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The malnutrition in early life is associated with metabolic changes and cardiovascular

impairment in adulthood. Deficient protein intake-mediated hypertension has been

observed in clinical and experimental studies. In rats, protein malnutrition also increases

the blood pressure and enhances heart rate and sympathetic activity. In this review,

we discuss the effects of post-weaning protein malnutrition on the resting mean

arterial pressure and heart rate and their variabilities, cardiovascular reflexes sensitivity,

cardiac autonomic balance, sympathetic and renin-angiotensin activities and neural

plasticity during adult life. These insights reveal an interesting prospect on the autonomic

modulation underlying the cardiovascular imbalance and provide relevant information on

preventing cardiovascular diseases.

Keywords: protein malnutrition, neuroplasticity, sympathetic activity, cardiovascular reflexes, renin-angiotensin

system

Introduction

Malnutrition, an important pathological condition resulting from deficient intake or absorption
of macro and/or micronutrients, reaches more than 900 million individuals worldwide and
accounts for about 3.5 million deaths of under 5 year-old children (Black et al., 2008). Clinical
and experimental researches propose that malnutrition in early life stages is often associated
with metabolic and cardiovascular disorders in adult life (Plagemann et al., 2000; Langley-
Evans, 2007). From a hypothetical “nutritional programming” point of view, the nutritional
deficiency can prompt epigenetic alterations, including the compromising of the autonomic
nervous system (ANS), which gives rise to secondary metabolic and cardiovascular disturbances,
such as: insulin resistance, coronary disease, and hypertension (Benabe and Martinez-Maldonado,
1993; Lucas, 1998; Barker, 2007). It is not a novelty that low protein intake impairs the
cardiovascular homeostasis, increasing the mean arterial pressure (MAP), which is an important
cardiovascular risk factor (Handler and Bernheim, 1950; Engen and Swenson, 1969). However, the
pathophysiological mechanisms underlying it remain under investigation. The understanding of
the cardiovascular changes caused by protein malnutrition comprises two points: understanding
the mechanisms that control blood pressure (BP) in this nutritional state, and looking for changes
that precede alterations on BP and other variables that influence the cardiovascular homeostasis.

Cardiovascular control involves feedback systems activation, which operates on short and long
terms (Shepherd and Mancia, 1986; Dampney, 1994). The short term regulation mechanisms
comprise the cardiovascular reflexes. In this regard, peripheral information detected by specific
receptors is processed in the central nervous system (CNS) and returns to the periphery by efferent
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ANS subdivisions: sympathetic nervous system (SNS) and
parasympathetic nervous system, to maintain homeostasis
(Machado et al., 1997). The long term regulation
mechanisms relate to humoral systems, such as renin-
angiotensin system (RAS) whose unbalance contributes to
the development/maintenance of high peripheral resistance and
vascular hyper-reactivity observed in hypertension (Ferguson
and Bains, 1997; Mendoza and Lazartigues, 2015). Both, short-
and long-term regulation systems play important roles in
physiologic and pathologic conditions. The pathogenesis of
cardiovascular diseases (e.g., heart failure, coronary disease, and
hypertension) can be associated with unbalanced autonomic
cardiovascular regulation, particularly by SNS overactivation
(Sinski et al., 2006). Although it has been speculated that
sympathetic hyperactivity could be the key alteration, the
chronological sequence between impaired sympathetic drive
and other abnormalities have not yet been determined (Mancia
and Grassi, 2014). Regarding of malnutrition-mediated
autonomic cardiovascular disorders, it is essential to identify
the mechanisms that are underlying to this process for setting
cause-consequence relationship. In this sense, we will discuss
the following aspects in the present review: (a) resting MAP
and heart rate (HR) and their variabilities, (b) cardiovascular
reflexes sensitivity, (c) SNS activity/reactivity, (d) RAS activity,
and (e) neural plasticity related to dysfunctional cardiovascular
autonomic control observed in the experimental protein
malnutrition model.

Post-weaning Protein Malnutrition
Experimental Model

Our laboratory has been focused to studying the cardiovascular
disorders observed in adult rats submitted to post-weaning
protein malnutrition protocol. This model reflects a situation
that occurs in underdeveloped countries, where the newborn
receives a satisfactory amount of protein by breast feeding, only
to see the protein intake reduced after weaning (Rodrigues et al.,
2012).

In gestation and weaning periods, females receive regular rat
chow and filtered water ad libitum. After the weaning period
(28 days), male rats are separated from their mothers and
kept in grouped cages. Over the next 35 days, rats are fed
either a normal or a low protein diet, which make up our
two experimental groups: normal protein (NP) and low-protein
(LP), respectively. The regular diet contains 15% protein while
the low protein diet contained 6%. The diets are isocaloric
(422 kcal/100 g of diet) and the salts and vitamins are also
similar in both, as described in Table 1. Animals are submitted
to experiments from 36th up to 41st day (Tropia et al., 2001;
Oliveira et al., 2004; Loss et al., 2007; Penitente et al., 2007;
Bezerra et al., 2011a,b;Martins et al., 2011a; Rodrigues et al., 2012;
Rodrigues-Barbosa et al., 2012; Gomide et al., 2013; Silva et al.,
2013).

