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Critical limb ischemia (CLI) is the most severe clinical presentation of peripheral arterial

disease and manifests as chronic limb pain at rest and/or tissue necrosis. Current clinical

interventions are largely ineffective and therapeutic angiogenesis based trials have shown

little efficacy, highlighting the dire need for new ideas and novel therapeutic approaches.

Despite a decade of research related to skeletal muscle as a determinant of morbidity

and mortality outcomes in CLI, very little progress has been made toward an effective

therapy aimed directly at the muscle myopathies of this disease. Within the muscle cell,

mitochondria are well positioned to modulate the ischemic cellular response, as they are

the principal sites of cellular energy production and the major regulators of cellular redox

charge and cell death. In this mini review, we update the crucial importance of skeletal

muscle to CLI pathology and examine the evolving influence of muscle and endothelial

cell mitochondria in the complex ischemic microenvironment. Finally, we discuss the

novelty of muscle mitochondria as a therapeutic target for ischemic pathology in the

context of the complex co-morbidities often associated with CLI.
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INTRODUCTION

Peripheral artery disease (PAD) presents as either symptom-free, intermittent claudication (IC,
pain with exertion that is relieved with rest) or critical limb ischemia (CLI, pain at rest with or
without tissue necrosis or gangrene). CLI carries alarmingly high morbidity and mortality rates
and patients have a risk of major amputation or death that approaches 40% in 1 year (Dormandy
et al., 1999; Hirsch et al., 2001; Taylor et al., 2009). A commonmisconception is that CLI represents
the natural progression of IC in patients; however the same degree of stenosis can present as
symptom-free, IC, or CLI, implying that factors other than limb blood flow contribute to pathology.
Despite recent advances in stem cell biology and genetics (Matzke and Lepantalo, 2001; Chalothorn
et al., 2007; Dokun et al., 2008; Chalothorn and Faber, 2010; Wang et al., 2010, 2012; Katwal and
Dokun, 2011), surprisingly little progress has been made toward effective therapeutic options for
CLI, warranting the consideration of alternative and novel treatment approaches. Limb skeletal
muscle is uniquely positioned to alter the clinical course of CLI due to its inherent plasticity, role
as a paracrine signaling organ, and reservoir of endogenous pluripotent progenitor cells (Seale
et al., 2001; Chargé and Rudnicki, 2004; Abou-Khalil et al., 2010). Currently, PAD research is
overwhelmingly focused on limb collateral vessel development and nascent conduit promotion
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and survival (Annex, 2013), while potential alternative therapies
directed at limb muscle in CLI have been slow to develop. In
this mini-review we highlight the importance of skeletal muscle
in the manifestation of CLI and discuss the potential influence
of muscle and endothelial cell mitochondria on the ischemic
limb.

SKELETAL MUSCLE PATHOLOGY IN THE
ISCHEMIC LIMB

Variations in the clinical course of CLI raise the intriguing
possibility that disease manifestation is in part dependent on
genetic determinants of susceptibility to ischemia (Matzke and
Lepantalo, 2001; Chalothorn et al., 2007; Dokun et al., 2008;
Chalothorn and Faber, 2010; Wang et al., 2010, 2012; Katwal
and Dokun, 2011). The genetics of PAD are not well understood
(Gudmundsson et al., 2002; Knowles et al., 2007; Messina, 2008;
Katwal and Dokun, 2011; Leeper et al., 2012; Murabito et al.,
2012) but present a complicated paradigm whereby differential
determinants could direct the ischemic responses of multiple
cell types (endothelial, muscle, fibroblast, etc.) in the affected
limb. In this regard, inbred mouse strains have dramatically
different responses to a murine model of PAD, analogous to the
range of responses seen in humans. For example, limb perfusion
recovers rapidly and without tissue loss in C57BL/6J (BL6)
mice while BALB/cJ mice display significant tissue necrosis and
poor perfusion recovery (Chalothorn et al., 2007; Dokun et al.,
2008; Chalothorn and Faber, 2010; Wang et al., 2010). Inherent
genetic differences in muscle regeneration are known to occur
in BALB/cJ mice (Grounds, 1987; Grounds and McGeachie,
1989; McGeachie and Grounds, 1995; Mitchell et al., 1995;
Roberts et al., 1997; Lagrota-Candido et al., 2010), and includes
temporal alterations in the expression of traditional vascular
growth factors and their receptors (McClung et al., 2012) that
coincide with the strain-dependent segregation of limb blood
flow. Differentiating muscle cells secrete traditional vascular
growth factors that act as both autocrine and paracrine factors
to stimulate maturation in both endothelial and muscle cells
(McClung et al., 2012, 2015; Mofarrahi et al., 2015) and represent
a unique source of regenerative signals that could potentially
be harnessed to improve the local ischemic microenvironment.
Because a large proportion of murine pre-clinical limb ischemia
work is performed in mice on either a mixed or largely BL6
background, regeneration from ischemic muscle myopathy is
often masked or ignored.

