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Oxidative and nitrosative stress are primary contributors to the loss of myocardial

tissue in insults ranging from ischemia/reperfusion injury from coronary artery disease

and heart transplantation to sepsis-induced myocardial dysfunction and drug-induced

myocardial damage. This cell damage caused by oxidative and nitrosative stress leads

to mitochondrial protein, DNA, and lipid modifications, which inhibits energy production

and contractile function, potentially leading to cell necrosis and/or apoptosis. However,

cardiomyocytes have evolved an elegant set of redox-sensitive mechanisms that respond

to and contain oxidative and nitrosative damage. These responses include the rapid

induction of antioxidant enzymes, mitochondrial DNA repair mechanisms, selective

mitochondrial autophagy (mitophagy), and mitochondrial biogenesis. Coordinated

cytoplasmic to nuclear cell-signaling and mitochondrial transcriptional responses to

the presence of elevated cytoplasmic oxidant production, e.g., H2O2, allows nuclear

translocation of the Nfe2l2 transcription factor and up-regulation of downstream

cytoprotective genes such as heme oxygenase-1 which generates physiologic signals,

such as CO that up-regulates Nfe212 gene transcription. Simultaneously, a number of

other DNA binding transcription factors are expressed and/or activated under redox

control, such as Nuclear Respiratory Factor-1 (NRF-1), and lead to the induction of

genes involved in both intracellular and mitochondria-specific repair mechanisms. The

same insults, particularly those related to vascular stress and inflammation also produce

elevated levels of nitric oxide, which also has mitochondrial protein thiol-protective

functions and induces mitochondrial biogenesis through cyclic GMP-dependent and

perhaps other pathways. This brief review provides an overview of these pathways and

interconnected cardiac repair mechanisms.
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Intact adult cardiomyocytes can be injured not only by
ischemia, but also by various forms of oxidative and nitrosative
stress following ischemia/reperfusion aftermyocardial infarction,
sepsis-induced myocardial dysfunction and demand ischemia
(Ferrari et al., 1989; Loeper et al., 1991a,b; Iqbal et al., 2002;
Supinski et al., 2009). A major site of intracellular damage,
particularly in the presence of pre-existing metabolic disease,
such as diabetes, is the large population of mitochondria, which
occupy 30% of the cardiomyocyte cytoplasmic volume (Laguens
and Gómez-Dumm, 1967; Kane et al., 1975; Jennings and
Ganote, 1976). However, the heart has an elegant system of
anti-oxidant defenses and cell repair mechanisms that respond
rapidly to and protect cardiomyocytes against oxidative and
nitrosative stress, and which govern the maintenance and
restoration of functional mitochondrial populations. This system
involves the transcriptional relation of genes responsible for
mitochondrial quality control (QC), an integrated process
designed to optimize energy homeostasis. In cardiomyocytes,
many of these mechanisms are redox-sensitive, and this short
review concentrates on those mechanisms that are most
important to the maintenance of cardiomyocyte function during
periods of oxidative and nitrosative stress, and thereby serve
to preserve cardiomyocyte viability and oppose apoptosis and
necrosis.

PRODUCTION OF REACTIVE OXYGEN
AND NITROGEN SPECIES

As highly metabolic cells, cardiomyocytes maintain a high
cellular store of phosphocreatine and adenosine triphosphate
(ATP), which is required for continuous cardiac function. The
large-scale process of generating adenosine triphosphate (ATP)
from carbon substrate, which in the heart relies mostly on
fatty acids, also leads to the production of reactive oxygen
and reactive nitrogen species (ROS/RNS) by the mitochondrial
electron transport chain (ETC). This ROS production is primarily
in the form of superoxide (·O−

2 ) and RNS in the form of
peroxinitrite. Superoxide is generated by the incomplete one-
electron reduction of oxygen mainly at Complexes I and III
(Cadenas et al., 1977; Turrens et al., 1985; Aon et al., 2003; Chen
et al., 2003; Murphy, 2009) and is highly reactive. Under normal
mitochondrial conditions, ·O−

2 undergoes rapid dismutation
either spontaneously or by mitochondrial (Mn) superoxide
dismutase (SOD2) to hydrogen peroxide (H2O2). H2O2 exits the
mitochondrion to the cytoplasm, where it is relatively soluble,
and in the cytoplasm undergoes further catalysis to water (H2O)
and oxygen (O2) by catalase (Cat), glutathione peroxidases,
glutathione, thioredoxin, and the peroxiredoxins (Balaban et al.,
2005; Aon et al., 2012). Additionally, thioredoxin reductase-2
has been shown to control thioredoxin-2 and peroxiredoxin-
3 and thus controlling H2O2 emission from the mitochondria
independent of glutathione reduction (Stanley et al., 2011).
However, under certain circumstances, H2O2 in concert with
endogenous production of carbon monoxide (CO) and nitric
oxide (NO) serve as important redox signals for anti-oxidant
protection and for the cellular repair mechanisms discussed in
this review.