In order to attest the efficiency of our dietary restriction
protocol we measured: body weight, hematocrit, total blood
protein, plasma albumin, urea, glucose, and food ingestion in

TABLE 1 | Composition (g/100g of diet) of both control and low protein

diets (Tropia et al., 2001; Bezerra et al., 2011b).

Components NP group LP group

Casein 15 6

Cornstarch 70 79

Soy oil 8 8

Mineral mixture 5 5

Vitamin mixture 1 1

Fiber (Cellulose) 1 1

Energy density, kcal 422 422

both groups (Tropia et al., 2001; Oliveira et al., 2004; Penitente
et al., 2007). The LP group presented lower values in all
parameters above mentioned, except for hematocrit percentage,
urea concentration and daily food ingestion, which were similar
compared to NP group.

The Influence of Post-weaning
Low-protein Diet on Resting MAP and HR
and their Variabilities

Clinical and experimental studies have being showing, for over
five decades, that low protein intake could lead to blood pressure
increase, which is one of the most important cardiovascular
risk factors (Handler and Bernheim, 1950; Viart, 1978; Sawaya
et al., 2005; Martins et al., 2011b; Barros et al., 2015; de Brito
Alves et al., 2015). Furthermore, data from our group indicated
that cardiovascular reflexes are impaired by protein dietary
restriction, see below (Tropia et al., 2001; Loss et al., 2007;
Penitente et al., 2007; Bezerra et al., 2011a). Since cardiovascular
reflexes are required to modulate MAP and HR (Morais et al.,
2015), defective cardiovascular reflex sensitivity is correlated
to abnormal variability of these parameters (Oliveira et al.,
2004). Studies have also indicated that the risk to cardiovascular
complications may depend on BP increase, as well as changes in
MAP and HR variabilities (Shaffer et al., 2014; Parati et al., 2015).

MAP variability (MAPV) increase, on short-, mid- or long-
term, could predict the development, progression and severity
of cardiovascular injury and mortality (Parati et al., 2015).
Likewise, HR variability (HRV), which reflects autonomic
modulation of the heart (Task Force of European Society
of Cardiology, 1996), has been used to identify autonomic
changes in pathophysiological cardiovascular complications (e.g.,
hypertension and heart failure) (Souza et al., 2008; Shaffer et al.,
2014). Therefore, in this section, we will discuss the influence of
post-weaning low-protein diet on resting MAP and HR and their
variabilities.

Low protein diet increases restingMAP andHR, accompanied
by an increased variability of both parameters in rats (Oliveira
et al., 2004). Among possible mechanisms involved, two stand
out: elevated sympathetic activity and/or increased action
of vasoactive substances (e.g., angiotensin), which will be
better approached in following topics of this review. In this
work, the application of advanced acquisition methodology
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along with more precise analysis tools concurred to better
highlight differences in resting HR and MAP, as expected
in cases of elevated sympathetic and RAS activities (Shaffer
et al., 2014; Parati et al., 2015). Higher MAPV and HRV
observed in malnourished rats were predictable once the
gain feedback control loops were also raised (Oliveira et al.,
2004). Consequently, little MAP variations may result in HR
over corrections due to enhanced cardiovascular reflexes gain
feedback mechanisms (Tropia et al., 2001; Penitente et al., 2007;
Bezerra et al., 2011a), which is in accordance with our data
proposing an enhanced sympathetic tonus in rats submitted to
protein deficient dietary (Tropia et al., 2001).

The Influence of Post-weaning Low-protein
Diet on Cardiovascular Reflexes Sensitivity

Baroreflex
Baroreflex provides moment-to-moment negative feedback
regulation of BP. Carotid sinus and aortic baroreceptors
distension generates electrical signals, which are transmitted
to the nucleus tractus solitary (NTS), where the first baroreflex
synapse, probably using a glutamate as the neurotransmitter,
occurs (Talman et al., 1980). Projections from NTS stimulate
caudal ventrolateral medulla (CVLM) neurons, which in
turn inhibit the rostral ventrolateral medulla (RVLM).
Thereby, central sympathetic outflow is suppressed, since
RVLM neurons send projections to preganglionic neurons
in the intermediolateral column, which comprise the
sympathoexcitatory output to the periphery (Schreihofer
and Guyenet, 2003; Kumagai et al., 2012). Briefly, a prompt BP
increase, which activates baroreflex, enhances the cardiovagal
activity and reduces the cardiac and vascular sympathetic
activity. This lessens the HR and corrects the BP to appropriate
levels. On the order hand, a BP decrease deactivates baroreflex.
Therefore, cardiovagal activity is suppressed while cardiac and
vascular sympathetic activity is amplified, causing HR elevation
and BP adjustment (Vasquez et al., 2012).

The baroreflex control is altered in rats fed a low-protein
diet. Protein malnutrition increases the baroreflex activation
latency and bradycardia gain evoked by phenylephrine (PHE),
without changing the baroreflex deactivation latency and sodium
nitroprusside-mediated tachycardia gain (Tropia et al., 2001; Loss
et al., 2007).

