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The role of miRNAs in
stress-responsive hepatic stellate
cells during liver fibrosis
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The progression of liver fibrosis and cirrhosis is associated with the persistence of an

injury causing agent, leading to changes in the extracellular environment and a disruption

of the cellular homeostasis of liver resident cells. Recruitment of inflammatory cells,

apoptosis of hepatocytes, and changes in liver microvasculature are some examples

of changing cellular environment that lead to the induction of stress responses in

nearby cells. During liver fibrosis, the major stresses include hypoxia, oxidative stress,

and endoplasmic reticulum stress. When hepatic stellate cells (HSCs) are subjected to

such stress, they modulate fibrosis progression by induction of their activation toward

a myofibroblastic phenotype, or by undergoing apoptosis, and thus helping fibrosis

resolution. It is widely accepted that microRNAs are import regulators of gene expression,

both during normal cellular homeostasis, as well as in pathologic conditions. MicroRNAs

are short RNA sequences that regulate the gene expression by mRNA destabilization and

inhibition of mRNA translation. Specific microRNAs have been identified to play a role in

the activation process of HSCs on the one hand and in stress-responsive pathways on

the other hand in other cell types (Table 2). However, so far there are no reports for the

involvement of miRNAs in the different stress responses linked to HSC activation. Here,

we review briefly the major stress response pathways and propose several miRNAs to

be regulated by these stress responsive pathways in activating HSCs, and discuss their

potential specific pro-or anti-fibrotic characteristics.

Keywords: miRNAs, hepatic stellate cells, fibrosis, ER stress, hypoxia, oxidative stress

Introduction

Liver fibrosis is the pathological condition of the liver resulting from sustained wound healing
in response to chronic liver injury. Multiple factors can lead to such injury, including genetic
(the accumulation of misfolded alpha1-antitrypsin), cholestatic (sclerosing cholangitis), metabolic
(non-alcoholic fatty liver disease and non-alcoholic steatohepatitis), drug induced (paracetamol-
intoxication and alcohol) and viral diseases (hepatitis B and C) (Friedman, 2003; Wallace et al.,
2008). Liver fibrosis can eventually progress toward cirrhosis, which is characterized by the loss
of endothelial fenestrations, excessive scar formation in the space of Disse, and the presence
of vascularized fibrotic septa. These distortions of liver architecture and subsequent cellular
homeostasis lead to impaired organ function, ascites, encephalopathy, variceal hemorrhage, portal
hypertension and the development of hepatocellular carcinoma (Schuppan and Afdhal, 2008).
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Role of miRNAs during Hepatic Stellate
Cell Activation

One of the key features in the development of liver fibrosis
is the augmenting presence of myofibroblasts in the liver.
Myofibroblasts are characterized by their stellate shape, the
expression of some specific proteins, such as alpha-smooth
muscle actin (α-SMA), and the excessive production of
extracellular matrix proteins, including fibronectin and collagen
type I, III, and IV. Hepatic stellate cells (HSCs) transdifferentiate
upon injury into myofibroblasts, and can be considered as the
major origin of myofibroblasts (Mederacke et al., 2013). During
initiation and progression of the liver fibrosis process, the liver
is subjected to various kinds of stress including hypoxia (Nath
and Szabo, 2012), oxidative stress (Parola and Robino, 2001), and
endoplasmic reticulum (ER) stress (Li et al., 2015). HSCs will
respond by activating into myofibroblasts, which is characterized
by a change in gene (Jiang et al., 2006; De Minicis et al., 2007)
and microRNA expression (Guo et al., 2009a), as reviewed in
He et al. (2012a); Huang et al. (2014a) and Coll et al. (2015).
Numerous detailed reports on gene expression changes during
HSC activation are available, but information regarding their
regulation by specific miRNAs remains rather vague.

MiRNAs are short non-protein coding RNA sequences of
20–23 nucleotides that are evolutionary conserved and are
encoded in the genome. The human genome is supposed to
encode for approximately 1000 miRNAs, which can be expressed
in an ubiquitous or a tissue/cell-type specific way (Lee, 2013),
and each of these miRNAs is thought to have a great range
of potential targets, thus indicating its importance in gene
regulation (Bartel and Chen, 2004). MiRNA-encoding genes
are transcribed by RNA polymerase II, with the generation
of primary miRNA, which will then be processed in the
nucleus by activity of a microprocessor complex, named Drosha.
The activity of this Drosha containing complex leads to the
production of a hairpin-shaped premature miRNA defined by
a length of approximately 70 nucleotides and the presence
of a stem-loop structure (Lee et al., 2003; Gregory et al.,
2004). Correctly processed premature miRNAs are then bound
by Exportin-5 in a Ran guanosine triphosphate (RanGTP)-
dependent manner, leading to the transport of these pre-
miRNAs toward the cytoplasm (Lund et al., 2004). In the
cytoplasm, the pre-miRNAs undergo processing by Dicer,
another ribonuclease III enzyme, resulting in the production of
double stranded RNA (dsRNA) of 20–23 nucleotides (Bernstein
et al., 2001). In this double stranded nucleotide-complex, a
mature miRNA strand, known as the guide strand, and a
miRNA* strand, known as the passenger strand can be identified.
The mature miRNA strand will be loaded into the Argonaute
2 (Ago2)-containing RNA-induced silencing complex (RISC),
which is the effector of miRNA-mediated activities (Gregory
et al., 2005). It is believed that the RISC complex can cause
down-regulation of gene expression through 2 mechanisms;
by an inhibition of mRNA translation or by reducing the
mRNA stability and thus facilitating the degradation (Figure 1)
(Bagga et al., 2005; Orban and Izaurralde, 2005; Pillai et al.,
2005).

