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Cognitive function defines performance in objective tasks that require conscious mental

effort. Extreme environments, namely heat, hypoxia, and cold can all alter human

cognitive function due to a variety of psychological and/or biological processes. The

aims of this Focused Review were to discuss; (1) the current state of knowledge on

the effects of heat, hypoxic and cold stress on cognitive function, (2) the potential

mechanisms underpinning these alterations, and (3) plausible interventions that may

maintain cognitive function upon exposure to each of these environmental stressors.

The available evidence suggests that the effects of heat, hypoxia, and cold stress on

cognitive function are both task and severity dependent. Complex tasks are particularly

vulnerable to extreme heat stress, whereas both simple and complex task performance

appear to be vulnerable at even at moderate altitudes. Cold stress also appears to

negatively impact both simple and complex task performance, however, the research in

this area is sparse in comparison to heat and hypoxia. In summary, this focused review

provides updated knowledge regarding the effects of extreme environmental stressors

on cognitive function and their biological underpinnings. Tyrosine supplementation may

help individuals maintain cognitive function in very hot, hypoxic, and/or cold conditions.

However, more research is needed to clarify these and other postulated interventions.
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INTRODUCTION

Cognitive function defines performance in objective tasks that require conscious mental effort
(Lamport et al., 2014). Such tasks include memory (verbal, spatial, and working), attention, and
executive function (Lezak, 2004). These tasks are often categorized as either “simple” or “complex”
(Ramsey and Kwon, 1992); simple tasks are those which require very simple perceptual motor skills

Abbreviations: ◦C, Degrees Celsius; 5-HT, 5-hydroxytryptamine; ANT, Attention Network Test; DA, Dopamine; DHEA,

Dehydroepiandrosterone; fMRI, Functional Magnetic Resonance Imaging; m, Meter; min, Minutes; ms, Millisecond; O2,

Oxygen; PaO2, Partial Pressure of Oxygen; r.h., Relative Humidity; TC , Core Temperature; TRPM8, Transient Receptor

Potential Melastatin 8; TSK , Skin Temperature; WADA, World Anti-Doping Agency.

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://dx.doi.org/10.3389/fphys.2015.00372
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2015.00372&domain=pdf&date_stamp=2016-01-06
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:lee.taylor@aspetar.com
http://journal.frontiersin.org/article/10.3389/fphys.2015.00372/abstract
http://loop.frontiersin.org/people/136762/overview
http://loop.frontiersin.org/people/298403/overview
http://loop.frontiersin.org/people/298357/overview
http://loop.frontiersin.org/people/244808/overview
http://loop.frontiersin.org/people/194573/overview


Taylor et al. Cognitive Function in Different Environments

(e.g., choice reaction time, memory recall), whereas complex
tasks require a greater effort and/or attention, such as
multiple/dual tasks [e.g., complex motor coordination, working
memory tasks (Bradley and Higenbottam, 2003)]. However,
categorization of cognitive tasks remains somewhat problematic
as each task activates different regions of the brain (Qian et al.,
2013) and individual familiarity with the task(s) may alter task
classification. Based on previous literature (Gopinathan et al.,
1988; Ramsey and Kwon, 1992; Bradley and Higenbottam, 2003;
Hancock and Vasmatzidis, 2003; Gaoua, 2010) Table 1 provides
a breakdown of which tasks are categorized as “simple” and
“complex”—this review article will adhere to this classification.
This categorization approach is recognized as simplistic and is
utilized to aid readability of the presented Focused Review, with
the caveat that readers should interpret this classification with
care.

It is clear from previous work that different environmental
conditions can negatively impact cognitive function. Past
research has shown that hot (Hocking et al., 2001; Bandelow
et al., 2010; Morley et al., 2012; Parker et al., 2013), cold
(Marrao et al., 2005; Mäkinen et al., 2006; Adam et al., 2008a;
Spitznagel et al., 2009; Muller et al., 2012; Taylor et al., 2014),
and hypoxic (Kourtidou-Papadeli et al., 2008; de Aquino Lemos
et al., 2012; Muller et al., 2012; Ando et al., 2013; Neuhaus and
Hinkelbein, 2014) exposures can impair these cognitive processes
in humans, and it appears that a combination of interrelated
psycho-physiological pathways may be responsible for these
deficits (as will be subsequently be reviewed). Moreover, we will
discuss the pathways responsible for such cognitive alterations,
relevant interventional strategies which may acquiesce these
deficits, and finally recommendations for future research.

TEMPERATURE AND COGNITIVE
FUNCTION

Heat Stress
Heat stress is recognized as an occupational hazard within the
scientific literature, often attributed to compromised cognitive
function (Ramsey et al., 1983; Tawatsupa et al., 2013). For

TABLE 1 | Categorization of simple and complex cognitive tasks.