Regarding the efferent autonomic activity influence on
the baroreflex activation in LP rats, the latency was further
enhanced and the bradycardic gain remained increased after
methyl-atropine intravenous (i.v.) administration. However,
after metoprolol i.v. injection, the latency was not affected,
but the bradycardic gain decreased (Loss et al., 2007). These
data suggest an increased sympathoinhibition and a decreased
parasympathetic excitation during baroreflex activation in rats
that had a low protein intake.

Considering the baroreflex deactivation in LP rats, the latency
increased and the tachycardia gain decreased after methyl-
atropine i.v. injection, suggesting an impairment in sympathetic
activity modulation. In contrast, after metoprolol injection, these

parameters were not affected (Loss et al., 2007). In accordance
to another models of malnutrition studies (Herlihy et al., 1992;
VanNess et al., 1997; de Belchior et al., 2012), these data indicate
that low-protein diet disrupts cardiovascular regulation driven by
baroreflex loops.

Chemoreflex
Chemoreflex, another important cardiovascular reflex, comprises
peripheral, and central chemoreceptors, mainly located in
carotid bodies and brainstem, respectively. The first one is
activated mainly by hypoxia while the second one is stimulated
fundamentally by hypercapnia (Nurse, 2010; Mansukhani
et al., 2014). In this topic, we considered the carotid body
chemoreceptor contribution on autonomic control. The carotid
body afferents send projections to NTS neurons, which project
to RVLM and nucleus ambiguous, respectively, controlling
sympathetic and parasympathetic outflows (Schreihofer and
Guyenet, 2003; Kumagai et al., 2012; Accorsi-Mendonça and
Machado, 2013). Chemoreflex, whose activation stimulates
breathing and sympatho/parasympathoexcitatory efferent
pathways resulting in pressor and bradycardic responses
(Barros et al., 2002), is involved in systemic hypertension
onset, since its chronic activity could trigger a sustained MAP
rise (Fletcher et al., 2002). In this sense, studies have been
performed to address whether the protein malnutrition disrupts
the cardiovascular autonomic control driven by chemoreflex
pathway.

The carotid body artery ligature, which degenerates
chemosensitive cells resulting in impairment of chemoreflex
activation, further enhanced baseline MAP and HR in LP
rats (Penitente et al., 2007). Previous report, in which carotid
body artery ligature reduced baseline MAP in normotensive
rats, pointed out the inhibitory effect of chemoreflex response
on baroreflex (Franchini and Krieger, 1992). In fact, other
results showed that peripheral chemoreflex activation attenuates
baroreflex activation (Gu et al., 2007; Yamamoto et al., 2013).
However, in our data, carotid body chemoreflex seems to exert
stimulatory effect on baroreflex during protein malnutrition,
suggesting that such nutritional condition reversed these
mechanisms. Thus, specific changes in the central interplay
of baroreflex and chemoreflex could justify our findings
(Penitente et al., 2007). The reduced parasympathetic and
enhanced sympathetic efferent modulation, repeatedly observed
in malnourished rats (Benabe and Martinez-Maldonado, 1993;
Plagemann et al., 2000; Tropia et al., 2001) also support such
hypothesis.

This data is unique by pointing a BP increase as a consequence
of chemoreflex response removal in post-weaning protein
malnourished rats (Penitente et al., 2007). In this study, PHE-
mediated baroreflex activation or baroreflex deactivation by
sodium nitroprusside (SNP) i.v. injection produced the expected
cardiovascular responses. So, MAP and HR detected changes
in ligated-LP rats were not evoked by afferent baroreflex
denervation, as a ligature surgery artifact (Penitente et al.,
2007). Chemoreflex activation, by potassium cyanide (KCN) i.v.
injections, elicits dose-related pressor and bradycardic responses,
which are abolished by carotid body arteries ligature. All tested
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KCNdoses (5, 10, 15, 20, and 40µg/kg) produced higher decrease
in HR, while just the three smaller doses elicited greater pressor
responses in malnourished rats, suggesting that low-protein diet
increases basal efferent sympathetic tonus (Penitente et al., 2007).
Such increased sympathetic activity mediated by malnutrition
could be a consequence of following mechanisms: reduction in
nitric oxide synthesis (Efron and Barbul, 1999), increases in
angiotensin plasma and tissue levels, enhance in angiotensin
II mRNA expression (Benabe and Martinez-Maldonado, 1993;
Benabe et al., 1993a,b; Tonkiss et al., 1998), as well as enhances in
chemoreflex activation and/or peripheral/central chemosensitive
responses (Agarwal et al., 1981; de Brito Alves et al., 2015).
Supporting the last hypothesis, the hypoxia-inducible factor
expression, a transcriptional factor which relates to hypoxia-
mediated tissue response and energy availabilities, was enhanced
in rats submitted to another protein restrictionmodel, suggesting
a sensitization of the carotid peripheral chemoreceptors (de
Brito Alves et al., 2015). Moreover, a recent work showed that
carotid body chemoreflex activation-mediated pressor response
remained elevated even in recovered protein restricted rats (Sá
et al., 2014). In view that the chemoreflex pressor response
depends on sympathetic activation (Vieira et al., 2012), they
proposed that the sympathoexcitation arising from chemoreflex
stimulation could remain enhanced in these rats (Sá et al.,
2014).

