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Cells are complex machines capable of processing information by means of an entangled

network of molecular interactions. A crucial component of these decision-making

systems is the presence of memory and this is also a specially relevant target of

engineered synthetic systems. A classic example of memory devices is a 1-bit memory

element known as the flip-flop. Such system can be in principle designed using a

single-cell implementation, but a direct mapping between standard circuit design and a

living circuit can be cumbersome. Here we present a novel computational implementation

of a 1-bit memory device using a reliable multicellular design able to behave as a

set-reset flip-flop that could be implemented in yeast cells. The dynamics of the proposed

synthetic circuit is investigated with a mathematical model using biologically-meaningful

parameters. The circuit is shown to behave as a flip-flop in a wide range of parameter

values. The repression strength for the NOT logics is shown to be crucial to obtain a good

flip-flop signal. Our model also shows that the circuit can be externally tuned to achieve

different memory states and dynamics, such as persistent and transient memory. We

have characterized the parameter domains for robust memory storage and retrieval as

well as the corresponding time response dynamics.

Keywords: computational modeling, eukaryotic memory circuits, flip-flop, multicellular circuits, synthetic biology

1. Introduction

Developing living devices that can perform non-trivial decisions is one of the major challenges of
synthetic biology (Purnick and Weiss, 2009). By introducing new components, changing existing
paths or allowing novel forms of signal reception, engineered cells can cope with novel decision-
making scenarios. Among the requirements to achieve such goal, memory is specially relevant to
store and retrieve past events. Biological memory implies a sustained cellular response to a transient
stimulus (Burrill and Silver, 2010) and it pervades the potential for adaptation and learning.

The qualitative characterization of how a cell might achieve biological memory through its
transcriptional circuitry was determined nearly 50 years ago by Monod and Jacob (1961). Despite
this early work, the quantitative understanding of these circuits has been achieved recently (Alon,
2006). Inspired in this knowledge, synthetic memory devices have been developed at different scales
(Burrill and Silver, 2010; Inniss and Silver, 2013) during the last decade. In an early work, Gardner
et al. (2000), developed a toggle switch in E. coli. This system is based on a two mutual repressors
architecture having two stable steady states. In one state, the gene for the first repressor is turned on,
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and the synthesis of the second repressor is therefore turned off.
The absence of the second repressor allowed maintaining the
stable state, where the presence of the first one acted as an indirect
activator of its own synthesis by repressing its own repressor.
In the other steady state, the second repressor is present and
the first is absent, following the same logic. By addition of
external inducers the device is able to change the stable state.
A different architecture was implemented in yeast (Ajo-Franklin
et al., 2007) using a transcriptional positive feedback with
sensitivity to cell growth. Here, memory was sustained by an
autoregulatory transcriptional positive feedback. Other devices
have been explored, including conditional memory systems
(Fritz et al., 2007), implementations based on the expression of
specific recombinases in bacteria (Siuti et al., 2013) or switchable
memories using DNA biochemistry in vitro (Padirac et al., 2012;
Inniss and Silver, 2013).

The in vivo implementation of different subsets of synthetic
circuits can be seriously limited by several constraints. A
major problem is related to the presence of undesired
interactions between added components and the existing cellular
machinery (Kwok, 2010). Several approximations have been
explored in order to overcome these limitations. Among others,
an implementation based on cellular consortia gives some
engineering and robustness advantages (Macia et al., 2002; Li
and You, 2011; Tamsir et al., 2011; Solé and Macia, 2013; Macia
and Solé, 2014). It provides a desirable compartmentalization
that limits cross-talk (cell-to-cell communication), reducing the
required engineering in each cell and exploiting the reuse of
molecular toolkit components.

The main goal of the present work is to explore the potential
of multicellular computation for implementing sequential logic
circuits in living cells and cellular consortia, i.e., circuits in
which feedback connections are present. More specifically, we
focus on 1-bit memory devices as a relevant case of study.
Other theoretical studies have analyzed the problem of how to
design a single-cell standard flip-flop in living cells (Rodrigo and
Jaramillo, 2007) but, as far as we know, this is the first proposal of
a multicellular memory device based on a multicellular synthetic
design.

The behavior of the device is analyzed in detail with a
quantitative mathematical model that incorporates biologically
meaningful parameters. The model is used to characterize
the feasibility of the flip-flop behavior in a distributed
implementation, while also allowing a detailed investigation of
the circuit’s robustness to parameter changes.

2. Materials and Methods

2.1. Circuit Design and Mathematical Model
Within electronic design, the most fundamental memory device
is the so called SR latch (or SR flip-flop), for which the S and
R inputs stand for set and reset, respectively. This system can
be constructed from a pair of cross-coupled NOR logic gates
(Figure 1A) implementing the truth table shown in Figure 1B.
By adding S (i.e., S = 1 and R = 0), the system moves toward the
memory stateQ = 0 (beingQ the output and state of the circuit),
whereas the system evolves toward the memory state Q = 1

by adding R (i.e., when S = 0 and R = 1). In the absence of
S and R (S = 0 and R = 0), the system remains indefinitely
in the previous stable state Q. In this kind of circuit, the input
combination S = 1 and R = 1 is not allowed (Santiram, 2002).