In a clinical CLI scenario, focusing on solely the vascular
response is predicated on the idea that the ischemic muscle
tissue is dispensable, at least short-term. Treatments that induce
revascularization and/or nascent collateral vessel formation have
proven ineffective to date (Annex, 2013; Hammer and Steiner,
2013; Cooke and Losordo, 2015) and indicate that a “restoration
of flow approach” is not independently sufficient to rescue the
limb. It is likely that myopathy and vasculopathy are interrelated
components of a coordinated tissue response to CLI. Recent
insights into the skeletal muscle response indicate that while the
background genetics of an individual contributes to the density

of pre-existing collateral vessels and the endogenous ability to
generate nascent collateral vessels and capillaries, this simply isn’t
the sole determinant of pathology. The plasticity of the skeletal
muscle facilitates temporal ischemic degeneration/regeneration
in this environment, whereby genetically pre-determined deficits
in muscle regenerative processes would result in cellular
apoptosis and tissue necrosis that could negatively impact both
endogenous neovascularization and/or the survival of a vessel
graft. Simply put, limb muscle tissue that is already necrotic
or beyond repair by endogenous regenerative mechanisms is
representative of a local ischemic environment that is unable
to sustain or promote neovascularization (Figure 1). Intricate
coordination of therapies targeting muscle plasticity may be
required to allow tissue survival and facilitate recovery until
blood flow can be fully restored by surgical intervention and/or
collateral vessel formation.

The importance of striated muscle to ischemic outcomes is
readily accepted in cardiac ischemia/reperfusion, and there are
numerous clinical trials involving therapeutic targeting of the
cardiomyocyte (clinicaltrials.gov: NCT01502774, NCT01374321,

FIGURE 1 | Simplified model of the proposed role of muscle myopathy

in the progression of limb pathology in critical limb ischemia. Individual

genetics play a role in determining the severity of the ischemic manifestation of

limb pathology. Clinical interventions (endovascular or revascularization in

nature) occur after the patient clinically presents with identifiable

symptoms/manifestation of PAD, at a time when muscle myopathy is initiated

or ongoing. Ischemic muscle myopathy involves muscle

degeneration/regeneration cycles that: (1) function properly and result in a limb

tissue microenvironment that is supportive of neovascularization and/or the

clinical intervention, reducing morbidity and increasing the likelihood of limb

survival, or (2) improperly function, resulting in a microenvironment that

promotes continued degenerative myopathy and vascular regression that

ultimately leads to tissue necrosis, morbidity, and secondary amputation. The

role of mitochondrial function in ischemic limb muscle myopathy is not currently

understood, but represents an exciting area for therapeutic exploration.
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NCT01172171, NCT00966563, NCT01572909). Therapies aimed
at the skeletal muscle represent an untapped arena with great
potential to advance the field of CLI research. Table 1 highlights
the clinical work verifying limb skeletal muscle’s role in PAD
mortality over the last 10-years. Documented histochemical
evidence of skeletal muscle myopathies and necrosis in PAD
patients exists (Rissanen et al., 2002; Pipinos et al., 2007,
2008a); however the majority of the field operates under
the assumption that myopathy is not important (Sealock
et al., 2014). In stark contrast, muscle biologists studying
neuromuscular diseases, dystrophy, or myofibrillar myopathies
have embraced the contributions of the vasculature to the
pathologic manifestations of their respective diseases. Abnormal
skeletal muscle perfusion and resultant ischemia are believed to
contribute to the pathology of Duchenne and Becker muscular
dystrophies, and have spawned the “two hit (ischemia-metabolic
stress) hypothesis” for muscle injury in these diseases (Asai
et al., 2007). This hypothesis has driven approaches to treat
these muscular dystrophies with phosphodiesterase-5 inhibitors
like tadalafil, which improves blood flow, in an attempt to
circumvent the ischemic component and improve muscle
bioenergetics (Martin et al., 2012). Given the similarities between
dystrophic myopathies and those identified with CLI, therapies
aimed at skeletal muscle could be effective treatments for
tissue degeneration and dysfunction during ischemia while also
providing benefits to the vascular compartment of the affected
limb. Interestingly, a common pathology linking neuromuscular
disorders involving degeneration/regeneration is mitochondrial
dysfunction (Katsetos et al., 2013). Mitochondria have recently
garnered attention in the PAD literature (Brass, 2013; Hiatt et al.,
2015) and may represent an evolutionarily conserved “starting
point” for investigation into CLI myopathy.