Tissue specific H2O2 production and its related signaling
effects appear to be dependent on factors such as age, diet, and
exercise capacity. For instance, elevated mitochondrial H2O2

is found in cardiac tissues of sedentary rats, and decreases
with both exercise and high-fat, high sucrose diets unlike in
skeletal muscle where a high-fat, high-sucrose diet leads to greatly
elevated mitochondrial H2O2. These tissue-specific differences
are due mainly to different levels of thioredoxin-2 reductase
expression in cardiac compared to skeletal muscle in sedentary
animals (Fisher-Wellman et al., 2013). Although redox-specific
signaling capacities of different muscle types were not examined
in this study, other studies have shown that when cellular ROS
(H2O2) production rates are properly balanced by the presence
of intracellular anti-oxidant enzymes like SOD2 and Cat, there
is little or no oxidative stress and the intracellular homeostasis
is maintained. However, when myocardial mitochondrial ROS
generation exceeds the local antioxidant capacity, such as during
ischemia/reperfusion and in sepsis (Ide et al., 1999; Gauthier
et al., 2013; Cortassa et al., 2014), oxidative mitochondrial
damage becomes problematic, andmultiple intracellular adaptive
mechanisms are up-regulated. These mechanisms result in the
recruitment of cell pro-survival processes that afford tissue
protection and prevent the progression to apoptosis and/or
necrosis.

MITOCHONDRIAL REDOX SIGNALING OF
MITOCHONDRIAL BIOGENESIS

One of the most important adaptive mechanisms in response
to oxidative stress is genetic and involves the anti-oxidant
response element (ARE) transcriptional pathway which
responds to the presence of chemical electrophiles and to
elevated cytoplasmic H2O2 content (Itoh et al., 1997). When
cytoplasmic electrophilic or oxidative ([H2O2]) stress increases,
the cytoplasmic protein and binding partner of Nuclear
factor erythroid-derived-like 2 (Nfe2l2 or Nrf-2), Kelch-like
ECH-associated protein 1 (Keap1), releases Nfe2l2, which
translocates to the nucleus (Itoh et al., 1999b). In the nucleus,
Nfe2l2 binds to ARE promoter regions of genes that carry an
RTGACnnnGC motif including phase II detoxifying enzymes,
certain anti-oxidant enzymes such as SOD2, cytoprotective
enzymes such as heme oxygenase-1 (HO-1), and genes for
signaling proteins required for mitochondrial biogenesis such
as Nuclear Respiratory Factor-1 (NRF-1), and for mitochondrial
DNA (mtDNA) repair such as 8-oxoguanine glycosylase
(Ogg1), and several proteins discovered more recently that
are required for mitophagy (Rushmore et al., 1991; Favreau
and Pickett, 1995; Prestera et al., 1995; Alam et al., 1999;
Itoh et al., 1999a,b; Jaloszynski et al., 2007; Cherry et al.,
2014; Chang et al., 2015). Each of these proteins and related
pathways function to protect cells from oxidative stress and
to prevent apoptosis/cell death, especially via maintenance
of mitochondrial biogenesis and mitophagy, which together
comprise an integrated mitochondrial quality control (QC)
system (Figure 1).

A metabolically active tissue, such as myocardium, may be
particularly susceptible to ROS. For instance, the inflammatory
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FIGURE 1 | A schematic diagram of known processes that are recruited to maintain mitochondrial quality control and to prevent energy failure during

oxidative and nitrosative injury.