Simple cognitive tasks Complex cognitive tasks

Mental transformation Arithmetic efficiency

Monitoring Attention

Memory recall Complex motor coordination

Numerical vigilance Dual tasks

Choice reaction time Executive function

Short term memory Mental addition

Simple arithmetic Recall capacity

Simple visual orientation Sustained attention

Tracking

Vigilance

Visual motor tracking

Working memory tasks

example, when 17,000 safety observations were made over a
14 month period in factory workers, the relationship between
the ambient temperature and unsafe behaviors formed a U-
shaped curve. Specifically, minimum unsafe behaviors occurred
when the ambient temperature was between 17 and 23◦C,
whereas temperatures outside of this range saw increasing
unsafe behaviors displayed (Ramsey et al., 1983). Utilizing
logistic regression (heat stress and occupational injury), it was
demonstrated that ∼20% of Taiwanese workers (n = 58.495)
experienced occupational heat stress, which was strongly and
significantly associated with workplace accident rates (Tawatsupa
et al., 2013). The notion that indoor workers are generally
sufficiently protected via air conditioning, fans, or other cooling
systems does not apply to most industrial workplaces in low and
middle income countries, that are located in hot regions of the
world (Balakrishnan et al., 2010).

Occupations at risk of extreme heat exposure may include
mining, shearing, farming, factory work, firefighting, and other
emergency/military services (Arbury et al., 2014). Performing
occupational tasks in close proximity to heat-generating
equipment can also generate exceptionally hot environments.
Additionally, several occupations (e.g., firefighting, chemical
waste, and bomb disposal) require workers to wear impermeable
protective clothing, which interferes with evaporative heat loss
mechanisms and may overwhelm the ability of this primary heat
loss effector system to maintain core temperature (Tc) at ∼37◦C
(Cheung et al., 2000; Armstrong et al., 2010).

Examining the relationship between heat stress and cognitive
function is a challenging task as there are many confounding
factors that may have influenced results from previous
investigations. Examples of these methodological inconsistencies
include severity of heat exposure (duration and temperature),
the complexity of the cognitive task(s) completed, previous
experience of participants, hydration status, the definition of
heat stress (high ambient or Tc), and the design employed to
attain an increase in Tc (passive or exercise induced). Discussing
each of these confounding issues in detail is beyond the scope
of this focused review, however, the reader is directed to reviews
which have addressed each of these issues at length (Hancock and
Vasmatzidis, 2003; Hancock et al., 2007; Gaoua, 2010). When
discussing both the mechanistic and observational evidence
regarding heat stress induced cognitive alterations, the authors’
have drawn upon data from studies using human passive heat
stress models (to eliminate any confounding effect of exercise).
Relevant recent literature in this area is collated within Table 2,
and is drawn upon when making conclusions regarding the true
effects of passive heat stress on cognitive function.

It is generally accepted that simple task performance is
less vulnerable to heat stress than complex task performance,
a viewpoint that has been supported by recent literature
reviews (Hancock, 1986; Pilcher et al., 2002; Hancock and
Vasmatzidis, 2003; Gaoua, 2010). Complex tasks such as
working memory (spatial span test, pattern recognition) were
significantly impaired through heat stress [45min at 50◦C,
50% relative humidity (r.h.)], whereas simple attentional tasks
(match to sample, choice reaction time, rapid visual information
processing) were not affected (Gaoua et al., 2011). Moreover,
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TABLE 2 | The effects of passive heat stress on cognitive function.

Author and date Environment

(temperature)

Duration Cognitive assessment

tool

Physiological response Cognitive alterations

Gaoua et al., 2012 50◦C, 30% r.h. 15min Reaction time and task

planning

Tc not elevated. Tsk elevated

by ∼3◦C.

Decreased accuracy in task

planning. Subjects took more

time (41% increase) to find

correct response.

Liu et al., 2013 50◦C, 40% r.h. 45min Attention Network Test Tc elevated to 38.5◦C. Tsk not

reported.

Impaired executive function.

Lenzuni et al., 2014 53.3–66.9◦C 15–20min Driving in a straight line,

and identifying a cue

and reacting correctly

Tc elevated by ∼0.3◦C. Tsk

not reported.

Impaired cognitive function in

both simple and complex tasks

∼50%

Berg et al., 2015 26◦C 30min Peg transfer and

intracoporeal knot tying

None reported None despite reduced thermal

comfort

Watkins et al., 2014 30◦C, 50% r.h. 90min with 15min

normothermic exposure

at half-way

Dual task (tracking +

simple reaction) and

numerical vigilance

Tc elevated by ∼0.2◦C. Tsk

elevated by ∼4◦C.

None

Gaoua et al., 2011 50◦C, 50% r.h. 45min Attention and memory

tests

Tc elevated to 38.6◦C. Tsk

elevated to 39.6◦C.

Attention not impaired but

memory impaired

Racinais et al., 2008 50◦C, 50% r.h. 15min walk at 3–5 km/h.

Followed by 45min

passive exposure.

Attention, working and

visual memory

Tc elevated to 38.8◦C. Tsk

elevated to 39◦C.

Attention not impaired but

working and visual memory

impaired

Sun et al., 2012 50◦C, 40% r.h. 60min Attention Network Test Tc elevated to 38.4◦C Impaired executive function

Wijayanto et al., 2013 42◦C 45min Short term memory Delta Tc elevated by 0.31◦C None

Simmons et al., 2008 45◦C, 50% r.h. Until Tc increased by

1◦C. (Time unknown)

Reaction time and

numerical vigilance

Tc elevated by 1◦C. Tsk

elevated by 6◦C.