Figure 1C summarizes our multicellular implementation,
which is intended to serve as a blueprint for a feasible synthetic
system. In order to implement this logic architecture in yeast
cells, the device is distributed in four different engineered
cells, indicated as C1 − C4. Cells 1 and 2 (see Figure S1, for
further details) are cells that respond to the external inputs, R
(e.g., galactose) and S (e.g., doxycycline), respectively, inducing
the secretion of two different α-factor pheromones (α-factor
X and α-factor Y, respectively). These pheromones act as
wiring molecules and cells 3 and 4 can sense their external
concentrations. Here C3 has the required receptor (Duntze et al.,
1970, 1973) to sense α-factor Y , whereas C4 has a receptor
that senses α-factor X. Previous studies have demonstrated
that it is possible to expresses different receptors in yeast
cells, such as receptors from Saccharomyces cerevisiae or from
Candida albicans (Regot et al., 2011). Depending on the specific
receptor expressed by the cell, and only in the presence of
the corresponding α-factor (α-factor from Saccharomyces or
α-factor from Candida), the pheromone pathway is activated.

Our design makes a significant departure from the standard
circuit, that combines NOR gates with feedbacks (Figure 1A).
Instead, thanks to the multicellular design, we made use of only
1-input 1-output (NOT and Identity) logic gates (Figure 1C).
Specifically, the combination of C1 − C3 defines the first NOR
gate (G1), whereas the pair C2−C4 implements the second (G2).
The activation of the pheromone pathway by the corresponding
α-factor induces the expression of protein repressor Z (Brent
and Ptashne, 1984) which leads to the down-regulation of the
expression of the other α-factor, i.e., α-factor Y blocks the
secretion of α-factor X in Cell 3, whereas the presence of α-factor
X blocks the secretion of α-factor Y in Cell 4. In our designed
circuit we will use mLacI as the repressor molecule (Grilly et al.,
2007).

In order to read the state Q of the system, a reporter
protein (e.g., green fluorescent protein, GFP) is expressed
in Cell 4 (or, alternatively, in Cell 3). Figure 1D shows a
schematic representation of themicrofluidics device that could be
used according to our implementation and model assumptions
e.g., constant population of cells. The cells are located in
a microfluidic chamber from which the population excess is
controlled through removal (Bennett and Hasty, 2009). This
system is connected to a delivery channel and cells are eventually
pushed out from the chamber, flowing to the waste port. The
trapping device built with two filters also allows to maintain
stable cell populations and tune cell communication by means of
a flow rate modifying the concentration of α-factor in medium.

To investigate whether our proposed circuit is able to behave
as a set-reset flip-flop and how tunable is this behavior, we built a
mathematical model, adapted from a previous study byHoffman-
Sommer et al. (2012) who incorporated a detailed description of
the actual signaling pathways relevant to our study. Part of this
whole circuit is shown in Figure 2. The internal states of Cells
3 and 4, which are responsible for memory maintenance, can
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FIGURE 1 | Multicellular memory circuit. In (A) we display the standard wiring diagram of a set-reset latch or flip-flop circuit, created as a combination of two cross

coupled NOR gates. (B) Truth table for a NOR gated SR latch. Note that the case where input R = S = 1 is indicated as an invalid input because it is not allowed. Q

and Q̄ are the two output states. The multicellular consortium is summarized in (C). The designed system is composed of a population of 4 different types of

engineered cells, indicated as C1,C2,C3, and C4 (see Figure S1, for a detailed diagram of the modeled system). Cells C1 and C2 respond to inputs R (e.g.,

galactose) and S (e.g., doxycyline), respectively. Cells 4 and 3 sense the wiring molecules given by α-factor X (e.g., Saccharomyces) and α-factor Y (e.g., Candida),

respectively. In both cells C3 and C4, a repressor molecule is used to stop the transcription of α-factor, labeled molecule Z (e.g., mLacI). The selected outputs of the

circuit are both prepro α-factors X (Cell 3) and Y (Cell 4). The readout of the circuit can be monitored in the laboratory by introducing a reporter protein (e.g., green

fluorescent protein, GFP, included here in Cell 4). For clarity, the pheromone pathway (FPath) of Cells 3 and 4 is not shown (see Figure 2 and Figure S1, for further

details). (D) In our model we consider a constant population of cells by means of a constant flux in a microfluidic chamber. The addition of two filters using another

chanel can be used to regulate the outflow externally to eliminate the α-factor from the medium without losing cells.

be analyzed in detail to monitor the intracellular concentration
of the so-called prepro α-factors, which are the precursors of
α-factor (Brake et al., 1983). Of note, there is a clear mapping
between prepro α-factor levels and reporter protein (GFP) levels,
as shown in Figure 6B, Figures S2, S6. As we discuss, the GFP can
be used to obtain a good readout of the flip-flop signal with the
proper GFP degradation rate. Previous research indicates that it
is possible to tune the degradation rate of the reporter (Bachmair

et al., 1986; Grilly et al., 2007).
A detailed description of the mathematical model, given by

a set of ordinary differential equations, is presented in Section
S1. The model describes the dynamics and behavior of four
types of engineered yeast cells coexisting in a liquid medium,
with a culture density of 5 × 106 cells/ml (Hoffman-Sommer
et al., 2012). As a first approximation, we consider that the
concentrations of different cell types remain constant, i.e., all the
cells have the same doubling times. In this sense, it is possible
to genetically manipulate a yeast strain in order to avoid cell

cycle arrest in the presence of α-factor (Chang and Herskowitz,
1992).