Since the discovery of miRNAs in 1993 (Wightman et al.,
1993), researchers continuously tried to evoke the role of
miRNAs in cellular homeostasis and in development of
pathological conditions, including liver fibrosis. There are many
miRNAs expressed during, and described to be involved in,
HSC activation (Table 1), making them the topic of concise
reviews (He et al., 2012a; Huang et al., 2014a). Here, we only
briefly highlight some key miRNAs to illustrate the possible roles
a miRNA could have in quiescent or activated HSCs. When
evaluating these miRNA-studies it is important to keep in mind
that although many miRNAs are conserved among eukaryotic
organisms, it is possible that they do not display the same
expression patterns in specific (pathological) processes, and thus
can display interspecies differences in expression (Ha et al., 2008).

miR-29
miR-29 is the first and most thoroughly investigated miRNA-
family in HSCs. miR-29a, miR-29b, and miR-29c are all down-
regulated during the in vitro activation of isolated rat and mouse
HSCs, and in liver biopsies from patients with advanced liver
fibrosis. This down-regulation is promoted by transforming
growth factor-β (TGF-β) and factors like inflammatory signals
including lipopolysaccharide (LPS) and nuclear factor kappa
B (NF-κB) (Roderburg et al., 2011). The miR-29 family is of
importance for HSC activation, as they can bind to 3′-UTR
collagen types I and IV (Kwiecinski et al., 2011). Consequently,
miR-29 overexpression in HSCs reduces Collagen I and IV
synthesis (Roderburg et al., 2011) and maintenance of the
quiescent morphology (Sekiya et al., 2011). In addition to
collagen targeting, PDGF-C and IGF-I are identified as targets
of miR-29, with PDGF-C having pro-mitogenic and migratory
capacities, and IGF-I being an important mitogenic factor when
present in an autocrine manner in combination with PDGF-BB
(Kwiecinski et al., 2012). In support with these findings, miR-
29a/b levels were found to decrease in CCl4-treated male mice.
Interestingly, female mice do not show this decrease, most likely
due to differences in E2, which can induce miR-29a/b levels
(Zhang et al., 2012). Not only collagen production, but also other
aspects of HSC activation such as inflammatory response and cell
proliferation can be regulated by miRNAs such as is the case for
miR-146a and miR-16, respectively.

miR-146
miR-146 is also down-regulated during TGF-β-induced HSC
activation (He et al., 2012b), while overexpression of miR-
146a in HSCs leads to up-regulation of tissue inhibitor of
metalloproteinase 3 (TIMP-3) and down-regulation of IL-6
mRNA (Maubach et al., 2011). In another study, overexpression
of miR-146a lead to inhibition of proliferation of activated
HSCs. This would be the result of direct binding to the
promoter region of the SMAD4 mRNA, which regulates TGF-
β1-mediated gene expression, thus leaving the cell insensitive
to TGF-β1 stimulation (He et al., 2012b), demonstrating its
importance in the inflammatory response, and its link with
liver fibrosis. In addition, miR-146a is known to have a role in
the inflammatory response during liver reperfusion injury, as it
negatively regulates IL-1 receptor-associated kinase 1 (IRAK1)
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FIGURE 1 | MiRNA biogenesis. Transcription of the genes coding for

miRNAs leads to the generation of primary miRNAs, which will be cleaved in

the nucleus by Drosha, a ribonuclease III complex. The produced ribonucleic

structure is called premature miRNA, and will be transported to the

cytoplasm by Exportin 5, where it will undergo cleaving by Dicer, another

ribonuclease III enzyme. One strain of the double-stranded obtained

structure will integrate in the RISC-complex, leading to translational

repression, or degradation of the target mRNA.

and Toll-like receptor-associated factor 6 (TRAF6), leading to
a decrease in pro-inflammatory cytokine production, and by
inhibiting the pro-inflammatory NF-κB pathway (Jiang et al.,
2014). MiR-126 represents another miRNA that can regulate the
NF-κB pathway by suppressing the expression of NF-κB inhibitor
alpha (IκBα), thus leading to NF-κB activation (Feng et al., 2015).