SKELETAL MUSCLE MITOCHONDRIA IN
THE ISCHEMIC LIMB

Mitochondria have numerous roles in the muscle cell,
including the generation and maintenance of energy and
redox charge, gatekeeping the mortality of ischemic cells

(Karch and Molkentin, 2015; Shirihai et al., 2015), and the
production of reactive oxygen species (ROS). Mitochondria also
communicate with the rest of the cell through “signals” such
as metabolites, cytochrome c release, and via redox-dependent
cascades. Decreasedmuscle metabolism, impairedmitochondrial
respiration, decreased expression of mitochondrial enzymes,
increased oxidative stress, and somatic mutations in
mitochondrial genes have been reported in limb muscle of
patients’ with PAD (Keller et al., 1985; Hands et al., 1986; Zatina
et al., 1986; Bhat et al., 1999; Brass and Hiatt, 2000; Pipinos
et al., 2000a, 2006, 2008b; Brass et al., 2004; Isbell et al., 2006;
Schocke et al., 2008; Wurdeman et al., 2012; Weiss et al., 2013;
Koutakis et al., 2014). Using non-invasive magnetic resonance
spectroscopy, several labs have demonstrated that limb muscle
from PAD patients’ displays slower phosphocreatine (PCr)
recovery, indicative of a lower muscle/mitochondrial oxidative
capacity (Keller et al., 1985; Hands et al., 1986; Pipinos et al.,
2000a,b; Isbell et al., 2006; Schocke et al., 2008). Interpretation
of these data can be complicated by the influence of an intact
but poorly functioning vascular system, perpetuating the idea
that the reduced PCr recovery rates are more related to poor
perfusion during the recovery period. Gastrocnemius muscle
biopsies from PAD patients, however, also demonstrate reduced
mitochondrial content and enzyme activity ex vivo (where
oxygen delivery is not a limitation; Pipinos et al., 2003, 2006,
2007), and pre-clinical studies have recapitulated these findings
(Pipinos et al., 2008b; Lejay et al., 2015). It is not currently known
whether alterations in mitochondrial content or function cause
ischemic muscle myopathy, but a recent report linked muscle
mitochondrial content (reported as citrate synthase protein
abundance) to PAD mortality (Thompson et al., 2014).

A lack of oxygen delivery to limb muscle tissue induces
a progressive accumulation of ischemic injury that manifests
as declining muscle function (Pipinos et al., 2007, 2008a;
McDermott et al., 2012; Cluff et al., 2013; Weiss et al., 2013;
Koutakis et al., 2014). A potential source for this tissue injurymay
be mitochondrial-derived ROS and the resulting oxidative stress
with chronically elevated ROS. Pipinos et al. reported the first
indirect evidence for skeletal muscle “oxidative stress” in patients
with PAD (Pipinos et al., 2006). Recent work from this group

TABLE 1 | Clinical studies implicating skeletal muscle function with mortality.

Study n Patient population Skeletal muscle factors associated with mortality

Gardner et al., 2008 434 PAD 6-min walk test, speed, and stair climbing scores

de Liefde et al., 2009 2191 PAD Total treadmill walking distance

Singh et al., 2010 410 PAD Attenuated knee extensor/flexion and hip extension strength in men, but not women

McDermott et al., 2011 440 PAD Decline in 6-min walk test, and fast- and usual-paced 4-m walk test

McDermott et al., 2012 434 PAD Lower calf muscle density and strength

Raval et al., 2012 425 PAD Obesity associated with lower calf muscle density and greater declines in muscle density over time.