cascade triggered by local TNF-α production as a result
of myocardial infarction leads to mtDNA damage, to lipid
peroxidation, and to protein oxidation (carbonylation). All of
these oxidized products are potential stimuli for induction of
cellular apoptosis (Irwin et al., 1999). In order to maintain
adequate function in the face of this damage, the critical
constituents of the mitochondria, such as mtDNA, proteins,
and lipids must be repaired or replaced. However, massive
damage cannot be repaired and the organelle must be
removed by mitophagy. For instance, hyper-stimulation of
the innate immune system, such as Toll-like receptor 4 by
endotoxin and other microbial products released into the
circulation leads to oxidative and nitrosative stress-induced
cardiomyocyte dysfunction and subsequent mtDNA damage in
the form of oxidized mtDNA lesions which must ultimately
be removed or repaired in order for mtDNA replication and
mitochondrial biogenesis to occur (Suliman et al., 2004). On
the other hand, activation of mitophagy, a form of selective
macroautophagy by which cells remove dysfunctional and ROS-
producing mitochondria, isolates and contains these damage-
causing organelles, and hence essentially functions as a macro
antioxidant system. The proper ordering of these molecular
repair mechanisms is necessary in order for mitochondrial
biogenesis to ensue smoothly.

As mentioned, mitochondrial biogenesis requires the
coordination of both the mitochondrial and the nuclear genomes
and the synthesis, activation and nuclear translocation of
several transcription factors and their nuclear co-activators

including NRF-1, NRF-2 (mouse ortholog GABP-α), and
PGC-1α, PGC-1β, and PRC (Evans and Scarpulla, 1990; Chau
et al., 1992; Scarpulla, 1997, 2002; Wu et al., 1999; Andersson
and Scarpulla, 2001; Lin et al., 2002; Kelly and Scarpulla, 2004;
Gleyzer et al., 2005; Vercauteren et al., 2008). These nuclear
transcription factors and their co-activators are responsible for
the regulation of genes whose products regulate the hundreds of
nuclear-encoded mitochondrial proteins (NEMPs) involved in
the many functions of cardiac mitochondria including oxidative
phosphorylation and calcium homeostasis. NEMPs also regulate
the function of the mitochondrial genome (mtDNA). After
synthesis, these proteins are imported into mitochondria by
specialized outer and inner membrane protein complexes
(Mokranjac and Neupert, 2009), also under the control of
NRF-1.

The nuclear transcription factor NRF-1 and its co-activator,
PGC-1α, indirectly regulate themitochondrial genome by the up-
regulation of mitochondrial transcription factor A (Tfam) and
mitochondrial transcription factor B which enable transcription
of the mitochondrial genome (Carter and Avadhani, 1994;
Virbasius and Scarpulla, 1994; Dairaghi et al., 1995; Carrodeguas
et al., 1996; Shadel and Clayton, 1996; Larsson et al., 1998;
Falkenberg et al., 2002; Ekstrand et al., 2004; Gleyzer et al.,
2005). Oxidative stress occurring in the myocardium as a result
of ischemia/reperfusion injury or other cytotoxic insults, for
example, in the form of cancer chemotherapeutics or in response
to sepsis-induced oxidative stress leads to nuclear translocation
of NRF-1 and up-regulation of its co-activator, PGC-1α (Suliman
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et al., 2004; Hickson-Bick et al., 2008). Transcription factor
binding by one of the PGC-1α family members such as
PGC-1β or PRC is required for mitochondrial biogenesis. In
conjunction, adaptive cytoprotective mechanisms regulated by
the endogenous gaseous signaling molecules are able to stimulate
mitochondrial biogenesis.

PHYSIOLOGIC CARBON MONOXIDE (CO)
AND MITOCHONDRIAL BIOGENESIS

A major example of such a cytoprotective pathway induced by
oxidative and nitrosative stress involves the up-regulation of
HO-1 (Hmox1), which catalyzes the breakdown of free heme,
a cellular toxin. During periods of oxidative stress, HO-1 levels
increase in the heart, and the enzyme produces physiologic
carbon monoxide (CO) by breakage of the heme ring to form
biliverdin (Maines, 1988; Maulik et al., 1996; Sharma et al.,
1996). Although often known for its damaging properties to
the cell, CO produced endogenously by HO-1 has been shown
to offer multifaceted cytoprotection. For instance, CO, through
the functional consequences of reduced (Fe2+) heme protein
binding, induces targeted ROS signaling that initiates cellular
repair mechanisms and mitochondrial biogenesis. The latter
occurs in part through promotion of the cytoplasmic release and
translocation of Nfe2l2 (Nrf-2) into the nucleus. As mentioned
Nfe2l2 nuclear translocation leads not only to the induction
of specific anti-oxidant enzymes, but also activation of NRF-
1-dependent mitochondrial biogenesis (Suliman et al., 2007b;
Piantadosi et al., 2008). Moreover, this redox-pathway is closely
coupled to the mitophagy process that sequesters and eliminates
damaged mitochondria from the cell (Strohecker and White,
2014; Chang et al., 2015). Current technological limits make
cellular CO measurements difficult, particularly with respect to
the spatial localization of CO production. Even though the local
concentration at which CO is toxic is unknown, when circulating
carboxyhemoglobin concentrations exceeds 15%, the decrease
in hemoglobin oxygen carrying capacity is reduced enough to
produce symptoms of CO poisoning.