The aforementioned pointed that protein malnutrition
enhances cardiovascular responses to carotid chemoreflex
activation in conscious rats. As this autonomic imbalance
seems to alter the interplay between baroreflex and chemoreflex
neuronal mechanisms, it could be considered a risk factor
and could set deleterious effects on cardiovascular homeostasis
(Penitente et al., 2007).

Bezold–Jarish Reflex
The autonomic control of the circulation also depends on the
cardiopulmonary reflexes (Verberne and Guyenet, 1992). The
Bezold–Jarisch reflex evoked by unmyelinated cardiopulmonary
fibers (C fibers) activation, is characterized by hypotension,
bradycardia, and apnea (Thorén, 1979). The C fibers arise
from receptors located in the atria, ventricles, aorta and lungs,
traveling through the vagus nerve up to the NTS (Kalia and
Mesulam, 1980). In fact, besides the central integrative areas,
BJR and baroreflex share afferent and efferent cardiovascular
pathways, interplaying in a inhibitory manner (Verberne and
Guyenet, 1992; Kashihara, 2009). In this sense, in the absence
of arterial baroreceptors, the Bezold–Jarisch reflex plays an
essential role in the reflex control of circulation, since its
responsiveness is enhanced in this condition (Chianca et al.,
1997). Considering that post-weaning protein malnutrition
disrupts baroreflex and chemoreflex regulation, studies were
performed to evaluate its influence on the Bezold-Jarisch
reflex.

In a study from our laboratory, Bezold–Jarisch reflex
activation, by serotonin injection, induced dose dependent
hypotension and bradycardia in NP and LP rats. But,
hypotension in LP was higher than in NP in the maximal dose
used, whereas bradycardia was greater in all doses tested (Tropia

et al., 2001). In a latter study Bezold–Jarisch reflex was activated
by phenylbiguanide (5-HT3 serotonin receptor agonist) in NP
and LP rats before and after baroreflex denervation (Bezerra
et al., 2011a). In this study, protein restriction did not affect the
Bezold-Jarisch reflex responses (hypotension and bradycardia).
Nevertheless, after baroreflex denervation, such cardiovascular
responses were attenuated in malnourished rats. It displayed a
reduced BJR responsiveness in LP after baroreceptors removal
(Bezerra et al., 2011a).

In conscious rats, hypotension evoked by Bezold–Jarisch
reflex activation depends on bradycardia, indicating a plausible
role of parasympathetic drive for Bezold–Jarisch reflex-
mediated cardiovascular response (Chianca et al., 1997). The
relationship between hypotension and bradycardia, evaluated
by 1MAP/1HR index, were increased only in animals fed
a low protein diet submitted to baroreflex denervation,
suggesting that Bezold–Jarisch reflex-evoked sympathetic and
parasympathetic responses are, in some way, dissociated in
malnourished rats without baroreflex (Bezerra et al., 2011a).
In order to verify if that was a specific condition caused by
protein malnutrition in baroreflex absence, Bezold–Jarisch reflex
was evaluated along with muscarinic blockade in intact NP
and LP rats. Our results showed similar pattern response to
Bezold–Jarish reflex activation for both groups and proposed
that a higher 1MAP/1HR ratio observed in denervated
malnourished rats was closely related to the absence of the
afferent baroreceptor signals to CNS (Bezerra et al., 2011a).
Since the inhibition of baroreflex medullary pathways declines
Bezold–Jarisch reflex responsiveness associated with a parallel
baroreflex blockade/attenuation (Verberne and Guyenet, 1992),
we speculated that the protein malnutrition may result in
Bezold–Jarisch reflex higher dependency on the baroreflex at
CNS level, so that the absence of the last could lessen the efficacy
of the first (Bezerra et al., 2011a). Although more investigations
are required for better understanding of this phenomenon,
these results strongly indicate that low protein diet changed
the interrelation between Bezold–Jarisch reflex and baroreflex
required for BP maintenance (Bezerra et al., 2011a).