Jain et al., 2013 442 PAD Walking speed and strain climbing scores from walking impairment questionnaire

Leeper et al., 2013 725 PAD Symptom limited walking time on ramped treadmill test

Thompson et al., 2014 187 PAD Calf muscle citrate synthase activity (marker of mitochondrial content)

Matsubara et al., 2015 64 CLI 5-year survival rate significantly lower in patients with sarcopenia (total body)

A brief literature search using PUBMED, MEDLINE, and SCOPUS was conducted. Studies assessing the association between skeletal muscle health/function and cardiovascular/all-

cause mortality are shown above with abbreviated summary of findings. PAD, peripheral arterial disease; CLI, critical limb ischemia; n, number of patients.
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suggests that these same indirect markers of oxidative stress may
be related to disease severity (Fontaine Stage and ABI;Weiss et al.,
2013). The potential also exists for repeated ischemia-reperfusion
events in skeletal muscle from CLI patients (Lejay et al., 2014).
When blood flow and pressure is low, arterial blockages may
result in low oxygen tensions inmuscle tissue that could be severe
enough to inhibit mitochondrial complex IV (cytochrome c
oxidase) and consequently electron flow in the electron transport
system. This would result in the accumulation of metabolites
and reducing equivalents (NADH and FADH2) that, upon re-
oxygenation by surgical intervention or endogenous collateral
flow with activity or mechanical loading, would be rapidly
metabolized. These ischemia-reperfusion events have been well
documented to produce large amounts of ROS in cardiac, brain,
liver and renal tissues (Chouchani et al., 2014) and could be
intermittently triggered by small amounts of physical activity
or mechanical loading. For additional details on oxidative stress
with PAD, we would recommend other excellent reviews (Brass,
1996; Pipinos et al., 2007, 2008a).

Because mitochondria are a major source of both reductive
power (e.g., NADPH) and oxidants (superoxide anion and
hydrogen peroxide), they serve as a metabolic rheostat
controlling cellular redox homeostasis. Flux through both the
reductive and oxidative arms contributes to redox signaling
through redox modifications to cysteine residues that regulate
the structure/function of target proteins (Go and Jones,
2013). Post-translational modifications such as S-nitrosylation,
glutathionylation, sulfenylation, and disulfide bond formation
are also considered mechanisms of redox signaling. Although
the redox signaling field is at an early stage, recent studies
suggest regulation of several cellular pathways relevant to
the ischemic microenvironment including: muscle autophagy
(Rahman et al., 2014), contractile dysfunction (reviewed in
Powers et al., 2011), atrophy (Lawler et al., 2003), mitochondrial
fission and fusion (reviewed in Willems et al., 2015), vascular
growth and remodeling (reviewed in Bir et al., 2012), gene
stability (Mikhed et al., 2015), and cellular proliferation and
death (Wang et al., 2013; L’honoré et al., 2014). An oxidative
shift with elevated ROS production in one cell type may have
a direct and/or indirect effect on other resident cell types.
Although it is difficult to imagine that charged, highly reactive
oxygen/nitrogen species arising within subcellular organelles
(e.g., mitochondria) or from cytosolic enzymes (e.g., xanthine
oxidase) could escape the oxidant buffering systems (e.g.,
glutathione peroxidases, peroxiredoxins, superoxide dismutase,
catalase) and travel to neighboring cells, ROS species, particularly
those not carrying a charge (e.g., H2O2), produced by membrane
bound enzymes (e.g., NADPH oxidase) may be capable of
directly affecting nearby cells. It is likely that altered redox
homeostasis in one cell would dramatically alter the local
microenvironment through paracrine signaling. For example,
skeletal muscle redox alterations have been shown to decrease
endothelial cell angiogenic properties via the HIF-1α signaling
cascade (Dromparis et al., 2014). Further, HIF-1α is a known
transcriptional regulator for vascular endothelial growth factor
(VEGF), which plays a vital role in angiogenesis (Rhoads et al.,
2009).