Faster reaction time but

reduced accuracy

Watkins et al. (2014) recently demonstrated that soccer goal
line officials’ ability to complete simple tasks (tracking, simple
reaction time, and numerical vigilance) does not deteriorate
during a 90min passive exposure to 30◦C, 40% r.h. However, the
authors neglected to assess complex cognitive task performance
and the severity of heat stress was unlikely to impose significant
stress, especially using a passive model. Previous reviews also
suggest that cognitive function is generally unaffected unless
the external stimulus is sufficient in intensity and duration to
increase Tc away from a homeostatic range approximate to
37◦C (Hancock and Vasmatzidis, 2003). An early study led to
this theory (Wilkinson et al., 1964), whereby as Tc increased
to 38.5◦C (through passive heating), simple task performance
(vigilance) improved but complex task performance (mental
addition) was compromised. However, in a later study, it was
shown that passively heating individuals up to 39.05◦C did
not affect short or long term memory, verbal logic problems,
and numerical subtraction performance (Holland et al., 1985).
Therefore, it seems that in a hot environment Tc alonemay not be
a reliable predictor of cognitive performance decline. In support,
recent research suggests that an increased skin temperature
(Tsk), independent of any rise in Tc, may be responsible for
any heat induced cognitive deteriorations (Gaoua et al., 2012).
Participants in the aforementioned study were passively exposed
to 50◦C, 30% r.h. for ∼15min, and were required to complete
simple (reaction time) and complex (working memory) tasks
during the exposure. The results demonstrated that simple
task performance was not affected, however complex task
performance was significantly impaired. Thus, it appears that
Tsk (which was significantly increased in the heat by ∼3◦C)

and a reduced thermal comfort (∼8 points on a 20 point scale)
in the heat, whereby subjects reported more negative feelings
(i.e., they felt hotter and less comfortable), were responsible for
the reductions in complex task performance, which again were
independent of any change in Tc (Gaoua et al., 2012). It may
therefore be suggested that the subjective state of the individual
could be a key factor affecting cognitive function in the heat, as
these responses led to alterations in complex task performance
independent of variations in Tc. Indeed, selective head skin
cooling (induced by three cooling packs) has been shown to
preserve some complex cognitive functions (Gaoua et al., 2011).
Therefore, it seems that increasing thermal comfort (rather
than mitigating Tc increases) may be effective in maintaining
complex cognitive function (and consequently safety) in passively
experienced thermally stressful environments.

Recent investigations have utilized the attention network

test (ANT) and functional magnetic resonance imaging (fMRI)
to provide an insight into brain blood flow alterations upon
exposure to heat stress, and how these changes affect aspects of
the attention network (Jiang et al., 2013; Liu et al., 2013; Sun
et al., 2013). The ANT (Macleod et al., 2010) is a tool used
to measure the efficiency of three major attention networks;

KEY CONCEPT 1 | Attention Network

Neuroscientific studies suggest that specific attentional functions are carried out

by several interconnected brain networks. The attentional functions and related

networks go under different names, but a classification into the three networks

of alerting, orienting, and executive control is common. It is now understood

that under many circumstances these networks interact and influence each

other.
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KEY CONCEPT 2 | Functional Magnetic Resonance Imaging

This method highlights differences in brain activity by measuring related blood

oxygenation levels. It yields information regarding relative differences in brain

activity when comparing two or more experimental conditions and thus offers

useful insight as to which brain areas are selectively active during certain mental

processes.

alerting (simple task; related to maintaining readiness), orienting
(simple task; responsible for selecting the region of space or
channel to be attended), and executive control (complex task;
involved in resolving conflict among possible actions). These
three aspects of attention differ from one another in brain
activation locations (Petersen and Posner, 2012), hence, the
application of fMRI has allowed researchers to accurately and
simultaneously quantify how blood flow/activation in these areas
vary upon exposure to environmental heat stress and relative
to differential (simple or complex) cognitive tasks. In support
of previous findings (see Table 2), passive heat exposure (1 h at
50◦C, 40% r.h.) did not alter simple task (alerting and orienting)
performance for reaction time or accuracy (Liu et al., 2013).
The lack of heat induced cognitive alteration in these tasks
appear to be due to increased activation in alternative brain
regions i.e., a compensatory effect (see Table 3). Conversely,
passive hyperthermia had a significant adverse effect on complex
cognitive processes involving executive function, with reaction
time increasing by ∼22ms. During the executive function
task, there was no difference in activation at the anterior
cingulate cortex (brain region involved in executive functioning)
between the normothermic and hyperthermic groups, but again
there appeared to be compensatory activation (Table 3). It is
currently unclear why this type of complex task performance
is consistently impaired by heat stress (Table 2) given the
apparent compensatory activation. Similar results have been
found elsewhere (Sun et al., 2012, 2013), however it is currently
unknown if these changes were mediated by an increased Tsk (not
reported) or Tc (peak∼38.5◦C). A plausible explanation for these
behavioral changes is that the increase in plasma serotonin (5-
hydroxytryptamine; 5-HT) witnessed during passive heat stress
(McMorris et al., 2006) inhibits the production of dopamine
(DA), a neurotransmitter that appears to play a major role in
complex task performance [executive function; (Rektor et al.,
2003)]. As stated previously, the precise relationship between Tsk

TABLE 3 | Summary of activated and depressed brain regions during

passive heat stress (Liu et al., 2013).