For further details on the mathematical model, parameter
values, and initial conditions, we refer the reader to Section 1 in
the Supplementary Information and Tables S1, S2.

2.2. Numerical Tools
Numerical integrations have been carried out using the seventh-
eighth order Runge-Kutta-Fehlberg (RKF78) method with
automatic step size control and local relative tolerance of 10−15.

2.3. Measure of the Flip-flop Performance
In order to properly measure the accuracy of the flip-flop, it is
crucial to define a quality parameter incorporating both the time
and amplitude responses. The time response refers to the time
required for the transition from one memory state to another
when external inputs R and S are changed. On the other hand,
the amplitude response refers to the separation between the 0 and
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FIGURE 2 | The molecular composition of the Pheromone Pathway

(which appeared encapsulated as FPath in Figure 1C) included in the

mathematical model. Specifically, we display the set of molecular

interactions associated to the logic of the NOT cell C3. In particular, we

highlight the pheromone pathway within the smaller box. This model (see

Hoffman-Sommer et al., 2012, for further details) allows to incorporate a

detailed network of interactions associated to actual signaling pathways of

Saccharomyces sp. The full diagram is shown in Figure S1 (see also Table S2,

for details on the parameters).

1 logic levels. For a given set of parameters � = {ω1, ω2, ...},
which we simply indicate as ωi, the behavior of the circuit can be
described in terms of the difference between the concentrations
of the prepro α-factors in Cells 3 and 4. This difference is
described by 8(ωi, t), defined as

8(ωi, t) = φx(ωi, t)− φy(ωi, t), (1)

where φx(ωi, t) and φy(ωi, t) are the concentrations of prepro α-
factors X and Y presents in Cell 3 and Cell 4. For the sake of
simplicity, hereafter 8(ωi, t) will be named 8(t). In a nutshell,
we need to compare the predicted, ideal behavior of a flip-flop
(rectangular areas, P1...P4 in Figure 3) with the actual changes
associated to a continuous implementation as given by the
response 8(t), which defines different areas (thick line, R1...R4,
in Figure 3).

In order to measure quality, we need to consider: (i) the time
response upon the specific external input combinations R = 1,
S = 0 and R = 0, S = 1, which write 1-bit information to the
memory device; and (ii) the maintenance of the memory when
R = 0 and S = 0. The ratio between the real areas R1 and R3 and

FIGURE 3 | Measuring the quality of the flip-flop behavior using 8(t)

(thick line). We computed the perfect areas (filled rectangles) of the first 3 h

(P1,3 ) after inputs (1,0) and (0,1), and the areas (P2,4 ) 12 h after inputs (0,0).

Then, we computed the real areas from 8(t) for four different time periods

(yellow and gray regions), denoted as R1,..,4. These four time periods are fixed

at t0 = 0, t1 = 180, t2 = 900, t3 = 1080, and t4 = 1800 min, respectively (see

Model and Methods Section for further details).

the perfect areas P1 and P3 determine the goodness of the time
response, named Sr .

Similarly, the ratio between the real areas R2 and R4 and the
perfect areas P2 and P4 define the goodness of the persistent
memory, labeled Sm. These terms can be calculated according to

Sr =
1

2

(
R1

P1
+

R3

P3

)

, and Sm =
1

2

(
R2

P2
+

R4

P4

)

,

where Ri= 1,...4 and Pi= 1,...,4 denote the real and the perfect areas,
respectively, which are computed as follows. Each of the real
areas Ri is given by the integral of 8(t) in the four different
time intervals corresponding to the changes in inputs. The perfect
areas Pi are delimited by the maximum and minimum values of
8(t). Then, Sr and Sm are given by

Sr =
1

2








1

P1

∫ t1

t0

θ1(t) · 8(t)dt

︸ ︷︷ ︸

R1

+
1

P3

∫ t3

t2

θ3(t) · 8(t)dt

︸ ︷︷ ︸

R3








,

where we define the functions:

θ1(t) =

{

1 if 8(t) < 0,

0 otherwise,
θ3(t) =

{

1 if 8(t) > 0,

0 otherwise.

For the memory term, we have

Sm =
1

2








1

P2

∫ t2

t1

8(t)dt

︸ ︷︷ ︸

R2

+
1

P4

∫ t4

t3

8(t)dt

︸ ︷︷ ︸

R4







.
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We used the following period times in our simulations: t0 = 0
min, t1 = 180 min, t2 = 900 min, t3 = 1080 min, and t4 = 1800
min (see Figure 3), if not otherwise specified. Notice that by
integrating on both the negative and positive values of 8(t) in
the memory states, we ensure that the quality measure can also
work in asymmetric circuits (that are analyzed in Section S-III).
In fact, when introducing asymmetries between cells, 8(t) could
change sign in the memory states. For instance, in Figure S6(b.2),
the value of 8(t) changes from negative to positive in the first
memory state. Our approach allows this behavior to be penalized,
since the positive area in this time period will be subtracted from
the one we computed.