The Influence of Post-weaning Low-protein
Diet on Sympathetic Activity/Reactivity

The initial assessment of heart autonomic activity were
preformed using the intrinsic HR and HRVmethods (Task Force
of European Society of Cardiology, 1996). The data pointed out
that low protein diet increases the sympathetic and decreased
the parasympathetic tone. Parasympathetic blockade, by a
muscarinic receptor antagonist (methylatropine) i.v. injection,
increased resting HR in animals fed a normal diet, but not
in malnourished rats. This indicates that protein malnutrition
could reduce the vagal modulation to HR (Martins et al.,
2011a). Sympathetic blockade, by a selective β1-adrenoceptor
antagonist (metoprolol) i.v. injection, reduces HR in animals
fed a low protein diet but has no effect on animals under
a normal diet. This data strongly suggests that a low-protein
diet increases the sympathetic efferent activity to the heart
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(Martins et al., 2011a). In fact, recent finding corroborates this
data showing that protein malnutrition increased sympathetic
activity in rats (Barros et al., 2015; de Brito Alves et al.,
2015). The double injection of methylatropine and metoprolol
reduces HR in malnourished rats, but again has no effect on
animals control animals, indicating that malnourished rats have
a low intrinsic HR (Martins et al., 2011a). Intrinsic HR can
be modified by changes in the centrally mediated sympathetic
and/or vagal flow. In addition, intrinsic HR has important role on
resting HR providing an important compensatory mechanism to
maintain HR in appropriated levels during an autonomic activity
unbalance. In this sense, an increase in sympathetic activity along
with a decrease in vagal activity leads to intrinsic HR reduction
(Machado and Brody, 1989).

Moreover, the cardiac autonomic index, used to measure the
sympathetic and parasympathetic activity balance (Goldberger,
1999), was <1 in rats fed a low protein diet, indicating
sympathetic dominance in these rats. Interestingly, this index
was higher in control than in malnourished rats, suggesting
parasympathetic activity dominance in the former (Martins et al.,
2011a). This study also demonstrated that the LF/HF ratio was
increased in malnourished rats when compared to control rats,
in accordance to a recent study, which performed HRV analysis
in a different malnutrition model (Barros et al., 2015). These
results also pointed to the greater sympathetic activity effect than
parasympathetic activity on cardiac autonomic balance in protein
malnutrition (Martins et al., 2011a).

Several mechanisms can reflect such autonomic
unbalance, including alterations in the synthesis/release of
neurotransmitters (Penido et al., 2012) and morphological
damage in CNS circuitry recruited in the genesis and/or
modulation of autonomic activity (Plagemann et al., 2000;
Pinos et al., 2011). It is well established that chronic cardiac
sympathetic activation raises the sudden death risk (Schultz
and Li, 2007; Pokorný et al., 2011) and malnutrition could
trigger cardiovascular disturbances (Sawaya et al., 2005),
highlighting the fundamental importance of keeping investigate
the autonomic balance in protein-deprived situation.

Among the strong evidence that malnutrition mediates
sympathetic overdrive our group evaluated the impact of post-
weaning protein malnutrition on the SNS activity. Blockade of
α1-adrenoreceptor inmalnourished rats caused greater depressor
and tachycardia responses when compared to animals fed a
regular diet, suggesting an increased vascular sympathetic tone
(Tropia et al., 2001). Indeed, a recent work showed that another
post-weaning protein malnutrition model, along with BP raise,
induces vascular dysfunction, revealed by increases in superoxide
anion, nitric oxide, and vascular reactivity of resistance arteries
(de Belchior et al., 2012).

Faced with all findings previously discussed, our group
considered necessary to assess the SNS responsiveness to
malnutrition by a direct methodology. So, we measured renal
sympathetic reactivity, directly, during Bezold-Jarisch reflex
stimulation in rats submitted to post-weaning protein restriction
(Bezerra et al., 2011b). The Bezold-Jarisch reflex activation
besides producing hypotension, bradycardia and apnea, reduces
renal sympathetic nerve activity in order to exert the homeostatic

control of blood volume (Ditting et al., 2006). Although
studies showed that Bezold–Jarisch reflex differentially regulates
sympathetic drive to different regions, the Bezold–Jarisch reflex
activation plays a specific control on renal nerve (Veelken et al.,
1993).

Bolus i.v. injection of phenylbiguanide (5µg/kg) evoked
transient drops in renal sympathetic nerve activity of NP
and LP rats. However, renal sympathetic reactivity was
substantially diminished in malnourished rats (Bezerra et al.,
2011b). In this context, considering the ability of renal
nerves regulate blood volume and vascular resistance, renal
sympathetic overdrive can contribute to the development and
progression of cardiovascular disorders (Barrett, 2015). Since
we observed similar renal sympathetic nerve activity- mediated
MAP and HR drops in NP and LP rats (Bezerra et al.,
2011a), changes in peripheral serotonin receptors expression
and their effectiveness, as previous described (Chen et al.,
1992), could be discarded. However, concerning that low-protein
diet modified the cardiovascular reflexes responsiveness (Tropia
et al., 2001; Loss et al., 2007; Penitente et al., 2007; Bezerra
et al., 2011a,b) and their central pathway have some common
medullary structures (Kashihara, 2009), we hypothesized that
proteinmalnutritionmay also impairs brainmediated autonomic
control, which will be better discussed in the last topic of this
review.

The Influence of Post-weaning Low-protein
Diet on Renin-angiotesin System Activity

Circulating and local renin-angiotensin system (RAS)
components are strictly associated with cardiovascular
complications, especially in the development and progression
of hypertension. Angiotensin II (Ang II), the main effector of
this system, exerts its action on specific receptor isoforms, AT1
and AT2. When Ang II binds the AT1 receptor, it prompts
vasoconstriction, cell proliferation, and hypertension (Santos
and Ferreira, 2007; Mendoza and Lazartigues, 2015).