Alerting network Orienting

network

Executive network

Increased

activity

Right superior frontal

gyrus

Temporal lobe Frontal lobe

Superior temporal gyrus

Lingual gyrus

Depressed

activity

Right middle occipital

gyrus

Frontal Parietal

lobe

Post-central gyrus

Left inferior parietal

lobe

Occipital lobe

Left culmen

and 5-HT is currently unknown, therefore future work should
examine if; (1) 5-HT plays a major role in these heat stress
induced cognitive alterations, and (2) if plasma (human) and/or
brain (animal models) 5-HT increases in response to an elevated
Tsk and/or Tc differentially. To our knowledge, this relationship
is yet to be examined.

The available evidence demonstrates that heat stress related
cognitive decline is primarily mediated by a reduction in thermal
comfort (Gaoua et al., 2012) and/or changes in regional brain
blood flow (Liu et al., 2013; Qian et al., 2013). Although the
involvement of 5-HT is not yet well established, evidence has
shown that augmenting the bioavailability of the amino acid
tyrosine (a precursor for DA synthesis) may preserve cognitive
function during thermal stress (Wurtman et al., 1980). In
support, it has recently been shown that tyrosine (6.5 g) ingested
90min prior to passive heat stress (90min at 45◦C, 30% r.h.)
significantly decreased event related potential (P300) latency
and contingent negative variation latency compared with a
placebo (Kishore et al., 2013). Moreover, there was a significant
increase in plasma DA concentrations when participants ingested
tyrosine (Kishore et al., 2013), an effect whichmay be responsible

KEY CONCEPT 3 | Tyrosine

Tyrosine, a non-essential amino acid synthesized in the liver from phenylalanine,

is a precursor for the synthesis of catecholamines. Nutritional supplementation

of tyrosine increases its ratio to other large chain amino acids, and can result in

a greater cerebral uptake of dopamine and noradrenaline. Evidence suggests

that this response helps maintain cognitive function in extreme environmental

conditions.

for the improved cognitive function. Conversely, it has been
shown that 150mg·kg−1 tyrosine ingestion prior to exhaustive
exercise did not affect cognitive function in a warm environment
compared to a placebo (Watson et al., 2012). However, the
environmental conditions (i.e., thermal stress) may not have
been sufficient in magnitude to increase plasma 5-HT, as to our
knowledge, this has not been shown to increase in such a mild
environment. Thus, as plasma DA levels were not assessed in
the aforementioned study, and tyrosine works by increasing DA
concentrations, it is impossible to draw conclusions about the
true effects of tyrosine in this work. Although there are very
few well controlled studies in this area, the evidence available
(Kishore et al., 2013) suggests that ingestion of tyrosinemay be an
effective strategy to maintain cognitive function during passive
heat stress. Finally, as sensory displeasure (decreased thermal
comfort elicited through an increased Tsk) may be the primary
factor mediating heat stress induced cognitive disturbances
(Gaoua et al., 2012), it is reasonable to suggest that improving
thermal comfort (through an acute reduction in Tsk) may also
combat the negative side effects of heat stress on complex
cognitive functioning. However, results to date have not wholly
supported this notion. For example, a recent study has shown
that ingestion of menthol lozenges had no such effect (Zhang
et al., 2014) during simulated firefighting in the heat. However,
when applied directly to the skin, menthol has a stimulating
action on the peripheral cold receptor TRPM8 (Eccles, 2000),
thus, the ingestion of menthol lozenges is likely to be an
inferior intervention compared to direct menthol application

Frontiers in Physiology | www.frontiersin.org 4 January 2016 | Volume 6 | Article 372

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Taylor et al. Cognitive Function in Different Environments

to the skin. It is important to note that the effect of menthol
on thermal comfort is dose dependent, whereby concentrations
of <2% elicit a cool sensation (Cliff and Green, 1994), but
concentrations >2%may cause irritation and burning sensations
(Yosipovitch et al., 1996). Research is needed to determine if
topically applied menthol (at concentrations <2%) is effective
at improving thermal comfort and consequently maintaining
complex cognitive function during heat stress.

Cold Stress
Cold stress is experienced in occupational (military, fishing
trawlers, emergency disaster workers) and athletic (winter sports)
settings (Muller et al., 2012). It appears that both moderate
and extreme reductions in ambient temperature may have a
negative effect on cognitive function (Banderet et al., 1986;
Palinkas, 2001). Specifically, cold exposure (−20 to 10◦C) has
led to decrements in memory [complex task (Thomas et al.,
1989; Patil et al., 1995)], vigilance [complex task (Flouris et al.,
2007)], reaction time [simple task (Teichner, 1958; Ellis, 1982)],
and decision making [complex task; see Table 4; (Watkins et al.,
2014)]. Such consistent findings across such diverse ambient
temperatures may be explained by traditional theories of cold
induced cognitive decrement (Teichner, 1958; Enander, 1987;
Muller et al., 2012). The distraction theory (Teichner, 1958)
explains that exposure to cold conditions provides alternative
stimuli to interrupt focus which would otherwise be fixed on
the cognitive task at hand (i.e., attention is focused on feeling
cold rather than completing the cognitive task provided). This
theory is supported by recent findings where temperatures
as mild as 10◦C (Muller et al., 2012) may have provided
enough of a sensory challenge to distract participants from
a set cognitive task. Regression analysis from a recent study
(Watkins et al., 2014) reported a significant relationship between
alterations in thermal comfort and cognitive function in the
cold.