We can define a quality factor 2S, which refers to the shape of
the time response, according to a Pareto function

2S = λ · Sr + (1− λ) · Sm, (2)

For those cases where theminimal conditions of a proper flip-flop
behavior are not found, we will assume2S = 0.More specifically,
we will assume zero quality if no negative values of8(t) are found
during the first 15 h. Similarly, we will assume zero quality if
8(t) has no positive values during the last 15 h (assuming the
inputs series: (1, 0) at 3 h; (0, 0) at 12 h; (0, 1) at 3 h; and (0, 0)
at 12 h). The parameter λ ∈ [0, 1] weights the contribution of
each component Sr and Sm. If λ = 1, 2S will only account
for the goodness of the circuit response during activation while
λ = 0 only considers memory persistence, i.e., the dynamics in
the absence of external inputs. The2S values range from 0 to 1. It
is worth noting that in the case of an ideal flip-flop signal,2S = 1
for all values of λ, since the system would have a perfect response
to all inputs and a perfect memory, thus behaving like a sharp,
perfect digital signal.

However, a proper digital behavior should not be enough if the
signal amplitude, i.e., the difference between low and high logic
levels, is not large enough to be detected in a real experimental
setup. The term 2A(ωi), hereafter named 2A for simplicity,
accounts for this effect. 2A can be defined as

2A = 2S ·
m(ωi) ·M(ωi)

mT(�) ·MT(�)
, (3)

where m(ωi) and M(ωi) denote the minimum and maximum
values of 8(t), respectively. Since m(ωi) and M(ωi) are
parameter-dependent, a normalization factor mT(�) · MT(�) is
used. mT(�) andMT(�) indicate, respectively, the largest m(ωi)
and M(ωi) values in �, with mT(�) = min{m(ωi),m(ω2), ...},
andMT(�) = max{m(ωi),m(ω2), ...}.

3. Results

All of the results presented in the following sections have been
obtained by numerically solving the model equations presented
in Section S1.

3.1. Circuit Dynamics and Flip-flop Behavior
One of the advantages of our multicellular implementation is
the possibility of manipulating several parameters, such as input

concentrations or inflow-outflow rates, that could affect the
circuit response without additional genetic engineering. This
allows the circuits response to be optimized just by tuning the
experimental setup. As our first approach, we investigate the
behavior of the designed circuit by using biologically meaningful
parameters values from the literature (Tables S1, S2), considering
that the cell population remains constant (see Section S1).

We explored the dependence of this system with respect to the
dilution rate of α-factors in medium (kα_X,Y_deg). This includes
both the spontaneous decay of the molecules and their clearance
from the medium due to the presence of a constant and regulable
outflow, which can be easily tuned for an optimal response in a
microfluidic environment. In all of our analyses we allowed each
cell type to reach equilibrium independently (i.e., running the
system for 7 h without cell communication) before introducing
the first activation input (1, 0), and then setting the time to
t = 0. Numerical simulations revealed that, in a given and wide
region of the parameter space, the circuit behaves as a flip-flop,
responding correctly to the activation inputs (1, 0) and (0, 1) and
being able to maintain the state upon the memory inputs (0, 0).
The goodness of the flip-flop behavior was computed using the
two complementary quality measures, given by 2S and by 2A

(see Equations 2 and 3).
As the first result, we observe a clear dependence on the

device’s behavior with respect to the elimination rate. It is
well-known that flip-flops are bistable systems (Cherry and
Adler, 2000; Santiram, 2002). A bistable system may reach
one of the two possible stable states, depending on the initial
conditions, and remain there unless a new input forces the
state to change (persistent memory). On the other hand, a
monostable system does not allow for permanent memory.
However, monostable devices can remain at a given unstable state
for a long period of time. This type of systems can be useful
for applications demanding transient, rather than permanent
memories. Interestingly, ourmulticellular device is able to exhibit
both dynamics, i.e., bistability and monostabiliy, as shown in
Figure 4, where we plot several trajectories in the phase space
using different initial conditions.

Our simulations show that, within the ranges 0.005 ≤

kα_X,Y_deg . 0.095 and 8.7 . kα_X,Y_deg ≤ 500, the circuit
is monostable and displays transient memory, while for a wide
range of elimination rates (0.095 . kα_X,Y_deg . 8.7), the
system can undergo bistability (Figure 4A). In Figure 4A, we
also display the times when 8(t) remained negative in the
monostable ranges (as a way to compute the transient duration
of the memory). These times are finite in the monostable regimes
since 8(t) → 0 for t → ∞: at equilibrium, both outputs of the
circuit, i.e., prepro α-factors X and Y , equal their values because
of the symmetry of the circuit (notice that the equilibrium point
in Figure 4E is placed in the diagonal). To compute these times,
we ran simulations for each value kα_X,Y_deg , computing the time
when 8(t) was negative during the second input (0, 0), after
introducing input (1, 0) for 3 h. The results show that the closer
the elimination rate of α-factor is to the bistability regimes, the
longer the times.