MiR-16
miR-16 is another down-regulated miRNA during HSC
activation. This miRNA has been shown to inhibit the expression
of Cyclin D1, an important regulator of the cell cycle pathway.
Expression levels of miR-16 and Cyclin D1 are inversely
correlated in activating HSCs. Overexpression of this miRNA
in activated HSCs leads to accumulation of the cells in the
G0/G1-phase or G0/G1 to S-phase of cell cycle progression (Guo
et al., 2009c). In HSCs, miR-16 also acts as an anti-apoptotic
regulator in HSCs, by inhibition of B-cell lymphoma 2 (Bcl-
2) translation, a known anti-apoptotic gene, leading to the
enhanced expression levels of the underlying caspase-pathway
consisting of caspases 3, 8, and 9, and thus induction of apoptosis
(Guo et al., 2009b).

Function of Stress-Responsive Pathways
and Possible Contribution of miRNAs
during HSC Activation

As mentioned before, HSCs will undergo an activation process
in the presence of different (fibrogenic) stimuli like liver
injury, paracrine stimulation and autocrine regulation. This
activation changes the quiescent fat storing cells into fibrogenic,
proliferative and contractilemyofibroblasts characterized by their
expression of abundant intracellular filaments like α-SMA and
vimentin, secretion of ECM including collagen type I and III and
fibronectin and their high contractility (Kisseleva and Brenner,
2013). The contribution of stress response pathways in liver
fibrosis, cirrhosis and to the HSC activation is generally accepted
(Parola and Robino, 2001; Nath and Szabo, 2012; Li et al., 2015),
but cannot be interpreted as a simple cause and consequence
reaction. As literature mainly describes the contribution of
hypoxia (Nath and Szabo, 2012), oxidative stress (Parola and
Robino, 2001), and ER stress (Li et al., 2015) pathways during
liver fibrosis and cirrhosis progression (Figure 2), we will focus
on these three pathways.
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TABLE 1 | Significantly regulated miRNAs during HSC-activation.

References Up-regulated Down-regulated

MiRNAs REGULATED DURING HSC ACTIVATION

Guo et al., 2009b miR−29c*, −138, −140, −143, −193, −207, −325− 5p, −328, −349,

−501, −872, −874

miR−15, −16, −20b−3p, −92b, −122, −126, −146a, −341, −375

Ji et al., 2009 miR-27a, −27b, −30a, −30c, −30d, −130a, −130b, −450, −455 miR-9, −19b, −301, −520b, −520c, −721

Maubach et al.,

2011

Let-7b, −7c, −7e, miR-125b, −21, −22, −31, −132, −143, −145, −152,

−199a, −210, −214, −221, −222

Let-7f, miR−10a, −16, −26b, −29a, −30a− 5p, −30b, −30c,

−30d, −99a, −122a, −125a, −126, −146a, −150, −151*, −181a,

−192, −194, −195, −207, −296, −335, −422b, −483

Chen et al., 2011 miR-31, −34b, −34c, −125b−5p, −143, −145, −152, −193, −199a

−5p, −199a−3p, −214, −218, −221, −222, −301a,−345−5p, −425

miR-10a−5p, −101a, −126, −126*, −139−5p, −150, −192,

−195, −335, −338, −378*, −450a, −497, −877

Lakner et al., 2012 miR−34c, −184, −221 miR−16, −19a, −19b, −29a, −29c, −92a, −150, −194

Summary of published data regarding microRNA microarray profiling of activating primary rat HSCs. MiRNAs which display an overlap in different published data sets are displayed in

bold. *Mature miRNA derived from the 5′ arm of the precursor RNA also known as passenger strand.

Specific stress-related genes can be quickly switched on and off
in presence or absence of environmental stress-inducing factors
and this can be mediated by miRNAs (Babar et al., 2008; Leung
and Sharp, 2010) (Table 2, right panel). So far there are no
reports describing the functionality of specific miRNAs in these
stress response pathways of activating HSCs during liver fibrosis.
However, assumptions about miRNAs forming the link in stress-
responsive HSCs (Table 2) and their potential functions in these
conditions can be made based on the available data and will be
discussed here. We should keep in mind that the presence or lack
of overlap in miRNA expression pattern can be due to cell-type
and species-specificity and is no proof for actual involvement of
the miRNA in stress responsive HSCs, and should be elucidated
in future research.