Exposure to cold conditions alters the concentration of central
catecholamines [DA, epinephrine and norepinephrine (Avakian
et al., 1984)]. Alterations in levels of central catecholamines
(Rauch and Lieberman, 1990) may have a detrimental effect on
cognition as brain regions such as the prefrontal cortex are reliant
on these neurotransmitters for normal function (Rektor et al.,
2003; Friston et al., 2014). There is a plethora of evidence which
demonstrates that tyrosine supplementation improves cognitive
function during acute cold stress (Shurtleff et al., 1993, 1994;
Yeghiayan et al., 2001; Palinkas et al., 2005; Mahoney et al., 2007;
O’Brien et al., 2007). Given that tyrosine is a precursor for the
synthesis of norepinephrine and DA, these studies support the
notion that alterations in catecholamine concentrations may play
a role for cold stress induced cognitive impairment. However,
further support is needed to clarify if this is the case in humans.

Tyrosine supplementation is likely to improve cognitive
function during exposure to cold environmental conditions
(as previously described). Similar augmentation of cognitive
function was observed following the use of caffeine, although
this was during exposure to multiple stressors [cold, intense
physical and psychological stress (Lieberman et al., 2002)].
The implementation of multiple stressors makes it difficult to
attribute any improvements in cognitive function to caffeine
supplementation. However, as caffeine may increase metabolic
rate (and potentially increase in Tc; Poehlman et al., 1985) this
may provide a favorable physiological effect when exposed to
cold conditions. Adequate clothing for cold, dry environments
should aim to block airflow but enable water vapor to dissipate
if sweating occurs, i.e., to maintain body heat balance (Holmér,
1988). Cold acclimation or acclimatization is suggested to result
in reduced vasoconstriction, increased skin temperature, delayed
onset of shivering, dampened release of stress hormones, and
reduced thermal discomfort (Mäkinen et al., 2006). Specifically,
a reduction in cold stress from acclimation or acclimatization
should in theory limit shivering and thermal discomfort and thus

TABLE 4 | The effects of passive cold exposure on cognitive function.

Author and

date

Environment

(temperature)

Duration Cognitive assessment tool Physiological response Cognitive alterations

Shurtleff et al.,

1994

4◦C 30min Match to Sample Increased systolic blood

pressure following cold exposure

Cold exposure reduced

matching accuracy

Patil et al.,

1995

2–3◦C (Cold Water

Immersion)

3min Variety of simple and complex

tasks

Increased systolic and diastolic

blood pressure following cold

water immersion

Cold exposure increased

alertness, but worsened

short-term memory

Banderet

et al., 1986

Night: −4 to −10◦C;

Day: −23 to −25◦C

5 days Pattern and number comparison,

grammatical reasoning, coding

None reported All cognitive tasks impaired aside

from grammatical reasoning

Marrao et al.,

2005

9 day range: −24 to

4.4◦C

9 days Logical planning, reasoning,

vigilance

No significant thermoregulatory

changes

None

Mäkinen et al.,

2006

10◦C 10 days Cognitive Battery (ANAM-ICE) Significant reductions in Tc, Tsk

and finger temperature across

exposure

Cold exposure increased

response time, decreased

accuracy, and efficiency of tasks

O’Brien et al.,

2007

10 or 15◦C (Cold Water

Immersion).

Subsequent cold air

exposure until Tcore

reached 35.5◦C.

N/A Match to Sample, complex

reaction time, logical reasoning,

visual vigilance, addition and

subtraction, repeated acquisition

Cold water immersion reduced

Tc by 0.3 to 1◦C. Tsk reduced to

∼26◦C. Finger temperature

reduced to ∼15◦C.

Cognitive function was not

affected by cold water immersion

Regard et al., 1989; Racinais et al., 2008; Berg et al., 2015.
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potentially limit the level of distraction and thus may positively
influence cognitive function. Despite this, it was demonstrated
that 10 days repeated exposure to 10◦C did not significantly alter
cognitive function, including accuracy, efficiency and response
time, when compared to control (Mäkinen et al., 2006).

Given the equivocal nature of acclimation/acclimatization and
tyrosine supplementation on cold induced cognitive function
disturbances, appropriate clothing to maintain thermal comfort
is the only robust intervention presently available. Evidently,
further interventional work is required to positively influence the
cold environment cognition nexus.

HYPOXIA AND COGNITIVE FUNCTION

Hypoxia is defined as a reduction in alveolar oxygen partial
pressure [PaO2 (Petrassi et al., 2012)]. Reduced PaO2 availability
is experienced at high altitudes (∼1500–7500m) and has been
shown to have detrimental effects on cognitive function in human
subjects (Abraini et al., 1998; Adam et al., 2008b; de Aquino
Lemos et al., 2012). In accordance with the previous sections,
there are a number of confounding variables that must be
considered when reviewing the relationship between hypoxia
and cognitive function. These include altitude severity, ambient
temperature, the addition of exercise, variability in physiological
responses, and the differences in barometric pressure (Virués-
Ortega et al., 2004). The present section will primarily review
studies which assess changes in cognitive function in a laboratory
setting, and studies which have used passive hypoxic exposures
(normobaric and hypobaric).