The time-course evolution of 8(t) is shown in Figures 4B,D,
respectively. In the example shown in Figure 4B, using
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FIGURE 4 | (A) Stability changes at increasing the values of the elimination rate of α-factor in medium, kα_X,Y_deg. Note that the values of kα_X,Y_deg in the top panel

are not scaled. Below, we show the time that 8(t) remains negative (memory time) during the second input (0, 0) after introducing input (1, 0) for 3 h. We specifically

show two ranges for the monostable states. Notice that both times greatly increase as the bistable scenario is approached. (B) Dynamics of 8(t) in the bistability

regime using [input] = 40 µg/ml and kα_X,Y_deg = 0.134 s−1. (C) Phase portrait displaying bistability using the same parameter values as in (B). Here, the circuit

dynamics can achieve two different equilibrium points corresponding to the dominance of α-factor Y in medium (green circle) and the dominance of α-factor X in

medium (black circle). (D) Dynamics of 8(t) in the monostability regime with [input] = 192 µg/ml and kα_X,Y_deg = 30 s−1. Notice here that memory is transient (see

also Figure 7D; green trajectories) and Figure 8E (green and blue trajectories) for examples of long transient memories). (E) Phase portrait displaying monostability

using the same parameter values as in (D). Each plot shows several trajectories starting from different initial conditions of both α-factors in medium (represented in

log-log scale). Each trajectory in the phase portraits was obtained from 300-h simulations using the values from Table S2. We notice that in the phase portraits, the

concentrations of both α-factors in medium were typically very low, but there is a difference of about one order of magnitude between the stable equilibria in the

bistability regime. The arrows indicate the direction of the flow.

kα_X,Y_deg = 0.134 s−1, the system reaches the stable state after
input (1, 0) and stays in that state [during input (0, 0)] until the
second input (0, 1) is applied, thus keeping persistent memory.
Figure 4D shows an example (now with kα_X,Y_deg = 30 s−1)

where the system is pushed toward an unstable state (8(t) < 0)
upon external inputs (1, 0). The system slowly starts to move
toward the stable state before changing to inputs (0, 1), thus
exhibiting transient memory. Figures 4C,E show the trajectories
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corresponding to both the bistable andmonostable circuits. From
the previous results, we can conclude that the same device can be
used to implement permanent memories (bistability) or transient
memories (monostability) by only tuning the elimination rate of
the α-factors in the medium.

In order to test the quality of our multicellular flip-flop circuit,
we have explored the quality response upon changes in two
externally controllable magnitudes: the input concentrations and
elimination rates of α-factors in medium. The results are shown
in Figure 5. First, we have explored the quality of the flip-flop
response with respect to the time responses, i.e., how fast and
permanent the changes in the device states are in response to
the external inputs R and S, quantified by 2S. Looking only
to time response, i.e., λ = 1 (Figure 5A), we observe that
lower elimination rates provides faster responses. Moreover, by
focusing only on optimal memory persistence, i.e., λ = 0
(Figure 5D), this can be achieved by tuning the elimination rates
to optimal values in the range 0.1 ≤ kα_X,Y_deg ≤ 0.17).
Lower elimination rates lead to a poorer behavior because the
persistence of the wiring molecules in the medium prevents state
changes. Similarly, higher values lead to excessive removal of
the wiring signals in the system. The optimal region is not very
dependent on the specific input concentrations.

Higher impact is observed in the region of higher elimination
rates, where an increase of the input concentrations leads
to improved flip-flop quality. Considering the contribution of
the signal amplitude as an additional element in the quality

assessment, described by 2A, we observe (Figures 5E–H) that
the dependence on input concentrations becomes stronger.
Here, the optimal flip-flop region remains in a similar range of
elimination rates, but higher input concentrations significantly
improve the quality of the flip-flop. In summary, our results
indicate that whereas time response dynamics are basically
dependent on the elimination rates, the amplitude of the response
depends on the concentration of the external inputs R and S
responsible for inducing α-factor secretion in Cells 1 and 2.
This decoupling between input concentrations and elimination
rates provides a very flexible way to optimize the experimental
device.

We can now address the long-term dynamics of our flip-flop
circuit (Figure 6). We ran a 138-h simulation, in which inputs
follow the usual sequence, i.e., activation inputs (1, 0) and (0, 1)
for 3 h and memory inputs (0, 0) for 20 h. Here, we used the
values from Table S2 with input concentrations of 192 1.5mm
µg/ml. In Figure 6A, we plot the contribution of the α-factors in
medium secreted by each of the four types of cells in the circuit.
Cells 1 and 2 behave as on-off switches, as expected, with a very
large production of α-factor during the activation inputs, thus
triggering the response of Cells 3 and 4 that is maintained during
periods with (0, 0) inputs. In Figure 6B, we plot, for the same
simulation, prepro α-factor and GFP concentrations for Cell 4.
These time series reveal that both the changes in inputs as well
as the memory lengths are maintained over time; therefore, the
long-term flip-flop dynamics are stable.