The Nfe2l2 pathway for HO-1 induction and subsequent
mitochondrial biogenesis are important for cytoprotection. It
has been found using siRNA techniques that reduction of
Nfe2l2 (Nrf-2) activity in Hep9C2 cardiomyoblasts results in
reduced cell survival in response to hypoxia with or without
reoxygenation (Kolamunne et al., 2013). In experimental models
of congestive heart failure (CHF), decreased levels of certain
cytochrome oxidase subunits, PGC-1α and the mitochondrial
transcription factor, Tfam have been reported (Garnier et al.,
2003). A cardiomyopathy induced in humans by a widely used
chemotherapeutic agent, doxorubicin has been shown to directly
damage mtDNA (Palmeira et al., 1997). Protection against
doxorubicin-induced cardiomyopathy by HO-1 activation in the
heart leads to the induction of mitochondrial biogenesis from
the generation of physiological CO (Suliman et al., 2007a).
Subsequent investigations have also shown that CO generated
from HO-1 overexpression stimulates mitochondrial SOD-2
up-regulation and increases H2O2 production, which activates

AKT/PKB, deactivates GSK3β and induces NRF-1 leading to the
stimulation of mitochondrial biogenesis (Piantadosi et al., 2008).
It has also been shown that the administration of a CO-releasing
molecule leads to increased HO-1 expression levels and protects
mice through restoration of cardiac mitochondrial biogenesis
in response to sepsis. This suggests a mechanism by which
the physiological stimulation of CO-dependent pro-survival
mechanisms might have some future therapeutic potential
(Lancel et al., 2009). In addition, transgenic mice overexpressing
HO-1 is also protective against diabetic cardiomyopathy in
mice, and this set of circumstances is associated with restored
expression of Amp-associated kinase (AMPK) and AKT/PKB
activation compared with mice with HO-1 deletion (Zhao et al.,
2013). Such observations provide evidence of molecular linkage
between the redox salvage pathways outlined here and the strictly
energy-and/or calcium-dependent pathways of mitochondrial
QC in the heart covered elsewhere (Calì et al., 2013; Dorn, 2015;
Song et al., 2015).

A part of the mitochondrial QC program requires
mitophagy—the uptake of dysfunctional mitochondria into
lysozomes and their cellular degradation. An important role
for Nfe2l2 (Nrf-2) and the HO-1/CO system has been shown
in autophagic and presumably mitophagic pathways (Unuma
et al., 2013a,b; Liu et al., 2014). Identification of damaged
mitochondria and their packaging into autophagosomes requires
the up-regulation and mitochondrial targeting of certain
redox-sensitive proteins, most visibly p62 or Sequestosome-1
(Hamacher-Brady et al., 2006; Fujita et al., 2011; Huang et al.,
2011; Stepkowski and Kruszewski, 2011; Darvekar et al., 2014;
Haga et al., 2014; Chang et al., 2015). The p62 protein is an
autophagy receptor that interacts directly with both the cargo
to be degraded and the autophagy modifier protein, LC3. It
is required for the formation and autophagic degradation of
polyubiquitin-containing bodies, called ALIS (aggresome-like
induced structures), serving to link ALIS to autophagosome
formation (Fujita et al., 2011). This process maintains recycling
of dysfunctional mitochondria within the cell.

NITRIC OXIDE (NO) INDUCED SIGNALING
OF MITOCHONDRIAL BIOGENESIS

Another major gaseous physiological mediator produced both
constitutively and during ischemia/reperfusion and other types
of cardiac damage is nitric oxide (NO). Although release of NO
from ischemia may interact directly with ROS such as ·O−