It is generally accepted that there is a negative correlation
between altitude and cognitive function (Table 5; Li et al.,
2000; Pickard, 2002; Rainford and Gradwell, 2006; Merz
et al., 2013; Neuhaus and Hinkelbein, 2014; Xu et al., 2014).
Increases in reaction time (simple task) have been observed
at altitudes exceeding 5000m, an effect which persisted 75
days after participants returned to sea level following acute
altitude exposure (Cavaletti and Tredici, 1993). As individuals
ascend to altitude >5000m, decrements in all facets of memory
(complex tasks) have been observed; including learning (Bouquet
et al., 1999), spatial (Nelson, 1982), and working memory (Yan
et al., 2011; Champod et al., 2013; Malle et al., 2013). More
recently, 90min exposure to a simulated altitude of 6096m [10%
oxygen (O2)] significantly deteriorated many aspects of cognitive
function, including complex attention, executive function, and
cognitive flexibility (Turner et al., 2015). In the field, Kramer et al.
(1993) demonstrated using a battery of cognitive tests (pattern
comparison, code substitution, reaction time, memory) that
altitude induced deficits in short termmemory and reaction time.
The tests took place at Genet Basin, 14,200 ft (4328m) above
sea level, and results were compared with a matched control
group who completed the same tests at sea level. Interestingly,
the climber’s ability to learn new skills was also monitored
upon return to sea level, and it was shown to be impaired
for up to 2 weeks. These results support the notion that high
altitude exposure causes acute and chronic deficits in cognitive
function.

An fMRI study conducted at sea level revealed that
subjects that had experienced chronic hypobaric hypoxia (>18
years; ∼2616–4200m) displayed decreased activation in a
number of brain regions (various gyri, pyramis of vermis, and
thalamus) as well as reduced performance during complex
cognitive tasks (working memory) when compared to their sea
level counterparts (Yan et al., 2011). Interestingly, another study
revealed that those exposed to chronic (7 months) moderate
hypobaric hypoxia (2260m) performed similarly to a group of sea
level residents during a battery of complex tasks taken place at sea
level (verbal, spatial, long term memory), although impairments
in simple task performance were evident [short term memory
(Zhang et al., 2011)]. Finally, acute ascents to high altitudes
can cause alterations to cerebral architecture (Wilson et al.,
2009). The use of fMRI revealed that world-class climbers (sea
level residents) acutely exposed to hypobaric hypoxia displayed
modifications to cerebral tissue (Paola et al., 2008), in comparison
to a sea level control group. Specifically, the climbers displayed
a reduction in left angular gyrus volume, a key brain region
involved in movement control and planning (Paola et al., 2008).

Traditionally it has been thought that acclimatization
to various environmental conditions could be used as an
intervention to improve cognitive function. Although this
may be true with regard to athletic performance, fMRI has
uncovered a number of negative adaptations in those chronically
exposed to hypobaric hypoxia [∼2600–6500m (Paola et al.,
2008; Zhang et al., 2010; Yan et al., 2011)]. For example,
chronic exposure to hypobaric hypoxia has been shown to
reduce the cerebral volume of both gray and white matter [>15
years at altitude (Zhang et al., 2010)]. In highland dwellers,
gray matter volume was reduced in the prefrontal cortex, the
anterior insular cortex, the anterior cingulate cortex, and the
lingual cortex (Zhang et al., 2010), and these changes were
still visible 1 year after returning to sea level. Alternatively, the
cognitive deficits suffered during chronic high altitude exposure
may be due to hyperhomocysteinemia. Elevated circulating
levels of homocysteine have been associated with declines in
cognitive function in several geriatric population based studies
(Wright et al., 2004), and there is a strong correlation between
homocysteine in plasma and cognitive impairment during
chronic (18 months) hypoxia exposure (Sharma et al., 2014).
Interestingly, this study further supports the notion that altitude
acclimatization does not induce a favorable adaptation with
regards to cognitive function.

KEY CONCEPT 4 | Hyperhomocysteinemia

Hyperhomocysteinaemia is a condition characterized by an abnormally high

level of homocysteine present in the circulation. Interestingly, a recent study

found that cognitive impairment (visuo-spatial executive, attention, delayed

recall, and procedural memory related cognitive domains) is progressively

associated with duration of stay at high altitude and is strongly correlated with

elevated homocysteine in plasma.

The mechanisms which explain how acute hypoxia impairs
cognitive function are not completely clear, although it is
likely an amalgamation of factors which may include neuronal
damage (Bjursten et al., 2010), the onset of altitude sickness
(Wilson et al., 2009), and fatigue (Virués-Ortega et al., 2004).
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TABLE 5 | The effects of passive hypoxia on cognitive function.

Author and date Environment

(altitude)

Duration Cognitive assessment tool Physiological response Cognitive alterations

Adam et al.,

2008b

4300m 5 days Mental addition None reported Cognitive performance was better

at sea level than altitude

de Aquino Lemos

et al., 2012

4500m 24h Vigor, attention, visual and

working memory, concentration,

executive functions, inhibitory

control, and speed of mental

processing

Decreased sleep time and

rapid eye movement sleep

Decreased performance in all

facets of cognitive function

measured

Merz et al., 2013 4497, 5533, 6265,

6865, 7546m

N/A Saccadic Eye Movement,

Neuropsychological Testing

Significant reduction in

SaO2 as ascent increases

Neither parameters effect by

altitude exposure

Kourtidou-

Papadeli et al.,

2008

8000 ft 16min Multi attribute task batter (MATB) None reported Increase in errors and a decrease

in tracking performance

Pavlicek et al.,

2005

3 profiles:

450-1500–3000 (1);

450–1500–4500 (2);

450–650–650 (control)

30min at

each

simulated

altitude

Word fluency, three word

association task. Tachistoscopic

lexical decision task

None reported No change in performance

between groups.