Hypoxia Regulated miRNAs

In the process of liver fibrosis and cirrhosis, hypoxia in the
liver cells can be due to disruption of the normal hepatic
blood flow, damage of the microvasculature, and excessive
deposition of extracellular matrix in the sinusoidal space (Copple
et al., 2006). Cellular hypoxia leads to the activation of several
Hypoxia Inducible Factors (HIFs), a family of transcriptional
factors that work as key regulators for the maintenance of
cellular homeostasis when confronted with low oxygen levels
(Paternostro et al., 2010). At normal cellular oxygen levels,
the oxygen-dependent hypoxia inducible factor HIF-1α (HIF-
1α) is hydroxylated by members of the prolyl hydroxylase
family (PHD), leading to the rapid degradation of this protein.
Decrease of the cellular oxygen levels leads to loss of function
of PHD, and subsequent accumulation and translocation of
HIF-1α/HIF-2α to the nucleus. In the nucleus, the functional
HIF transcription factor complex is formed consisting of HIF-
α, HIF-1β and some hypoxic responsive elements (Semenza,
2007). HIF regulates certain processes such as angiogenesis,
iron metabolism, glycolysis, and pH control (Jiang et al., 1996;
Rosmorduc et al., 1999; Moon et al., 2009). Hypoxic conditions
lead to activation of the HSC cell line LX-2 as illustrated by an

up-regulation of α-SMA and collagen I protein levels, possibly
through activation of the Smad/TGF-β pathway (Shi et al., 2007).
HIF is proposed as a main regulator of hypoxia-mediated HSC
activation, since it can act as a regulator and stimulator of
profibrogenic mediators such as platelet-derived growth factor
(PDGF) A and B, plasminogen activator inhibitor-1, and vascular
epithelial growth factor (VEGF) (Forsythe et al., 1996; Moon
et al., 2009; Wang et al., 2013). The essential role of HIF-1α
during hypoxia-induced HSC activation was confirmed in vitro
by inhibition of HSC-activation due to silencing of HIF-1α
(Wang et al., 2013), and the reduced expression of activation
genes in HIF-1α-deficient HSCs undergoing hypoxia (Copple
et al., 2011). In vivo experiments using bile duct ligated (BDL)
Hif-1α-deficient and control mice, showed less fibrosis in Hif-1α-
deficient mice, as observed by lower levels of α-SMA and type
I collagen, thus further indicating its importance during liver
fibrosis (Moon et al., 2009).

MiRNAs can act down-stream and up-stream of the HIF
pathway. For example, miR-210 expression is directly regulated
by HIF-1α as it can bind to the hypoxia responsive element
(HRE) located up-stream of the transcription start site of miR-
210, leading to its enhanced transcription (Huang et al., 2009). It
is suggested, that HIF-2α would mediate miR-210 expression in
the absence of HIF-1α, also by interaction with consensus HREs
in the miR-210 promoter region (Zhang et al., 2009). MiR-210
effects a broad variety of cellular processes such as fine-tuning
cell proliferation by targeting e2f transcription factor 3 (E2f3)
(Giannakakis et al., 2008) and MNT, a known MYC antagonist,
and a member of the Myc/Max/Mad network (Zhang et al.,
2009) while regulating apoptosis by controlling expression of the
pro-apoptotic FLICE-associated huge protein (FLASH)/caspase-
8-associated protein 2 (Casp8ap2) (Kim et al., 2009). Genes such
as Nptx1, Rad52, Acvr1b, Fgrl, Hoxa1, andHoxa9 associated with
pathways like angiogenesis, tumor invasion, regulation of the
mitochondrial metabolism, and DNA damage repair were also
found to be miR-210 targets (Fasanaro et al., 2009; Huang et al.,
2009). The hypoxia-induced up-regulation of miR-210 in various
cancer cell lines (Huang et al., 2009) displays an overlap with its
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FIGURE 2 | Dynamic contribution of stress stimuli and miRNAs to

liver fibrosis progression and resolution. HSCs are major contributors

to the myofibroblastic cell pool in the fibrotic liver. In the presence of

various activation stimuli, HSCs will undergo a myofibroblastic

transdifferentiation process toward an activated state, which is

characterized by a change in miRNA and mRNA expression pattern. It is

widely accepted that the presence of hypoxia, oxidative stress (ROS), and

endoplasmic reticulum (ER) stress most likely supports this activation

process. However, ER stress could have a potential dual role in the

process, as it can also lead to induction of apoptosis in activated HSCs,

and thus could contribute to resolution of fibrosis. Simplified

representation of some of the signaling cascades and potential miRNAs

involved in these stress responses are given. MiRNAs depicted above the

HSCs have been reported to be enriched in either qHSC or aHSCs.

Putative HSC-stress responsive miRNAs that are discussed in the text are

depicted below the signaling cascades.

enhanced expression during the activation process of HSCs, thus
suggesting a potential role of this miRNA in hypoxia-mediated
HSC activation.