2 to
produce peroxinitrite (McBride et al., 1999; Paolocci et al., 2001),
other evidence is beginning to emerge that NO plays a direct
role in mitochondrial biogenesis as well as in mitochondrial
QC in the heart. Using HL-1 cardiomyocytes, NO donors have
been demonstrated to activate mitochondrial biogenesis (Vettor
et al., 2014). Intracellular NO is produced by endothelial NO
synthase (eNOS/NOS1), inducible NO synthase (iNOS/NOS2),
or neuronal NO synthase (nNOS/NOS3). NO generated through
NOS1 activity leads to the induction of mitochondrial biogenesis
through guanylate cyclase activation and enhanced cyclic GMP
and protein kinase A (PKA) activity (Nisoli et al., 2003,
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2004; Signorile et al., 2014). Additionally, exercise-induced
myocardial mitochondrial biogenesis is inhibited in mice with
eNOS/NOS1 deletion (Vettor et al., 2014). And it has been shown
that the renal hematopoietic hormone erythropoietin (EPO)
induces mitochondrial biogenesis through EPO receptors in the
mouse heart, and that this response is absent in mice lacking
eNOS/NOS1 (Carraway et al., 2010).

The inducible NOS (NOS2 or iNOS) is also an important
responder to oxidative stress and inflammation. NOS2 is
induced by events that stimulate NF-κb nuclear translocation.
Although not as well-studied within the heart as eNOS,
in other organ systems the up-regulation of this enzyme
isoform also promotes mitochondrial biogenesis (Suliman et al.,
2010). Additionally, transgenic mice overexpressing NOS2
targeted to cardiomyocytes exhibit smaller infarct sizes in an
ischemia/reperfusion model, and NOS2/iNOS overexpression
has been found to inhibit the mitochondrial permeability
transition, and to prevent ROS formation. However, it was
not actually determined whether the mitochondrial biogenesis
genetic programwas up-regulated during the process (West et al.,
2008).

Although beyond the scope of this review, it is important to
note that controversy exists as to the presence of NOS within the
mitochondria given NOS activity within the mitochondria has
been previously reported (Giulivi et al., 1998; Ghafourifar et al.,
1999). Most authors report an NOS1 (nNOS) variant (Holmqvist
and Ekstrom, 1997; Kanai et al., 2001). Additionally, other
authors have suggested localization of NOS2 to themitochondrial
by immunolabeling in addition to other organelles (Buchwalow
et al., 1997) The role of so-called mtNOS is not clear and
more work is needed to understand whether it has any role in
mitochondrial biogenesis or mitochondrial QC in the heart.

Important to note, NO bioactivity plays a rather complex set
of protective roles in the myocardium beyond those involved
in mitochondrial QC. These include the ability of NO to form
protein-thiol or SNO adducts in proteins in the form of protein
nitrosylation (Stamler et al., 2001; Hogg et al., 2007; Broniowska
and Hogg, 2012). These events in their early stages, such as
the formation of SNO-proteins in mitochondria, are usually
reversible, but rapidly can become chemically irreversible if
allowed to persist or operate out of regulation (Anand and
Stamler, 2012). The protective aspects appear to be related
to the temporary inhibition of electron transport and to the

regulation of ROS production by the organelles (Piantadosi,
2012). The extent to which this type of mechanism operates in the
ischemic or failing heart and their impact on mitochondrial QC
programming has not yet been fully explored, although recent
descriptions have provided proof of principle of their biological
importance (Ozawa et al., 2013; Sun et al., 2015).

In summary, the cytoprotective responses that have evolved to
allow heart cells to respond, survive, and adapt to oxidative and
nitrosative stress involve several novel, redox-based, signaling
mechanisms. These are adaptive processes that occur generally
before overt energy failure and result in heme oxygenase-
1 up-regulation, nuclear translocation of Nfe2l2, induction
of NRF-1 and its co-activator PGC-1α, the transcription

of Tfam and its importation into mitochondria, the up-
regulation of mtDNA repair enzymes and ultimately to mtDNA
replication and to mitochondrial biogenesis. Both mitochondrial
biogenesis and other organelle repair mechanisms occur in
response to intracellular oxidative stress, but mitochondrial
H2O2, production as well as endogenous enzymatic CO
and NO production are able to induce the transcriptional
program for mitochondrial biogenesis. This process along
with the complementary and closely interrelated process of
mitophagy protects and preserves a well-functioning population
of mitochondria and allows the cell to reduce the ongoing
contribution of damaged mitochondria to overall cellular
oxidative stress. Together, these mechanisms are highly cardio-
protective and preserve cardiomyocyte viability by limiting the
activation of intrinsic apoptosis and by preventing energy failure
and necrosis. A more thorough molecular understanding of
the pathways that regulate and enhance mitochondrial QC has
the potential to lead to novel therapeutic targets in a wide
variety of heart diseases including ischemic, metabolic, and toxic
cardiomyopathies.
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