Shukitt et al., 1988 Exposure to: 21, 17,

21, 13, and 21%

oxygen

3 days at

each altitude

Addition, coding, computer

interaction, map/compass,

number comparison, pattern

comparison, pattern recognition

Significant reduction in

SaO2 at 13% only

Cognition and mood were only

effected on the first day at 13%

Tripathi et al., 2005 10,500 ft 6 days Working Memory and Vigilance

Tasks

Symptoms of acute

altitude sickness

No differences in cognitive

performance across days

Yan et al., 2011 High landers:

2616–4200m;

lowlanders <400m

High landers

(≥18 years

exposure).

Verbal working memory High landers had

decreased activation in

numerous brain regions

compared to low landers

Longer reaction time and

decreased accuracy in

highlanders

Li et al., 2000 2800, 3600, and

4400m

60min at

each altitude

Simple reaction time and four

choice reaction time.

None reported Four choice reaction time

performance decreases at 3600

and 4400m

Abraini et al., 1998 Ascent to 8848m (Mt.

Everest simulation)

31 days Visual reaction time, psychomotor

ability and number ordination

Significant reduction in

SaO2 as a function of

elevation

Cognitive decrements

at ≥8000m and decrements up

to 3 days after return to sea level

Hewett et al., 2009 Sea level, 8000,

10,000, 12,000,

14,000 ft

45min at

each altitude

Cognitive Battery

(Cogscreen—HE)

Significant reduction in

SaO2 as a function of

elevation

No differences in cognitive

performance across altitudes

Gao et al., 2014 Lived at 4500m for 1–5

years compared to a

sea level control

N/A Cognitive Battery (WHO

neurobehavioral core test battery)

and Raven standard progressive

matrices

Highlanders exhibited a

significant reduction in

basal SaO2 and BDNF,

and an increased serum

S100B compared to sea

level controls

Highlanders exhibited a poorer

cognitive function across a range

of simple and complex tasks.

Mood state was also adversely

affected

Nelson, 1982 Sea level, 3810;

5000m.

35 day

expedition

Bender visual motor Gestalt test

and Porteus maze test

None reported Marked deterioration in cognitive

functioning at 5000m. Mood

state was also severly affected

Kobrick and

Appleton, 1971

15,000 ft 48 h Near and far visual acuity,

steropsis, binocular depth

perception, critical flicker fusion,

dark adaptation, response time to

peripheral signals

None reported Decrements observed in all visual

tasks which peaked after 60min

of exposure. Task performance

gradually recovered throughout

the exposure.

Regard et al.,

1989

Climbers had

previously reached

8500m without

supplementary oxygen

N/A Concentration, short term

memory, ability to shift concepts

Malfunctioning of the

bifronto-temporo-limbic

structures

Majority of climbers sampled

suffered impaired concentration,

memory, and ability to control

errors after returning to sea level

Kramer et al.,

1993

14,200 ft (5–9 day

ascent)

18–26 days Pattern comparison, choice

reaction time, memory, tapping,

code substitution

Presence of moderate

acute mountain sickness

in all subjects

Climbers showed deficits in

learning and retention in memory

tasks and slower reaction time.
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Off-setting this response may be achievable through the
administration of Dehydroepiandrosterone (DHEA), which has
been reported to curtail neuronal damage [measured in vivo
via plasma S100β quantification (Bjursten et al., 2010; Winter
et al., 2014)] through enhancing the production of brain
derived neurotrophic factor (Rahmani et al., 2013; Sakr et al.,
2014). Furthermore, DHEA administration has been shown to
improve complex cognitive functioning and increase levels of
central catecholamines in the rat (Sakr et al., 2014). This is
significant as the maintenance of dopamine is necessary for
executive functioning (Rektor et al., 2003). Future research
may consider the implementation of DHEA for its neuro-
protective effects, particularly in those individuals exposed to
high altitudes on a regular basis or for prolonged periods.
It is important to stress that DHEA is on the World Anti-
Doping Agency (WADA) banned substances list and thus is
prohibited during athletic competition (although this would
not preclude its acute short-term use in recreational or
occupational settings). Other supplementary aids, which are
not banned by WADA, such as tyrosine, have been used
successfully to offset hypoxia-induced symptoms, adversemoods,
and cognitive decrement (Banderet and Lieberman, 1989).
Additionally, creatine supplementation significantly maintained
cognitive function in a variety of tasks compared with placebo
supplementation during severe hypoxia [90min at 6096m
(Turner et al., 2015)]. Supplementary O2 appears to be a
logical aid which may offset the negative side effects of
hypobaric hypoxia on cognitive function, although a distinct
lack of literature exists on this topic. Interestingly, altitude
induced reductions in endogenous O2 saturation have not been
significantly correlated with cognitive decrement, suggesting
inter and intra individual variation regarding the cognition
hypoxia nexus (Gao et al., 2014). Further research is required to
determine if these ergogenic aids improve cognitive function at
high altitude.