Another potential link in hypoxia-mediated regulation of HSC
activation is presented by miR-31. MiR-31 is up-regulated in
both in vivo and in vitro activated rat HSCs (Maubach et al.,
2011). This was confirmed in humans, where miR-31 was not
changed in whole liver samples of fibrotic livers, but an increased
expression of miR-31 was detected in HSCs during fibrogenesis.
Functional studies showed repression of HSC activation by
miR-31 inhibition, while miR-31 overexpression revealed its
promoting role in cell migration (Hu et al., 2015). Interestingly
it has been suggested that the biological function of miR-31 in
activating HSCs would be obtained through its effect on Factor-
inhibiting HIF-1(FIH) (Mahon et al., 2001; Hu et al., 2015).
In head and neck carcinoma, miR-31 negatively regulates the
expression of FIH and can thus regulate the expression of FIH
in a hypoxia-independent manner (Liu et al., 2010). In cancer
models this miRNA is up-regulated under hypoxic conditions
(Hebert et al., 2007), suggesting a very complicated and diverse
functionality of miR-31 during the reach for cellular homeostasis.

Previous research identified a direct link between the increased
nuclear levels of HIF-1α protein and an increased activated status
of HSCs in a hypoxic environment. HIF-1α has an indirect
activating effect on the expression of pro-fibrogenic genes such
as TGF-β, IL-6 and CTGF (Copple et al., 2011; Wang et al.,
2013). The exact role of miR-31 in this hypoxia-induced HSC
activation remains to be elucidated.We speculate on two possible
scenarios that are perhaps not exclusive. Due to pro-activating
signals from surrounding liver cells, HSCs will up-regulate miR-
31 expression, leading to inhibition of FIH function, and thus
enhanced HIF-1α expression, thereby favoring HSC activation in
normoxic conditions. Hypoxic regions appear in the liver due
to injury, what could favor the (further) induction of miR-31
expression, boosting the already enhanced HIF-1α expression,
further leading to progression or maintenance of HSC activation.

Oxidative Stress Regulated miRNAs

Cells in aerobic organisms have a continuous balance between
the production of pro-oxidants, such as reactive oxygen species
(ROS), and anti-oxidants. When a cell is subjected to oxidative
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stress, this normal balance fades by excessive production of pro-
oxidants. Various types of ROS are known, such as the singlet
molecular oxygen, hydrogen peroxide and the hydrogen radical,
which all have a specific half-life and mechanism of action (Sies,
1991).

There are several possible sources of ROS in the cell.
Mitochondria, the main site of oxygen consumption in aerobic
cells, are the main producers of ROS derived mainly through
the leakage of electrons and formation of superoxide (Guarente,
2008). Cytochrome P450 (CYP) acts in the detoxification of
metabolic as well as xenobiotic compounds by means of
oxidation (Aubert et al., 2011) making it also an important source
of ROS. Specifically the form CYP2E1, which is highly expressed
in hepatocytes, has been demonstrated to be a key source of
ROS in the liver (Poli, 2000). Another major source of ROS in
several cell types and HSCs is nicotinamide adenine dinucleotide
phosphate-oxidase (NADPH oxidase) (De Minicis and Brenner,
2007; Sergey, 2011).

Oxidative stress and the subsequent decreased levels of anti-
oxidants during liver fibrosis has been shown for a broad variety
of etiologies (Poli, 2000). ROS are produced by various cell types,
but it is thought that the major contributors of ROS production
in this pathology are apoptotic hepatocytes. HSCs express a non-
phagocytic form of NADPH oxidase, which presents a basal
level of activity, producing constitutively low levels of ROS and
increasing production upon different stimuli (Bataller et al.,
2003). NADPH oxidase of HSCs is activated upon phagocytosis
of these apoptotic bodies of hepatocytes (Shan-Shan et al., 2006).
Furthermore, NADPH oxidase-generated ROS in HSCs is also
induced by advanced glycation end-products (AGEs) which are
products of a non-enzymatic reaction of sugars with molecules
such as proteins, lipids and nucleic acids that accumulate in
diseases related to the metabolic syndrome (Yan et al., 2010).
Liver fibrosis is correlated with accumulation of systemic AGEs
and ROS in HSCs has been show to participate during the
development of liver diseases (Šebeková et al., 2002; Hyogo et al.,
2007; Guimarães et al., 2010).