Studies have shown that low protein dietary enhances RAS
activity, contributing to BP levels increase (Martinez-Maldonado
et al., 1993; Benabe et al., 1993a; Goyal et al., 2010). Indeed,
protein deprivation in early life increases mRNA expression
to numerous RAS components in many tissues (Sangaleti
et al., 2004; Goyal et al., 2009). As a result, an interaction
between ANS and RAS activation might produce cardiovascular
adaptations detected in adult rats submitted to post-weaning
protein restriction.

A recent study from our group showed that an interaction
between Ang II and the SNS contributes to the BP increase
observed in rats fed a low-protein diet (Gomide et al., 2013).
Although previous studies have emphasized the specific influence
of RAS or SNS on cardiovascular regulation in experimental
low-protein dietary condition (Martinez-Maldonado et al., 1993;
Martins et al., 2011a), our results are the first to exhibit the
interaction between increased RAS and SNS drive as accountable
for the BP maintenance in protein malnutrition (Gomide et al.,
2013).
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Enalapril injection decreases the MAP in LP rats, but does not
alter the basalMAP inNP rats. Moreover, such reduction reached
lower MAP levels than that observed in NP group (Gomide
et al., 2013). This indicates that RAS is important for the small
MAP elevation also previously observed inmalnourished animals
(Oliveira et al., 2004; Loss et al., 2007; Penitente et al., 2007), as
well as an essential regulatory mechanism, which could prevent a
potential chronically hypotensive state in these animals (Gomide
et al., 2013).

Since RAS seems to be involved in the BP regulation
in protein-restricted rats, we also conducted experiments to
evaluate the role of AT1 receptors on the their BP. Losartan
injection also decreased the MAP in LP rats (Gomide et al.,
2013), in accordance to previous reports in which losartan by
gavage administration during 5 days reduced MAP in rats fed a
low-protein diet (Benabe et al., 1993b). Our data revealed that
Ang II, acting in AT1 receptors, is an essential factor for the BP
maintenance in rats undergoing protein restriction. Interestingly,
LP rats presented much lower levels of circulating Ang II than
NP rats (Gomide et al., 2013). These data support early results
demonstrating that protein restriction reduced both Ang II
plasma concentration and plasma renin activity (Fernández-
Repollet et al., 1987; Kapoor and Krishna, 1991).

Moreover, increasing doses of Ang II produced smaller MAP
raises in LP than NP rats. Given that the basal RAS activity
is enhanced in LP rats, it is plausible to suppose that the AT1
receptors are saturated in these animals and, therefore, the
crescent Ang II doses administered produced less pronounced
effects in LP than in NP group (Gomide et al., 2013). The relation
between both poor responsiveness to Ang II and its circulating
lower levels is an indicative that the RAS adaptation, pointed as
one of the main regulatory system accountable for the high BP
observed in rats fed a low-protein diet, is not due to an increase
in the Ang II plasma levels, but due to a likely AT1 receptors
overexpression in arteries and/or in the CNS (Gomide et al.,
2013). In fact, we found increased AT1 receptors expression in
the aorta of LP rats. It is important to note that, in the NP group,
we did not observe any significant changes in the MAP or HR
after enalapril or losartan injections alone (Gomide et al., 2013).
These findings are in tune with previous data showing that, with
an adequate content-protein diet, the RAS plays no major role in
the moment-to-moment maintenance of BP and HR (Ceravolo
et al., 2007).

In order to better understand the mechanisms underlying BP
control in rats fed a low-protein diet, we evaluated the relative
contribution and the possible interaction between RAS and SNS
on the BP regulation in these animals. Under AT1 receptor
blockade, prazosin infusion further reduced MAP in LP rats,
suggesting that Ang II, acting on AT1 receptors, could activate
SNS resulting in BP raise (Gomide et al., 2013). It is known that
these two systems display positive feedback interplay in CNS and
vasculature, in which raised activity of one of them increases
the output of the other (Mancia et al., 2006). In addition to this
data that shows an increased RAS activity in LP rats, previous
data from our laboratory have indicated that these animals also
present a higher vasomotor tone probably due to an increased
sympathetic efferent activity (Tropia et al., 2001).

As expected, when prazosin was injected before losartan,MAP
decreased in both groups. Prazosin-mediated MAP reduction in
LP group was analogous to the losartan effect, also indicating
the strong AT1 receptors contribution to the BP maintenance in
protein restriction condition (Gomide et al., 2013). The following
losartan injection further decreased MAP in LP rats. In NP
group, prazosin injected alone also reduced MAP. However,
such reduction was smaller than in LP rats, confirming that an
increased sympathetic drive is required to sustain the raised BP
levels after protein restriction. Moreover, both drugs injection,
regardless of the order, reduced MAP in NP group, although
these responses were smaller than in LP rats (Gomide et al.,
2013). This information also converges to the understanding that
protein-restricted rats need a higher AT1 receptor activity to
maintain an appropriate sympathetic tone to the vascular bed.