FUTURE RESEARCH DIRECTIONS

Further research is required to reach a more definitive
conclusion regarding the effects of passive exposure to extreme
environments on cognitive function in humans, and to expand
the knowledge and understanding of the potential intervention
techniques that can be employed. These advancements are
necessary to improve cognitive function and safety during
exposure to such environments in a variety of contexts.

As stated, ANT and fMRI have provided an insight into
brain blood flow alterations and how the attention network
is affected by changes in environmental conditions (Liu et al.,
2013; Sun et al., 2013). Such an understanding has been
disproportionally advanced in the heat in comparison to cold
and hypoxic environments, with intuitive and novel use of
ANT alongside fMRI (Jiang et al., 2013; Liu et al., 2013; Sun
et al., 2013). Such approaches are required for the remaining
environmental extremes. The use of biochemical measures
(particularly catecholamines) will increase mechanistic cause and
effect evidence relative to the above outlined paradigms, and

may aid the development of additional intervention techniques
to reduce environmentally mediated cognitive decrements.

There also appears to be a lack of reliability data in
the majority of studies utilized within this review. Reliability
statistics, including the change in mean, coefficient of variation,
intraclass correlation coefficient, and typical error for these
cognitive tests (and other experimental procedures) should
be overtly reported, as to ensure that the true experimental
effects can be correctly disseminated, and to demonstrate the
reproducibility of the cognitive tests used. There also appears
to be heterogeneity among dependent measures (i.e., cognitive
tests) used between studies, making them difficult to compare
and thus draw meaningful conclusions. It is recommended that
future researchers utilize the ANT in such studies, as this test
is simple to implement, and can directly measure the efficiency
of the three major attention networks (alerting, orienting, and
executive function). Moreover, rigorous familiarization for the
cognitive tests (and other experimental procedures) utilized will
reduce learning effects which were likely evident in at least some
of the previous work outlined within this review; increasing the
reliability that the change in cognitive function is caused by
environmental exposure and not poor experimental design. For
example, experienced workers appear to be less vulnerable to
the effects of heat stress than inexperienced workers because of
task familiarity (Hancock, 1982). Thus, added experience of the
task allows it to become more autonomous and “attention free”
(Nunneley et al., 1979). This presents a major confounding factor
in previous studies, which is why researchers should implement
a minimum of one familiarization session before experimental
trials are conducted. The presence of a learning effect can be ruled
out when two ormore familiarization tests are shown to be highly
reliable [normally via intraclass correlations and coefficient of
variation analysis (McGawley and Bishop, 2006)]. Furthermore,
the proposed interventions could likely induce psychosomatic
(i.e., you consume an ice based drink and you believe your
body temperature will reduce, whether such a reduction actually
occurs or not) and/or bona fide physiological responses (i.e.,
exogenous oxygenation administration increasing various tissue
oxygenation indexes whilst within a hypoxic environment),
future research should explore these subtleties (as they are
currently not clear) to optimize interventional techniques and
provide further mechanistic evidence relative to the content of
this Focused Review.

If adhered to, these guidelines could lead to greater knowledge
and understanding of the cognitive decrement that often occurs
during passive exposure to extreme environments. In turn,
this may lead to the development of further interventional
techniques, and thus ultimately enable practitioners to reduce
the decline in cognitive function during extreme environmental
exposure. These outcomes could prove life-saving when applied
to many occupational settings.

CONCLUSION

This review has highlighted the detrimental effects of passive
exposure to environmental extremes of heat, cold, and hypoxia
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on cognitive function in simple and complex tasks. A decline in
cognitive function can be attributed to a number of mechanisms,
dependent on the environment to which the individual is
exposed. It should be noted that such declines, across all the
environmental conditions, will have some aspect of inter and
intra-individual variation.

Alterations in blood flow and sensory displeasure (Gaoua,
2010; Gaoua et al., 2012; Jiang et al., 2013; Sun et al., 2013),
hyperhomocysteinemia and potential neuronal damage
(Rothermundt et al., 2003; Bjursten et al., 2010; Koh and
Lee, 2014; Sharma et al., 2014), and a decrease in catecholamine
availability (Shurtleff et al., 1994; Starcke and Brand, 2012)
combined with psychological factors (Teichner, 1958; Enander,
1987), appear to be responsible for reductions in cognitive
function during hot, hypoxic, and cold exposure, respectively.
Although mechanisms detailed within this review have
outlined how environmentally mediated changes in cognitive
function may occur, there is still a need to unequivocally
determine mechanistic cause and effect data to understand the

psycho-physiological mechanisms underpinning these cognitive
changes during exposure to such environments.

A variety of interventional techniques can be implemented
to potentially combat the negative effects of exposure across
the aforementioned paradigms. The use of cooling interventions
(Nunneley et al., 1982; Bandelow et al., 2010; Lee et al., 2014)
in the heat, clothing and exercise (Doubt, 1991; Gavin, 2003) in
the cold, and nutritional interventions (Banderet and Lieberman,
1989; Lieberman et al., 2002; Baker, 2013; Meeusen, 2014; Coull
et al., 2015) across all three extreme environments are supported
with evidence suggesting that they are often successful at
maintaining cognitive function. Further well controlled research
should also investigate if tyrosine supplementation is effective
in maintaining cognitive function during exposure to heat,
hypoxia, or cold environments. Future studies should focus
on implementing empirically informed techniques, and should
aim to discover additional methods by which optimal cognitive
function can be maintained in extreme environments, in order to
avoid detrimental outcomes.
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