-
CD37 therapies. Indeed, Lapalombella et al. showed that SMIP-
016 cytotoxicity against CLL B-cells was enhanced by the addition
of either a pan-PI3K inhibitor (LY294002) or the PI3Kδ-selective
CAL-101 (idelalisib; now FDA approved for CLL therapy). Fur-
ther investigation of this potential combination is warranted, and
should also be explored with newer anti-CD37 therapies that
can more efficiently induce apoptosis without dependence on
additional crosslinking (Heider et al., 2011; Deckert et al., 2013).

Otlertuzumab has been tested in CLL and NHL patients dur-
ing recent clinical trials (Byrd et al., 2014; Gopal et al., 2014;
Pagel et al., 2015). A phase I study in CLL observed modest
single-agent activity and found it to be well tolerated (Byrd et al.,
2014). Peripheral lymphocyte reduction was observed in 75.5%

of patients with elevated initial lymphocyte counts, but overall
response rate (ORR) was only 23% (19/83 patients) by NCI-
96 criteria. Only partial responses (PR) were observed, which
were more common among treatment-naïve CLL patients (6/7)
or those who received 1 or 2 previous therapies (12/28). These
results were encouraging, given that responses to single-agent rit-
uximab are also limited (Byrd et al., 2001; Huhn et al., 2001), but
can be dramatically improved by combination with chemother-
apy (Keating et al., 2005). Similarly, an early report from a
randomized Phase II trial in relapsed CLL demonstrates the
improved efficacy of otlertuzumab when combined with ben-
damustine (NCT01188681). Patients receiving otlertuzumab plus
bendamustine had an ORR of 80% (16/20 patients) with 20%
achieving a complete remission (CR), while those treated with
bendamustine alone had an ORR of only 42% (10/24) with a
CR rate of 4% (Robak et al., 2013). A single-agent trial of otler-
tuzumab was also performed in NHL patients with follicular
lymphoma, Waldenström’s macroglobulinemia, or mantle cell
lymphoma (Pagel et al., 2015). Responses were limited to 2 of
16 patients (12%). However, another phase I study evaluated the
combination of otlertuzumab, rituximab, and bendamustine in
12 patients with indolent NHL (follicular, mantle cell, and small
lymphocytic) who had relapsed after receiving treatment regi-
mens which included rituximab (Gopal et al., 2014). Two doses
of otlertuzumab were tested (10 or 20mg/kg) with 6 patients
per dose. This regimen was well tolerated and achieved an ORR
of 83% (10/12), with four CRs. All of the patients receiving the
higher dose (6/6) responded, with 2 CRs and 4 PRs. Overall, these
clinical studies highlight the promise of anti-CD37 therapies, par-
ticularly in combination with other agents. The ongoing clinical
evaluation of otlertuzumab and other CD37-targeted therapies is
summarized in Table 4.

Anti-CD37 Therapeutics with Enhanced ADCC
Several newer CD37-targeted therapeutics have the potential to
surpass the clinical benefits observed with otlertuzumab. To
mediate ADCC, IgG1 requires covalent attachment of oligosac-
charides at Asn297 within its Fc region, but eliminating fucose
from this carbohydrate structure is known to improve ADCC
(Shinkawa et al., 2003). A non-fucosylated variant of otler-
tuzumab has been generated which has enhanced binding to
FcγRIIIa, resulting in improved NK cell mediated ADCC and
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FIGURE 3 | CD37-Targeted antibody therapeutics. Several

anti-CD37 therapies under clinical development are shown. Left:

Otlertuzumab is an ADAPTIR™ molecule, constructed from an

anti-CD37 single-chain variable fragment (scFv; a binding domain

formed by linking the heavy and light chain variable regions of an

immunoglobulin) which has been fused to the hinge region and Fc

domain of human IgG1. Middle: mAb 37.1 is an Fc-engineered

IgG1 with specific amino acid substitutions within the Fc region to

increase ADCC mediated by effectors such as NK cells and

macrophages. Right: IMGN529 is a humanized anti-CD37 IgG1

(K7153A) conjugated to 3–4 molecules of cytotoxic drug (DM1) by

stable thioether bonds. mAb, monoclonal antibody; CHO, Chinese

hamster ovary; VH, heavy chain variable region; VL, light chain

variable region; CH, heavy chain constant region (1, 2, or 3); CL,

light chain constant region; D (orange circles), DM1; SMCC,

N-succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate.

phagocytosis by macrophages (Rafiq et al., 2013). Alternatively,
ADCC can be enhanced by mutating certain amino acid residues
within the Fc region of IgG1 (Lazar et al., 2006). This approach
was taken in the generation of mAb 37.1 (Figure 3), an IgG1 with
specificmutations in the CH2 domain that augment ADCC (Hei-
der et al., 2011; Krause et al., 2012). It is worth noting that this
anti-CD37 antibody also directly induces leukemia cell apopto-
sis, but in contrast to otlertuzumab it does not require anti-Fc
crosslinker. In addition, mAb 37.1 depleted B-cells in a human
CD37 transgenic mouse model, although this was not in the con-
text of malignant disease (Heider et al., 2011). Clinical trials eval-
uating the humanized version of this antibody are anticipated in
both Europe and the United States.