To the point, our results displayed that in protein restriction
condition, the α1-receptors activation is under strong influence
of Ang II acting on AT1 receptors, demonstrating that Ang
II is crucial to support the vascular tone driven by the SNS
in this situation. RAS (specifically Ang II) and the SNS are
both hyperactived, contributing in a complementary manner
to maintain the BP levels in LP in order to preserve the
cardiovascular system, and maintain sufficient blood supply to
the systems. Therefore, the interplay between the RAS and
the SNS appears to occur, in the arteries since AT1 receptors
expression in the aorta is higher in LP rats (Gomide et al.,
2013). However, more investigations are required to reveal if this
interaction occurs mainly in the periphery, as suggested by the
increased AT1 expression, or whether it is also a consequence
of the CNS activation (e.g., by circumventricular organs), which
probably increase the sympathetic drive.

The Influence of Post-weaning
Low-protein Diet on Neural Plasticity

Neural plasticity, an adaptive process which changes the CNS
structure and function during any ontogeny stage, is a result
of internal/external environment interactions, or even of neural
injuries (Phelps, 1990). According to literature, malnutrition,
during critical development periods, reduces the quantity and
span of dendritic processes, decreases the synapse/neuron
relation (Nordborg, 1978; Díaz-Cintra et al., 1990; Morgane
et al., 2002; Cordero et al., 2003; Penido et al., 2012), decreases
the thickness myelin sheath and internodal segments (Reddy
et al., 1979; Quirk et al., 1995; Cordero et al., 2003), impairs
the release and activity of glutamate (Rotta et al., 2003; Penido
et al., 2012) and produces morphophysiology alterations in
brain regions which are involved in cardiovascular control, such
as hypothalamus, hippocampus, frontal cortex, and amygdala
(Plagemann et al., 2000; Zhang et al., 2009; Flores et al., 2011;
Matos et al., 2011; Pinos et al., 2011). Such neural adaptations
could change the electrical conduction system and modify the
cardiac autonomic outflow, as was proposed by a recent study, in
which cardiovascular responses induced by central injection of
α-type scorpion toxin were attenuated in protein restricted rats
(Silva et al., 2013).
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These observations support our idea that cardiovascular
impairment observed in post-weaning malnutrition
experimental model might be related to CNS plasticity. In
this review, we have already presented data that pointed to
a cardiac autonomic dysfunction as a protein malnutrition
consequence (Tropia et al., 2001; Oliveira et al., 2004; Loss et al.,
2007; Penitente et al., 2007; Bezerra et al., 2011a,b; Martins et al.,
2011a; Gomide et al., 2013). In this regard, the impairment
of cardiovascular reflexes observed in experimental protein
malnutrition, may be triggered by any central plasticity whose
magnitude is able to interfere in cardiovascular homeostasis.

Would protein malnutrition be able to change the specific
brain nuclei responsiveness to intermittent baroreflex
stimulation? In order to investigate this hypothesis, we
assessed the expression of neuronal activity marker c-fos
protein (immediate-early gene expression) in the paraventricular
hypothalamus (PVH); NTS; rostral ventromedial medullary
areas (RVMM); raphe pallidus (RPa) and raphe obscurus (Rob);
caudal ventrolateral medullary areas (CVLM) and RVLM
(Rodrigues-Barbosa et al., 2012).

Baroreflex intermittent activation modifies c-fos expression
in the PVH, RPa, medial NTS, and CVLM, independently
on the dietary protocol offered to rats. However, in response
to baroreflex stimulation, protein restricted dietary protocol
influenced the neuronal recruitment pattern in raphe obscurus
and in important medullary nuclei of cardiovascular control
(rostral and caudal-commissural NTS, RVMM, and RVLM)
(Rodrigues-Barbosa et al., 2012).

It is known that RVMM neurons conduct the sympathetic
drive to heart and thermogenesis (Cao and Morrison, 2003; Salo
et al., 2006; Morrison and Nakamura, 2011; Morrison et al.,
2012). Additionally, RVMMneurons activation mediates marked
tachycardia (Cao and Morrison, 2003, 2006; Morrison, 2003).
Phenylephrine infusion induced neuronal activation within the
RVMMof rats fed a low protein diet, but not in the control group,
denoting that protein restriction is able to change neuronal
recruitment, increasing the resting HR to maintain the cardiac
output homeostasis. We also showed a lessened RVLM neuronal
activation in LP PHE-infused rats (Rodrigues et al., 2012).
The sympathoinhibition triggered by baroreflex activation,
essential to preserve the cardiac functionally, results from RVLM
neuronal inhibition by CVLMGABAergic input (Guyenet, 2006).
Although the CVLM c-fos expression has been similar in NP
and LP PHE-infused rats, suggesting comparable recruitment of
these nuclei, we did not perform any neurotransmission assay
in this region. Therefore, in malnutrition condition, the CVLM
GABAergic neurotransmission to RVLM could be impaired
and/or RVLM neurons could answer in a different manner to
CVLM inhibitory inputs (Rodrigues-Barbosa et al., 2012).