ENDOTHELIAL MITOCHONDRIA IN THE
ISCHEMIC LIMB

Early research on the cellular bioenergetics of endothelial
cells (ECs) suggested a heavy cellular reliance on glycolytic
metabolism for the energy requirements of normal processes
(Dobrina and Rossi, 1983; Leighton et al., 1987; Krützfeldt et al.,
1990; Laing et al., 1992). These studies reported high activities
of key enzymes in glycolytic metabolism (phosphofructokinase,
hexokinase), high rates of lactate production in aerobic
conditions, and low rates of glucose oxidation especially when
high levels of glucose are present (Crabtree Effect). Additionally,
ECs have a relatively low mitochondrial content, [less than 5%
of the cell volume vs. 5–20% in skeletal muscle (Hoppeler et al.,
1981; Groschner et al., 2012; Dahl et al., 2015; Jacobs et al.,
2015)]. Some studies suggest mitochondrial ATP production is
dispensable in ECs (Quintero et al., 2006) and there appears
to be supportive evidence in that limb ECs are resistant to
ischemic insult in CLI patients (Mertens et al., 1990; Noll
et al., 1990). There is also a distinct body of research, however,
indicating that mitochondria are critical organelles to the
viability and function of ECs (Quintero et al., 2006; Goveia
et al., 2014; Eelen et al., 2015). Mesenchymal stem cells form
tunneling nanotubes that transfer mitochondria to ECs to rescue
cellular aerobic respiration and stave off apoptosis induced by
ischemia/reperfusion (Liu et al., 2014), a response that could
be particularly important in stroke patients (Chan, 2005; Li
et al., 2012; Lejay et al., 2014; Mishiro et al., 2014). Capillary
ECmitochondrial cytopathies decrease angiogenesis and precede
myofiber injury in early infants with mitochondrial diseases,
a finding termed “mitochondrial angiopathy” (Sarnat et al.,
2012). Overexpression of mitochondrial Thioredoxin-2 (Trx2)
improves EC proliferation and arteriogenesis in the ischemic
limb (Dai et al., 2009) and cancer researchers now utilize
mitochondrial uncouplers in attempts to reduce tumor size due
to their effects on neovascularization (Coutelle et al., 2014). These
recent findings support an integral role for the mitochondria
in the regulation of EC function and indicate this organelle’s
potential as a therapeutic target for CLI.

MITOCHONDRIAL DYNAMICS

Mitochondria are dynamic organelles that rely on complex
signals orchestrating dynamic fission and fusion events
believed to be responsible for regulating mitochondrial quality
control. Fission and fusion are involved in the elimination
of damaged/dysfunctional mitochondria (Song et al., 2015)
which may serve as major sources of ROS. A cell’s decision
to remove dysfunctional mitochondria plays a vital role in
limiting cellular damage/apoptosis while maintaining cell
function. Damaged and depolarized mitochondria are targeted
by PTEN-induced putative kinase 1 (PINK1), which drives
Parkin-mediated mitophagic engulfment by autophagosomes
(termed “mitophagy,” for detailed reviews see Dorn and Kitsis,
2015; Shirihai et al., 2015). Recent preclinical evidence suggests
that defects in mitophagy exacerbate cardiomyocyte injury
and decrease survival following ischemia/reperfusion (Song
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et al., 2014), indicating an increased cellular sensitivity to
ischemic stress (Kubli et al., 2013). Mitophagy is critically
important to the plasticity of skeletal muscle (Liesa and
Shirihai, 2013) and is a unique process that could be similarly
important to the health of the vasculature in the ischemic limb.
Ischemia/reperfusion-induced impairments in ECmitochondrial
respiratory capacity have been intricately linked to accelerated
fission caused by excessive oxidative and nitrosative stress
(Giedt et al., 2012). Moreover, siRNA-knockdown of mitofusin-1
or mitofusin-2 impairs EC angiogenic function in vitro and
increases markers of apoptosis under stress (serum-deprivation;
Lugus et al., 2011). There are no current investigations into
the potential role of mitophagy in limb muscle pathology
with CLI, although mitochondrial dynamics provide an
attractive candidate for exploration. The accumulation of
damaged mitochondria is likely to lead to increased ROS, an
oxidative shift in the redox environment, and impaired energy
production; all factors contributing to a pathologic ischemic
microenvironment.

PRIMARY CLI RISK FACTORS
ASSOCIATED WITH ALTERED
MITOCHONDRIAL FUNCTION

There are numerous risk factors linked to the CLI manifestation
in PAD patients (Fowkes et al., 2013; Nehler et al., 2014).
The two strongest risk factors for CLI, smoking and diabetes,
are particularly provocative in terms of the subject matter of
this review due to the ability of both to impair mitochondrial
function in multiple cellular compartments of the ischemic
limb.