Activated Kupffer cells and neutrophils are also described
as important producers of ROS during early stages of liver
fibrosis (Kisseleva and Brenner, 2007). The most important
result of oxidative stress is lipid peroxidation. As example, liver
fibrosis caused by excessive alcohol intake leads to injury of the
different liver cell types and consecutive excessive oxidation of
polyunsaturated membrane lipids due to enhanced generation of
ROS due to the elevated levels of cytochrome CYP2E1 (Nieto
et al., 1999). The products of such lipid peroxidation could
further catalyze the progression of fibrosis by activation of the
production of collagen α2 (I) in HSCs in a paracrine manner
(Bedossa et al., 1994). Furthermore, exposure of HSCs to ROS can
promote their proliferation and invasiveness. It is thought that it
would obtain these effects by an induction of MMP-2 expression,
and the enhancement of MT1-MMP and TIMP-2 protein levels,
in an ERK1/2 and PI3K dependent manner (Galli et al., 2005).

Several miRNAs have already been linked to the regulation of
the oxidative stress pathway, including members of the miR-200
family. From this miRNA-family, especially miR-200c has been
shown to display an increased expression after cellular exposure

to H2O2. This miRNA would lead to down-regulation of zinc
finger E-box binding homeobox 1 (Zfhx1a, aka Zeb1, or TCF8),
a transcriptional repressor, both on mRNA and protein level,
leading to cellular senescence and inhibition of cell proliferation.
Interestingly, an inhibitory loop was found between miR-200c
and Zeb1, as the promoter region of miR-200c contains two
conserved Zeb1 binding sites (Magenta et al., 2011). MiR-200c
can also regulate apoptosis, as it inhibits the translation of FAS
associated phosphatase (FAP-1) mRNA. Decreased expression of
FAP-1 leads to a greater sensitivity to CD95-mediated apoptosis
(Schickel et al., 2010). Some of the other identified targets of
miR-200c include Moesin (MSN), Fibronectin 1 (FN1), and
Rho GTPase activating protein 19 (ARHGAP19), important
regulators of the migratory and invasive capacity of cancer cells
(Howe et al., 2011). Another miRNA associated with oxidative
stress is miR-21. Cells exposed to ROSwould up-regulate miR-21,
which can directly interact with the 3′UTR of the programmed
cell death 4 (PDCD4) gene, a known tumor suppressor and
apoptosis-regulator, thereby preventing cell death. Oxidative
stress mediated up-regulation of miR-21 can be induced by NF-
κB activation through five NF-κB binding sites in the 5’ miR-
21 promoter region (Tu et al., 2014b; Wei et al., 2014). Up-
regulation of miR-21 would be a down-stream effect of NADPH
oxidase activity (Dattaroy et al., 2015), as this induces NF-κB
translocation to the nucleus (Yao et al., 2007) and its subsequent
binding to the miR-21 promotor (Sheedy et al., 2010). This
enhanced expression of miR-21 also leads to a suppression of
SMAD7 expression and therefore favors assembly of SMAD2/3-
SMAD4 heterodimers, a crucial event in the pro-fibrogenic TGF-
β signaling pathway (Dattaroy et al., 2015).

A potential link in oxidative stress-induced HSC activation
could be represented by miR-200a, which is down-regulated
during the process of liver fibrosis in rat, and in TGF-β1-
mediated activation of a rat HSC cell line (Sun et al., 2014).
MiR-200a also regulates proliferation of these activating HSCs,
shown by an accumulation of cells in the G0/G1 phase upon
miR-200a overexpression. Targets of miR-200a include pro-
fibrogenic factors TGF-β2 and β-catenin (Sun et al., 2014).
Another important miRNA-200a target gene is Kelch-like ECH-
associated protein 1 (Keap1), which negatively regulates the
stability of nuclear factor-erythroid-2-related factor 2 (Nrf2), a
known regulator of the expression of antioxidants involved in
the protection against oxidative damage (Yang et al., 2014).While
no information is available for miR-200c, in rat, miR-200a seems
to be down-regulated upon HSC activation while during liver
fibrosis progression in human and mouse, miR-200a and miR-
200b undergo a significant up-regulation (Murakami et al., 2011).
This is in line with the up-regulation in expression of the miR-
200 family after induction of oxidative stress in mouse fibroblasts
where miR-200a can target p38α mitogen-activated protein
kinase (MAPK) (Mateescu et al., 2011), which is downstream of
the oxidative stress stimulus, and leads to an inhibition of cell
division (Kurata, 2000). Despite opposing expression patterns
observed in different species, the involvement of miR-200a in
both HSC activation and oxidative stress response is clear. It is
therefore tempting to speculate that miR-200a could participate
in the anti-oxidant response of HSCs during liver injury.
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Endoplasmic Reticulum Stress Regulated
miRNAs