CD37-Targeted Delivery of Cytotoxic Agents
This final broad category of therapies utilizes anti-CD37 antibod-
ies to guide cytotoxic agents to tumor cells. CD37 internalizes
moderately faster than CD20 when bound by antibody (Press
et al., 1994), yet not so quickly that ADCC is prevented (Zhao
et al., 2007; Heider et al., 2011; Krause et al., 2012; Deckert
et al., 2013; Beckwith et al., 2014). This affords an opportunity to
exploit the unique properties of CD37 to generate therapeutics

that: (1) maintain the Fc-mediated effector functions of IgG1,
(2) deliver toxin into tumor cells through endocytosis, and (3)
mediate potent antibody-induced apoptosis. The CD37-targeted
antibody-drug conjugate IMGN529 has each of these functions,
giving it a unique repertoire of mechanisms among therapeutics
for B-cell malignancy (Deckert et al., 2013; Beckwith et al., 2014).
IMGN529 is a humanized anti-CD37 IgG1 conjugated to DM1
(Figure 3), a drug which inhibits microtubule assembly during
mitosis (Deckert et al., 2013). Unlike otlertuzumab (but analo-
gous to mAb 37.1), CLL B-cells treated with the unconjugated
antibody-component of IMGN529 undergo extensive apoptosis
without the need for anti-Fc crosslinking antibody. Given that
anti-CD37 antibodies do not react with mouse CD37, a trans-
genic mouse expressing human CD37 was generated and crossed
with a commonly used model of CLL (Beckwith et al., 2014).
In this model, IMGN529 rapidly depleted peripheral leukemia,
eliminated the proliferative subset of tumor cells within lymphoid
tissues, and improved overall survival. While these results are
promising, it remains to be seen whether the additional delivery
of anti-proliferative drug will be more effective in humans than
other methods of targeting CD37, particularly in more indolent
diseases like CLL. Currently, IMGN529 is being evaluated in
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NHL as part of an ongoing clinical trial (NCT01534715). This
trial has encountered some early difficulties, with several patients
experiencing grade III/IV neutropenia that can be largely avoided
with the addition of corticosteroids and G-CSF (Stathis et al.,
2014). While possible that the low level of CD37 expression on
neutrophils results in their direct elimination, evidence obtained
from mouse models is suggestive of cell redistribution (Deckert
et al., 2014). Only relatively low doses of IMGN529 have been
tested thus far, but 4 of 10 relapsed/refractory diffuse large B-cell
lymphoma patients have responded to therapy (1 CR, 3 PR). This
is expected to improve at higher doses, now that dose escalation
is continuing with prophylaxis that addresses the neutropenia.

Similar to the above approach, anti-CD37 antibody can be
used to deliver radioactive isotopes to tumor cells. This was
first explored over 20 years ago (Press et al., 1989), but the
renewed interest in targeting CD37 has lead to the reemer-
gence of CD37-directed radioimmunotherapy (Dahle et al., 2013;
Repetto-Llamazares et al., 2014). There are currently two FDA-
approved radiolabeled antibodies that target CD20 (Scott et al.,
2012). However, the propensity of CD37 to internalize may make
it a superior target, given that this occurs 10 times faster with
177Lu conjugated to anti-CD37 tetulomab compared to anti-
CD20 rituximab (Dahle et al., 2013). A phase I/II trial recently
initiated in Europe is exploring this therapeutic strategy in NHL
using Betalutin, a 177Lu-conjugated anti-CD37 antibody. Thus
far, 7 of 11 patients on this trial have responded (ORR of 64%)
with 4 CRs and 3 PRs (Kolstad et al., 2014).

A third approach to CD37-targeted drug delivery is the use of
immunoliposomes coated in antibody (Yu et al., 2013). CD37-
coated immunoliposomes effectively delivered cytotoxic drug
to cell lines and CLL B-cells, and specificity could be altered
by using a dual targeting approach with an additional CD19
or CD20 antibody. Furthermore, CD37 immunoliposomes that
were not loaded with drug were capable of inducing apoptosis
in CD37+ cells, presumably due to a crosslinking effect. While
this approach is interesting experimentally, transitioning to full
clinical development is quite complex due to formulation related
issues.