Smoking
From a physiologic perspective, smoking impairs microvascular
reactivity (Ijzerman et al., 2003), increases intima-media
carotid wall thickness (Howard et al., 1994), decreases flow-
mediated dilation in the brachial artery (Langham et al.,
2015) and increases the likelihood of atherosclerotic lesion
formation (Yanbaeva et al., 2007). Pre-clinically, chronic cigarette
smoke exposure severely alters vascular structure and function,
including facilitating oxidative and nitrosative stress (Talukder
et al., 2011). ECs exposed to cigarette smoke extract in vitro
have lower mitochondrial integrity, rapid loss of mitochondrial
membrane potential, and arrest of cell cycle progression
(Henderson et al., 2008). Interference of the respiratory chain
by either hydroquinone or carbon monoxide is believed
to be a key component of smoking induced mitochondrial
dysfunction in skeletal muscles (Degens et al., 2015), as well
as impaired oxygen delivery due to carbon monoxide binding
with hemoglobin/myoglobin. Interestingly, the combination
of high-fat diet and nicotine results in increased oxidative
stress and substantial lipid accumulation adjacent to swollen
intramyofibrillar mitochondria in peripheral skeletal muscle
(Sinha-Hikim et al., 2014). Taken together, the global cellular
response to smoking demonstrates the potential for smoking to
alter not only physiologic vessel function and the time-course of

atherosclerotic lesion formation, but also the health of peripheral
muscle cells. Interestingly, only a small series of research studies
examine the muscle regenerative aspect, several of which are
linked with healing rates after orthopedic surgery (Karim et al.,
2006; Lundgreen et al., 2014; Mall et al., 2014). There are,
however, a number of studies demonstrating ultrastructural
and functional alterations in cardiomyocyte mitochondria after
exposure to cigarette smoke (Yamada et al., 2009; Hu et al., 2013;
Tippetts et al., 2014). Further work is necessitated to directly
examine the effects of smoking on the mitochondria of the
ischemic limb muscle, but this area represents an exciting arena
with the potential to result in singular therapies for multiple
co-morbidities associated with smoking and cardiovascular
disease.

Diabetes
Type II Diabetic patients with PAD are five times more likely
to present clinically with CLI accompanied by tissue loss (Jude
et al., 2001) and do not respond well to revascularization or
endovascular interventions (Derubertis et al., 2008; Malmstedt
et al., 2008). While diabetes may exacerbate the development
of plaque blockages in the arteries, the impact of metabolic
syndrome/diabetes on other tissue compartments has not been
investigated in the context of CLI. As a common risk-factor,
one explanation for the diabetic increase in PAD susceptibility
could conceivably be exacerbated muscle damage originating
from compromised mitochondrial function prior to the onset of
ischemia. Diabetes both reduces skeletal muscle mitochondrial
function (Kelley et al., 2002; Petersen et al., 2004; Bonnard et al.,
2008) and increases mitochondrial fission, fragmentation, and
ROS production in human venous ECs (Shenouda et al., 2011),
indicating the potential for exacerbated ischemic responses in
multiple cellular compartments of the ischemic limb. Chronic
oxidative stress caused by nutrient oversupply to muscle
mitochondria is implicated in reduced diabetic mitochondrial
respiratory function (Bonnard et al., 2008; Anderson et al.,
2009a,b), whereas mitochondrial-targeted antioxidants confer
protection against diet-induced dysfunction (Hoehn et al., 2009;
Anderson et al., 2009b; Lee et al., 2010). Taken together, these
findings suggest the possibility that compromised muscle and
endothelial mitochondrial function may be pre-conditioning the
limb tissue to respond poorly to the ischemic insult in diabetic
CLI patients, resulting in greater myopathy and sustained tissue
degeneration regardless of genetic susceptibility.

CONCLUSIONS AND FUTURE
DIRECTIONS

A critical barrier to developing therapeutic strategies to PAD
has been a lack of understanding of the mechanisms underlying
the etiology and pathology of PAD. While the cause of PAD
is unquestionably occlusive arterial disease, the limited success
of surgical and angiogenic treatments suggest that factors other
than blood flowmay significantly contribute to patient outcomes.
Physiologically, angiogenesis and neovascularization are directed
by the metabolic demand of the resident tissue. Simply put,
the return of blood flow will have little effect if the limb tissue
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is beyond repair. In this review, we have highlighted recent
trends in CLI research that suggest limb musculature may be
a viable and potentially parallel therapeutic option for both the
myopathy and vasculopathy of CLI. Furthermore, limb muscle
and EC mitochondria provide attractive specific targets for novel
therapeutic intervention.
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