The generation of mediators that lead to a perturbation of the
ER homeostasis can be evoked by various stimuli associated
with the initiation or progression of the liver fibrosis process,
such as repeated cycles of ischemia and reperfusion due to
distorted hepatic flow, genetic mutations of proteins involved
in ER constitution and function, excessive exposure to certain
drugs (paracetamol, ethanol), obesity-linked enhanced presence
of lipids, and viral infections (HCV, HBV). These stimuli can
lead to oxidative stress, formation of protein aggregates, altered
membrane lipid-composition, and hyperhomocysteinemia with
resulting N-homocysteinylation, all leading to the dysfunction of
the ER, and accumulation of unfolded and misfolded proteins
(Malhi and Kaufman, 2011). Cells will try to counteract this
accumulation of misfolded proteins by diverse mechanisms such
as the unfolded protein response (UPR). The activation of the
UPR pathway, due to ER-resident stress sensors such as ATF-6,
IRE1, and PERK (Asselah et al., 2010), will lead to an enhanced
and more stringent folding and degradation of proteins in the
ER, and an overall diminishment of protein synthesis. When the
UPR fails to diminish the ER stress, the cells go into apoptosis.
Persistent ER stress has several consequences including the
excessive energy depletion due to the enhanced utilization
of energy for translocation of misfolded proteins; ASK1/JNK
mediated signaling leading to activation of caspases, and the
activation of the pro-apoptotic pathway of CHOP/GADD153
transcription factor, which all direct the cell toward apoptosis (Xu
et al., 2005). It will also lead to the release of the stored calcium in
the ER, which affects mitochondria; moreover it will lead to the
induction of oxidative stress, activation of the pro-inflammatory
NF-κB pathway and apoptosis of the cell. ER stress will also lead
to translocation and activation of SREBP, causing an enhanced
synthesis of lipids such as fatty acids and cholesterol, and an
enhanced cellular uptake of lipoproteins (Ji and Kaplowitz, 2006;
Ji, 2008).

Cultured HSCs, which are known to be relatively apoptosis-
insensitive, have been shown to undergo apoptosis in response
to persistent ER stress due to an increase of the amount of
intracellular calcium, and activation of JNK/p38 MAPK and
Calpain/Caspase pathways (Huang et al., 2014b). Activation
of the latter pathway can be explained by the decrease of
Calpastatin expression, which works as an inhibitor of the pro-
apoptotic Calpain. During the activation of HSCs, Calpastatin
levels become elevated, leading to the desensitization of the
HSCs toward apoptotic stimuli. ER-stress mediated decrease of
Calpastatin expression can thus lead to higher Calpain levels, and
consequent sensitization toward apoptotic stimuli (De Minicis
et al., 2012). The fibrosis counteracting effect of ER stress
was further supported by the decrease in α-SMA and Col1a1-
expression in ER-stress responsive activating HSCs (Huang et al.,
2014b). However, it is found that when HSCs are exposed to
oxidative stress-induced ER stress, the UPR will lead to the up-
regulation of different pathways leading to enhanced autophagy
and consequent HSC activation in vitro (Hernandez-Gea et al.,
2013). All described ER stress could thus be considered as

a complex mechanism of fibrosis regulation, with a possible
stimulatory role in HSC activation and a possible role in fibrosis
resolution due to its pro-apoptotic effects in activated HSCs.

The role of miRNAs during ER-stress remains largely
unknown. One of the miRNAs that has been studied in this
process is miR-199a-5p, which displays an up-regulation in
hepatocytes undergoing ER stress. This miRNA would have
several ER-stress related targets including the chaperone protein
GRP78 (which is also known as Bip and HSPA5), activating
transcription factor 6 (ATF6), and inositol-requiring enzyme 1α
(IRE1α), with the latter two being UPR transducers. As IRE1α
activated ER stress can induce cell death, activation of miR-199a-
5p, and thus subsequent down-regulation of IRE1α, would work
as a rescue mechanism to prevent the induction of apoptosis.
In silico target prediction identified DNA-damage regulated
autophagy modulator 1 (DRAM1) and cyclin-dependent kinase
inhibitor 1B (p27), both pro-apoptotic genes, as additional
potential targets of miR-199a-5p, thus further underlining its
pro-survival role (Dai et al., 2013). miR-199a-5p could also have
some effect on cell proliferation, as it has been shown to target
frizzles type 7 receptor (FZD7), and thus regulates the expression
of its downstream genes including β-catenin, Jun, Cyclin D1,
and Myc (Song et al., 2014). A second class of miRNAs linked
with ER stress includes members of the miR-30 family, which
are being down-regulated due to this specific stress responsive
pathway. This miRNA family contains six members (from a to e),
which contain all an identical seed sequencemotif, but are located
at different sites of the genome. GRP78 is targeted by miR-30a,
which further underlines the importance of this miRNA in this
stress response. Knockdown of miR-30 in cardiac cells identified
ATF6, CHOP, and caspase-12 as indirect targets of this miRNA,
thus revealing its role in regulation of cell death (Chen et al.,
2014).