PHE-activated baroreflex also showed differential neural
recruitment in NTS of NP and LP rats. In medial NTS, Phe
infusions similarly enhanced c-fos expression in both groups,
while in rostral and caudal-commissural NTS this expression
were higher in LP than NP rats (Rodrigues-Barbosa et al., 2012).
These observations support the idea that protein restricted diet
could promote differential neural setting in the NTS, a nucleus
recognized for receiving and processing afferent cardiovascular

information (Guyenet, 2006; Accorsi-Mendonça and Machado,
2013).

Facing to these findings, new assessment of neurochemical
plasticity in medullary neurons could become a powerful strategy
to deeply understand the autonomic and cardiovascular effects
evoked by protein malnutrition.

Based on scarcity of studies about the malnutrition effect
on CNS nuclei of cardiovascular control and assuming that: (i)
RVLM is an important area for the generation of sympathetic
efferent drive, especially to vasomotor tone (Guyenet, 2006;
Fontes et al., 2011) and (ii) L-glutamate is the principal excitatory
neurotransmitter in this nucleus (Machado et al., 1997), our
group also investigated the impact of protein restriction on
L-glutamate-mediated pressor response into RVLM (Rodrigues
et al., 2012).

Crescent doses of L-glutamate injection into the RVLM
evoked smaller pressor responses in LP than NP rats (Rodrigues
et al., 2012). Allied to this, protein malnutrition lessened and
shifted upward the baroreflex curve, once again indicating the
malfunctioning of this reflex in LP rats (Rodrigues et al., 2012).
The range of baroreflex gain, which was higher in LP than in
NP rats, was in accordance to maximum baroreflex gain. While
this occurred at normal levels in NP rats, in LP rats the peak
occurred at higher values. In addition, despite of the higher
resting HR, the baroreflex activation, by pressor response to
glutamate injection in RVLM, produced smaller HR changes in
LP when compared to NP rats (Rodrigues et al., 2012). This
is another indication that protein malnourished rats present
sympathetic efferent overdrive.

All aforementioned observations could be partially explained
by damage in glutamate release and/or receptor affinity mediated
by protein malnutrition. This would be in concordance to
prior studies in the literature which reported that malnutrition,
during the first life stages, changes the neurotransmitter
concentration in CNS, the neurotransmitter/receptor affinity,
the neuronal population, and/or CNS nucleus morphology
(Plagemann et al., 2000; Zippel et al., 2003). Although we cannot
assure any morphological plasticity, which would characterize
and emphasize the changes in the structure of synapses
and neurons, our findings point to glutamate neurochemical
plasticity. Therefore, post-weaning malnutrition indeed impacts
the central mechanisms related to cardiovascular control,
particularly considering the glutamate neurotransmission in
RVLM—a crucial brainstem nucleus accountable for modulating
the sympathetic drive to the cardiovascular system (Rodrigues
et al., 2012).

Conclusions

This review aimed at pointing out the protein malnutrition
impact on cardiovascular homeostasis, since it: (i) impairs
the cardiovascular reflexes sensitivity, (ii) increases resting
MAP and HR and their variabilities, (iii) enhances the
sympathetic and diminishes the parasympathetic efferent
activities to the heart, (iv) raises the vasomotor sympathetic
tonus, (v) reduces the renal sympathoinhibition to BJR
activation, (vi) increases the RAS activity, and (vii) changes
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FIGURE 1 | Diagram illustrating the post-weaning protein malnutrition effects on cardiovascular control systems in adult rats. Rectangles and

black arrows correspond to data observed in this malnutrition model. Dashed arrows correspond to likely interaction between observed data. From left to right,

protein restriction promotes: medullary plasticity, vasomotor and cardiac sympathetic overactivity, decreased cardiac parasympathetic activity, and RAS

hyperactivity. The neuroplasticity is characterized by changes in medullary recruitment in response to baroreflex stimulation, and decreased glutamate

responsiveness in the RVLM. Such medullary plasticity probably contributes to the sympathetic overactivity. This, in turn, relates to the impaired cardiovascular

reflexes sensitivity, increased resting MAP and HR and their variabilities, and plausible shift in baseline renal sympathetic activity in view of the reduced renal

sympathoinhibition to BJR activation. The RAS hyperactivity associates with the low ANG II responsiveness and high aortic AT1r expression, which probably

contribute to increased vascular tone. RAS, renin-angiotensin system; MAP, mean arterial pressure; HR, heart rate; BJR, Bezold–Jarish reflex; ANG II,

angiotensin II; AT1r, angiontensin II receptor type 1; NTS, nucleus tractus solitary; rNTS, rostral NTS; mNTS, medial NTS; ccNTS, caudal-commissural NTS;

RVMM, rostral ventromedial medullary areas; RVLM, rostral ventrolateral medullary area; and CVLM, caudal ventrolateral medullary area.

the medullary recruitment and glutamate neuromodulation
in response to baroreflex stimulation, as outlined in
Figure 1.

Thus, the present review provides new perspectives on
the pathophysiology of metabolic and cardiovascular diseases
associated with protein malnutrition.
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