FIGURE 5 | Flip-flop qualities, 2S, for different values of input concentrations and elimination rates of α-factor in medium kα_X,Y_deg, using the

parameter values from Table S2. In the first row (A–D), we display the quality values without considering the amplitude, 2S, while in the second row (E–H) we

measured the quality considering the amplitude, 2A. In each row, we display four cases using different values of λ (see Equation 2 in the main manuscript). The cases

for λ = 1 denote the regions of the parameter space analyzed in which the circuit responds better to activation inputs. The cases with λ = 0 display the parameter

values that give place to longer memories. We also display intermediate values of λ. The white square inside (C) indicates input and elimination rates values of the

α-factor that will be used in most of our simulations (if not otherwise specified), since such values give place to good signal quality.
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FIGURE 6 | Long-term flip-flop behavior in the bistability regime, using

the parameter values from Table S2, with kGFP_deg = 0.00215 s
−1,

[input] = 192 µg/ml, and kα_X,Y_deg = 0.134 s
−1. We simulated the

system for 138 h, repeating the following sequence of activation input and

memory inputs three times: (1,0): 3 h; (0,0): 20 h; (0,1): 3 h; and (0,0): 20 h

(input changes are indicated with vertical dotted lines). (A) Release dynamics

of α-factor by Cells 1,2 (solid lines) and Cells 3 and 4 (dashed lines) cells (in

linear-log scale). We display the α-factor Y in medium (black) released by Cells

1 and 4, and the α-factor X in medium (red), released by cells 2 and 3. (B)

Time dynamics of 8(t) (solid black line) and GFP (green dashed line), with the

GFP gene inserted next to the α-factor Y gene in Cell 4.

3.2. Molecular Parameter Exploration
Beyond the tunable response associated to external inputs, we
can also consider changing the internal circuit architecture,
with minimal engineering by modifying the Cells 3 and 4.
The fundamental control points in this architecture are (i) the
transcription rate of the prepro α-factors mRNAs (γ ); (ii) the
transcription rate of the mRNA for repressor protein Z (k34);
and (iii) the repression efficiency (βc). In order to increase the
transcription rate of Z and the prepro α-factor, several copies
of the same gene can be introduced in the cell. Alternatively,
promoter changes can reduce the transcription ratio. Repressor
efficiency of Z can also be changed by adding more than one
repressor-binding domain to the Z-promoter. We computed the
quality of the flip-flop after tuning these key parameters. The
studied ranges are presented in the caption of Table S2. The
equations to compute the quality of the flip-flop [see Equations
(2)–(3)] include the constant λ, which determines the weight that
we give to the response amplitude or memory time of the circuit.
In most of the next analyses, we will fix λ = 0.4. However, in the

next section we will analyse the effect of every parameter on the
response amplitude and memory times for different values of λ.

By tuning γ and βc we found that, for a very wide region
of this parameter space (note that the axes are in log-log
scale), the circuit behaves well. The best qualities are found at
decreasing values of γ and βc, i.e., γ ∼ 10−13 mmol/(ml · s) and
βc ∼ 10−11.75 mmol/ml. These values do not correspond to the
values shown in Table S2 (indicated with a small dashed square
overlapping the parameter space in Figure 7A). This change in
the values γ and βc could be obtained, for instance, by decreasing
the mRNA production of the two α-factors (decrease in γ ) or
by inducing a higher repression of Z (decrease in βc value). The
comparison between these two optimal parameter values with the
values found in Table S2 reveal that, while we might obtain a flip-
flop quality of2S = 0.6 in the available data, such a quality could
be augmented up to 2S = 0.82 by decreasing such parameters.
The values from Table S2 reveal that the flip-flop under this
parameter combination would have a low quality in terms of
amplitude (2A = 0.2). However, this can be counterbalanced by
a slight decrease of γ and/or βc that may enhance the amplitude,
especially γ , which has grater influence on the signal’s amplitude
(see Figures 7B–E).

Exploring (γ, k34) also reveals a wide, high-performance
region (Figure 8). Here, we notice that the values for γ and k34
presented in Table S2 already provide a high flip-flop quality
(2S = 0.63 for λ = 0.4), although with low amplitude. Again,
a slight modification of these parameters, e.g., a slight increase
of both γ and k34, may cause an increase and an enhancement
of the signal (see Figure 8B). Figures 8C,D also reveals that
parameter γ , compared to βc and to k34 has a strong effect
on the amplitude of the signal. Figure 8E displays the effect of
decreasing parameter k34, which involves a decrease of the flip-
flop signal and a transition from persistent to transient memory.
The flip-flop devices can be optimized by introducing genetic
modifications as key points of the architecture. We repeated
the analyses shown in Figure 5 for λ = 0.4 using γ ∼

10−13 mmol/(ml · s) and βc ∼ 10−11.75 mmol/ml, which were
previously identified as the parameter values that enhanced the
flip-flop quality. The results can be seen in Figure 9 (see also
Section SII).