MiR-122 could perhaps represent a regulator of ER-stress-
modulated HSC activation. MiR-122 is described as liver-specific
and the most abundant miRNA in the liver (Lagos-Quintana
et al., 2002). It has been shown that miR-122 is down-regulated
in total liver samples during the progression of liver disease in
mouse, rat (Li et al., 2013) and human (Padgett et al., 2009),
and this down-regulation was furthermore observed in activating
HSCs (Li et al., 2013). Overexpression of this miRNA in LX-
2 cells leads to a decrease in cell proliferation and maturation
of Col1a1, most likely through regulation of P4HA1 by miR-
122. The expression of P4HA1 is up-regulated during fibrosis
progression, and encodes a component of prolyl 4-hydroxylase,
which is necessary for collagen maturation (Li et al., 2013).
Overexpression of miR-122 in LX2 further identified FN1, which
is involved in the assembly of collagen fibrils, and serum response
factor (SRF) as direct targets, and confirmed its inhibitory effect
on TGF-β-induced HSC activation (Zeng et al., 2015). Further
target identification studies in hepatocytes identified mitogen-
activated protein kinase kinase kinase 3 (MAP3K3), which plays
a role in cell survival and proliferation, the intermediate filament
vimentin, and HIF-1α (Csak et al., 2015). MiR-122 inhibition in
hepatoma cells suggests a role in theUPR.Moreover its inhibition
leads to an up-regulation of the 26S proteasome non-ATPase
regulatory subunit 10 (PMSD10), which can enhance the protein
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folding-capacity and thus promoting recovery, by up-regulation
of GRP78. MiR-122 would have this effect on PMSD10 in
an indirect manner through targeting of cyclin dependent
kinase 4 (CDk4) which interacts with PMSD10. Other miR-122
targets include the ER stress chaperones calreticulin (CALR),
ER protein 29 (ERP29) and SET nuclear oncogene (SET),
which help in the correct folding of malfunctional proteins
(Yang et al., 2011). Taken together, even though miR-122 is not
abundantly expressed in HSCs, it is tempting to speculate that
down-regulation of miR-122 is involved in the UPR in HSCs.

Discussion

MiRNAs have been proposed as key regulators of gene expression
and dysregulated patterns of miRNA expression were observed in
various diseases (Tufekci et al., 2014), including the progression
of liver fibrosis and cirrhosis (Wang et al., 2012; Xin et al.,
2014). Studying miRNAs is very popular and raised a lot
of expectations in their use as biomarkers for diseases and
therapeutic interventions using miRNA mimics and antagomirs.
Unfortunately, so far this has not turned out to be easy, partly
because of their cell type-specific and species-specific activity and
wide range of targets.

Diagnosis of liver fibrosis could be facilitated by identification
of blood-circulating biomarkers representative for HSC
activation, as the current golden standard for diagnosis remains
the invasive and harmful liver biopsy (Piccinino et al., 1986;
Friedman, 2003). Circulating miRNAs, both protein-bound
and packaged into extracellular vesicles (Turchinovich et al.,
2011), have been proposed as such a potential biomarker, and
various research groups already tried to identify circulating

miRNAs that could be linked with progression and regression
of liver disease (Roderburg and Luedde, 2014). To date, this
has not yet led to a diagnostic protocol that is used in clinic.

It is tempting to speculate that perhaps stress-responsive
miRNAs of activating HSCs secreted in the blood could also be
used as a liquid biopsy to document the stress present in the
liver.

We discussed several miRNAs with a potential role in stress-
mediated regulation of HSC activation. Experimental validation
of these suggested links between stress-related miRNAs and
HSCs should address a number of issues. First, are specific
miRNAs dysregulated in HSCs in response to specific stress
signals and does this lead to an imbalance of the cellular
homeostasis and consequent HSC apoptosis or activation?
In vivo, paracrine stimulation of quiescent HSCs by stress-
undergoing surrounding cells is likely to create a warning
for the quiescent cell, leading to its activation and reducing
its responsiveness to more stress-signals. Secondly, responding
to stress is necessary to counteract short term challenges to
restore cell homeostasis. Thus the question is, whether there are
miRNAs that specifically respond to prolonged stresses present
in the fibrotic liver, and if so, could a targeted mimic/antagomir
approach inhibit HSC activation or promote HSC apoptosis or
inactivation?

In conclusion, HSC activation in vivo can be seen as a
very complicated and multifactorial process in which hypoxia
(Cannito et al., 2014), oxidative stress (Poli, 2000), and ER
stress (Malhi and Kaufman, 2011) are surely involved. This
suggests a potential role for stress-related miRNAs during HSC
activation and disease development and opens perspectives for
new therapeutic approaches.
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