Future Directions for Tetraspanin-Targeted
Therapy
Thus far, CD37 represents the only tetraspanin that has been tar-
geted therapeutically in humans. Indeed, with greater than 15
times the antigen density on B-cells compared to other leuko-
cytes (Deckert et al., 2013), it has a significant advantage over
most tetraspanin targets which have expression in a variety of cell
types. Antibodies targeting CD9 and CD151 have demonstrated
promising activity in xenografts of solid tumors into mice (Zijl-
stra et al., 2008; Nakamoto et al., 2009). However, it is difficult
to extrapolate these results to humans given the limitations of
the models, which prevent assessment of toxicity. Specifically,
these antibodies lack cross-reactivity with the equivalent mouse
tetraspanins and the targeted antigens are expected to be highly
expressed on a number of healthy cell types in patients. Even in
tumors with increased expression of a tetraspanin, it may prove
difficult to selectively target those cells. In the case of CD37,
expression on non-B cells appears to be under the threshold

needed for antibody-mediated killing, given the lack of cyto-
toxicity against other leukocytes in whole blood assays (Deck-
ert et al., 2013; Beckwith et al., 2014) and the observation that
T-cell numbers were unaltered in patients treated with otler-
tuzumab (Byrd et al., 2014). However, even low expression could
have consequences in some contexts, as it may be responsible for
the neutropenia observed in the IMGN529 trial (Stathis et al.,
2014).

A potential alternative is to block the functions of more widely
expressed tetraspanins with antibodies that lack effector func-
tions or by disrupting interactions using soluble tetraspanin EC2
domains (Barreiro et al., 2005). However, it is unclear what kind
of undesirable effects could result from doing so, given our still
limited understanding of tetraspanin functions. Knockdownwith
siRNA has been successful in disrupting the activities of some
tetraspanins (Barreiro et al., 2005), although in many cases it
may do very little given that the phenotype of tetraspanin knock-
out mice is often mild in comparison to the effects induced by
antibodies. If knockdown of a more widely expressed tetraspanin
disrupts tumor function successfully, then perhaps the safest
route of action is delivery of siRNA by immunoliposomes that
are guided by antibodies targeting a more tumor-restricted
antigen.

A number of tetraspanins could be functionally relevant in
hematological malignancy given the numerous roles identified
in normal immune cells. If possible, it would be advantageous
for anti-tumor therapy to exploit antibody-mediated recruit-
ment of effector cells or complement. However, a more lim-
ited approach (as discussed above), may be necessitated for even
tetraspanins restricted to the hematopoietic system. For exam-
ple, CD53 is widely expressed by many immune cells and even
some hematopoietic stem cells (Table 2). Administering anti-
CD53 IgG1 could lead to even more significant loss of non-
tumor cells than CD52-targeting alemtuzumab, which is typically
reserved for salvage therapy in CLL due to widespread CD52
expression among non-B leukocytes. It would be difficult to jus-
tify the pursuit of such a therapy given the number of more
specific antibody therapeutics and small molecule inhibitors in
clinical development. Therefore, even those tetraspanins with
hematopoietic-restricted expression could demand an approach
such as siRNA delivery, antibodies without effector functions, or
other alternatives.

The recent report that TSPAN33 is highly expressed by acti-
vated B-cells and in several B-cell malignancies is intriguing
(Luu et al., 2013), but additional studies are required to resolve
conflicts with previously published work (Heikens et al., 2007;
Haining et al., 2012). Surface expression of TSPAN33 on human
erythroid precursors (and other cell types) should be more thor-
oughly investigated in human cells. Although some expression
of TSPAN33 was observed in the kidney, it was not present
in glomeruli and thus should be largely inaccessible to thera-
peutic antibodies (Luu et al., 2013). Therefore, TSPAN33 may
represent a useful therapeutic target in B-cell malignancies (or
autoimmune diseases) characterized by B-cells with an activated
phenotype.

Can the relative ease by which CD37 is targeted by anti-
body therapeutics be replicated for other tetraspanins, or is it
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an anomaly? Their expression patterns may simply not be con-
ducive to targeting with IgG1, and thus antibodies that do not
recruit effector cells or other alternative approaches should be
strongly considered. Overall, attempts to target widely expressed
tetraspanins could present challenges, but it will become easier to
develop safe and effective therapeutic strategies as we continue to
better understand their functional roles in various malignancies
and normal cell types.
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