3.3. Parameter Exploration by Tuning λ:
Response Time vs. Memory
In an ideal memory device, the quality measure 2S should be
1 independently of the specific value of the parameter λ. This
represents an optimal behavior both in time responses and in
memory persistence. In this section, we explore which parameters
are critical to obtain this type of behavior. As we previously
commented on, depending on the value of λ, the quality measure
for a given set of parameter values will give a different weight to
the time response or to the memory persistence. By doing so, we
will explore the effects of varying λ on the quality of the signal,
identifying those parameters regions where the circuit has a better
response or a longer memory. First, we explored the impact of the
externally tunable parameters, i.e., we analyzed the quality of the
system by changing the input concentration and the elimination
rate of the α-factors for different values of λ.
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FIGURE 7 | Flip-flop behavior changing the transcription rate of α-factor (γ ) in the Cells 3 and 4, and the repression constant of LacI (βc), using

[input] = 192 µg/ml, kα_X,Y_deg = 0.134 s
−1, and λ = 0.4 (see Equation 2 in the main manuscript). (A) Quality of the flip-flop, 2S (see Model and Methods in

the main manuscript), in the parameter space (γ, βc). The thick dashed rectangle displays the values of γ and βc obtained from the literature (see Table S2). (B) Same

as in (A) but now considering the amplitude of the flip-flop, computed from 2A. Below we show three panels containing time series using parameter values indicated

with the solid arrows in (A). For (C) we set γ = 10−12.75 mmol/(ml · s) and 10−13 ≤ βc ≤ 10−11.5 mmol/ml. For (d) we set γ = 10−12.75 mmol/(ml · s) and

10−11.5 ≤ βc ≤ 10−9.15 mmol/ml. In (E) we used βc = 10−11.5 mmol/ml, and 10−12.75 ≤ γ ≤ 10−11.25 mmol/(ml · s). The colors of the time series correspond to

the color scale of the flip-flop qualities displayed in (A). The dashed arrows in (A) indicate parameter ranges used to compute the response and memory times of the

flip-flop (see Figures S4E,F, S5A,B).

Figures 10A–E corresponds to the parameter values shown
in Table S2, except for the tunable parameter. Similarly, in
the images on the lower part (Figures 10F–J), we use γ ∼

10−13 mmol/(ml · s) and βc ∼ 10−11.75 mmol/ml, which
provide an optimal flip-flop signal. The input concentrations
and elimination rate are fixed to [input] = 192 µg/ml and
kα_X,Y_deg = 0.134 s−1, except for the figures where we use them
as the tunable parameter.We can observe that parameters such as
γ , βc, and k34 allow for good quality independent of the λ values
(see the small, dashed rectangles in Figures 10C,H–J), indicating
that this device configuration provides both good quality in time
responses and in memory persistence.

Focussing on the externally controllable parameters, i.e.,
input concentration and elimination rates, we observed different
effects. Whereas modifying the input concentrations had no
significant impact on the dependence of quality factor with
respect to λ, the elimination rate, in some cases (Figure 10G),
makes the quality factor less dependent on when the elimination

rate increases, indicating a significant improvement on the
time responses while maintaining the quality of the memory
persistence. Similar results have been obtained using asymmetric
scenarios (see Section S-III and Figure S6 in the Supplementary
Information).

4. Discussion

Synthetic memory devices have been implemented in the last
decade (Burrill and Silver, 2010; Inniss and Silver, 2013). A
landmark paper (Gardner et al., 2000) first established the
basis for molecular memory with the toggle switch in E. coli,
based on a bistable design with cross-repression. A different
architecture was implemented in yeast (Ajo-Franklin et al.,
2007), where transcriptional positive feedback with sensitivity
to cell growth was used. Here, memory was sustained by an
autoregulatory transcriptional positive feedback. Other devices
such as conditional memory systems (Fritz et al., 2007) have
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FIGURE 8 | Flip-flop behavior at changing values of the transcription rate of α-factor, γ , and of the Fus3ppn-activated transcription of the LacI mRNA,

k34, using [input] = 192 µg/ml, kα_X,Y_deg = 0.134 s
−1, and λ = 0.4 (see Equation 2 in the main manuscript). (A) Quality of the flip-flop, 2S, in the parameter

space (γ, k34 ). Here, we also display, with a thick dashed rectangle, the corresponding values of γ and k34 obtained from the literature (Table S2). (B) Same as in (A)

but using the quality measure including the amplitude of the flip-flop, 2A. Below we show three panels containing time series using different parameter values

indicated with the arrows in (A). In (C) we set k34 = 10−3.25 s−1 and 10−11.5 ≤ γ ≤ 10−9.5 mmol/(ml · s). In (D) we also used k34 = 10−3.25 s−1 and

10−12.75 ≤ γ ≤ 10−11.5 mmol/(ml · s). In (E) we set γ = 10−11.5 mmol/(ml · s) and 10−5.75 ≤ k34 ≤ 10−3.25 s−1. Here, the colors of the time series also correspond

to the color scale of the flip-flop quality, 2S, displayed in (A). The dashed arrow in (A) indicates the parameter range for k34 used to compute the response and

memory times time to state after input introduction and the memory of the flip-flop (see Figures S4E,F in the main manuscript and Figures S5C,D).

been explored. Other implementations based on the expression
of specific recombinases in bacteria (Siuti et al., 2013) have been
also developed. Switchable memories have been built using DNA
biochemistry in vitro (Padirac et al., 2012; Inniss and Silver,
2013).

In this work, we have computationally explored the feasibility
of implementing memory circuits using a multicellular
embodiment, considering engineered yeast cells as our case
study. By splitting different parts of the flip-flop circuitry among
different engineered cells, a simple, non-standard design is
obtained where memory is specifically located in two cell types.
This is actually an interesting feature of our multicellular design,
which spatially separates memory components in well defined
modules, somewhat resembling standard circuit designs. Using
realistic parameter settings and an appropriate measure of
circuit performance, we have shown that reliable memory can
be achieved. Indeed, the exploration of the parameter space have
revealed that the flip-flop behavior is very robust to parameter
changes. The evolutionary robustness of circuits’ responses have

been recently discussed in Sleight et al. (2010). These authors
suggested that inducible promoters turn circuits more stable
from an evolutionary point of view. Since our circuit contains
such promoters, one might expect that such circuit may continue
working under long evolutionary times.

As defined in our implementation, it has been shown that
the circuit could be easily tuned in a microfluidic environment
by controlling flow rates and input concentrations. While a
constant population can bemaintained with a controlled outflow,
the elimination of α-factor in medium can be manipulated by
the second outflow along the chambers with the filters (see
Figure 1D). This allows the device behavior to be optimized or
even switched from bistable to monostable dynamics without
the necessity to largely modify the architecture of the designed
synthetic circuits. Both permanent and transient memories can
be achieved by tuning these external parameters.

Moreover, further architectural modifications affecting the
internal molecular parameters of the designed circuit could be
done to enhance the flip-flop signal. For instance, Cells 1 and
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FIGURE 9 | (A) Quality of the flip-flop, 2S, in the parameter space ([input], kα_X,Y_deg ), with λ = 0.4 (see Equation 2 in the main manuscript) using the values of Table

S2, except for γ = 10−13 mmol/(ml · s) and βc = 10−11.75 mmol/ml. In (B) we show the same as in (A) but considering the amplitude of the signal, 2A. In both

panels we used the inputs series (1,0): 3 h; (0,0): 12 h; (0, 1): 3 h; and (0,0): 12 h (compare with Figures 4C,G).

FIGURE 10 | Quality values, 2S, of the circuit’s signal, tuning λ thus considering the full range between the response time (λ = 1) and the memory

(λ = 0) of the circuit. We tune the following parameters: [input], kα_X,Y_deg, γ , βc, and k34, see Table S2. In (A–E), we use the values from Table S2, while in (F–J)

we repeated the same analysis using parameter values that lead to better flip-flop quality, with βc = 10−11.75 mmol/ml and γ = 10−13 mmol/(ml · s). In all of the

analyses, we set [input] = 192 µg/ml, and kα_X,Y_deg = 0.134 s−1. The small black rectangles display the parameter values that produce good flip-flop qualities

independently of λ. For the sake of comparison, the values of 2S in all of the parameter spaces have been normalized.

2 transcribe α-factor upon input addition, thus, the rate of α-
factor transcription depends on which promoter is triguered by
the input stimuli. Still, there is room for tuning the response
by addition of copies of the plasmid or engineering the number
of copies of α-factor of each construct. Concerning Cells 3 and
4, the pheromone transcriptional response (the transcription of
LacI in response of α-factor) can be tuned by choosing any of
the promoters that are up-regulated by α-factor presence. A list
of those yeast promoters and their strength can be found in
Christopher et al. (2000). To tune the strength of the repression
can be reduced by increasing amounts of IPTG (Grilly et al.,
2007). Also the mlacI repressor can be changed for the TetA

repressor or the natural yeast repressors as sn66 or Tup1 (Bellí
et al., 1998). Also, more operons can be aded upstream of the
repressible promoter. Since the constitutive-repressible promoter
that controls α-factor is engineered by upstream addition of
the repressor binding sites (Cox et al., 2007), the constitutive
transcription of α-factor can be increased or decreased by
changing the strength of the constitutive engineered promoter.
A good set to check the strength of a constitutive promoter can
be found in the data set of Huber et al. (2006).

As previously mentioned, previous studies on synthetic
memory systems have focused on single-cell implementation
requiring a logical scheme that is close to the standard one

Frontiers in Physiology | www.frontiersin.org 11 October 2015 | Volume 6 | Article 281

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Sardanyés et al. Multicellular memory

(Rodrigo and Jaramillo, 2007). The presence of memory is also
crucial in other types of more complex designs (Lu et al., 2009)
including associative learning (Fernando et al., 2009; Sorek et al.,
2013) but little has been done so far to explore multicellular
memories, despite the potential for flexible designs, reusability
and limited engineering. Our approach could be particularly
useful in the context of systems -such as the microbiome- where
many interacting microbial strains are present. If we imagine the
microbiome as a large, living biological computer, our consortia
could act as small added circuits capable of locally modifying
undesirable behaviors.

Future work should explore the applicability of multicellular
consortia to develop more complex synthetic constructs with
memory beyond 1-bit. For instance, a device capable of
remembering a biological experience might be utilized in
the long-term study of particular cells with a heterogeneous
population following a defined event, or applied in industry for
the sustained production of desired substances, e.g., proteins,
after input induction. We believe that the modular architecture
of our multicellular design allows to easily scale up our current
design to these more general purposes.
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