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Pathway analysis is a set of widely used tools for research in life sciences intended to give

meaning to high-throughput biological data. The methodology of these tools settles in

the gathering and usage of knowledge that comprise biomolecular functioning, coupled

with statistical testing and other algorithms. Despite their wide employment, pathway

analysis foundations and overall background may not be fully understood, leading to

misinterpretation of analysis results. This review attempts to comprise the fundamental

knowledge to take into consideration when using pathway analysis as a hypothesis

generation tool. We discuss the key elements that are part of these methodologies, their

capabilities and current deficiencies. We also present an overview of current and all-time

popular methods, highlighting different classes across them. In doing so, we show the

exploding diversity of methods that pathway analysis encompasses, point out commonly

overlooked caveats, and direct attention to a potential new class of methods that attempt

to zoom the analysis scope to the sample scale.

Keywords: pathway analysis, systems biology, high-throughput biological data, pathway-topology, functional

class scoring, over representation, bioinformatics

1. INTRODUCTION

Pathway Analysis (PA), also known as functional enrichment analysis, is fast becoming one of the
foremost tools of Omics research. The main purpose of PA tools is to analyze data obtained from
high-throughput technologies, detecting relevant groups of related genes that are altered in case
samples in comparison to a control. In this manner, PA methods seek to overcome the problem
of interpreting overwhelmingly large lists of important, but isolated genes detached of biological
context, which are the main output of most basic high-throughput data analysis, as differential
expression analysis. PA methods provide meaning to experimental high-throughput biological
data (HTBD) thus facilitating interpretation and subsequent hypothesis generation. This has been
achieved on the basis of coupling existing biological knowledge from databases with statistical
testing, mathematical analyses and computational algorithms.

PA methods possess a broad range of applications in physiological and biomedical research.
These methods aim is to help the researcher discover what biological themes, and which
biomolecules, are crucial to understand the phenomena under study, given the HTBD analyzed.
In turn, the clues that provides a PA enables the researcher to generate new hypothesis, design
subsequent experiments, and further validate their findings. PA methods have helped researchers
in the identification of the biological roles of candidate genes, selected to design new therapies for
cancer, circumventing collateral damage to healthy cells (Folger et al., 2011). Another instance is the
determination of similarity and dissimilarity, at a molecular level, between sample groups, as in the
comparison between cell lines and tumor samples (Heiser et al., 2012). Such kind of analyses may
help researchers understand heterogeneity phenomena in different research contexts. Yet another
example is the use of PA methods to examine the biological function of gene modules, not yet
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validated sets of genes thought to be related between them, as
in the analysis of genes that fluctuate in response to natural
variations, like seasons (Dopico et al., 2015). Although all these
applications have succeeded in specific goals, the use of PA
methods may be as wide and complex as the creativity of their
users.

However, despite the recent spotlight and wide usage PA has
gained in recent years, overlooking of the key elements that
compose these methods is also common. Often users neglect
details concerning the proper application of the methods, their
caveats, and the existence of different PA methods. In this regard
it is essential to review the foundations and diversity of the PA
methods, and acknowledge their capabilities and caveats.

There are several elements needed to perform a PA. First
of all, quantitative data representative of the cell biology is
needed. This information is generated through the use of Omic
technologies as: RNA-microarrays, tandem mass spectrometry,
and RNA sequencing. Secondly, an approach able to analyze
such substantial amount of data is mandatory. Systems biology
is an emerging field of research that enables the study of
living organisms as systems, opposing reductionist approaches
(Hartwell et al., 1999; Kitano, 2002). Systems Biology uses
Omic data as the main input of its analyses. In third place,
molecular biological knowledge stored in data bases is required
for the analysis to be performed, guiding PA methods to search
relationships between the generated Omic data and known
biological themes. Finally, the computational machinery needed
to accomplish PA is needed. It consists mainly in statistical testing
of the biological themes vs. the data, and other mathematical
algorithms that seek to extract relationships between the data and
previous knowledge.

The purpose of this review is to act as an introduction
to the aforementioned foundations, and other guidelines for
understanding PA. We will give an overview of different kinds
of methods, their capabilities and limitations, and acknowledge
the emergence of a new kind of methods. At the same time, we
will provide an up-to-date panorama of available methods and
resources for PA users to pick from. This should allow for a fast
and clear initiation in the use of these promising research tools.

2. FOUNDATIONS OF PATHWAY ANALYSIS

2.1. Omics. Making Molecular Life
Measurable
With the first bacterial genome sequenced in 1995 (Fleischmann
et al., 1995), followed by the competition and optimism generated
by the Human Genome Project, reporting its first drafts in 2001
(Lander et al., 2001; Venter et al., 2001), the spark that ignited the
beginning of an era of massive biological information gathering
was lit in the dawn of this century.

Nowadays genomes have become our roadmaps, providing a
guide to subsequent discoveries in human (and other species)
biology. At present, more than 35,500 prokaryotic and eukaryotic
genomes are at public disposition in the National Center for
Biotechnology Information site, as completely sequenced or in
progress builds. Since the inception of the term “genomics”

in academic literature, research in this field has changed
and evolved over dramatically different aspects of human
knowledge (Siqueiros-García et al., 2014). These facts evidence
how modern life sciences research will be dependent of this ever
growing biological information gathering, which expands in a
multidimensional way, and at an increasingly detailed manner.

Molecular analysis of living organisms has pushed
technological advancements to develop techniques that
measure the status of key biomolecules, able to inform how
living organisms function in a molecular manner, namely: DNA,
RNA, proteins and small molecules of diverse nature. Efforts into
analyzing such components in aggregate, led to the development
of the research fields that altogether are widely known as Omics
(Weinstein, 2002; Ge et al., 2003; Westerhoff and Palsson,
2004). Current Omic research includes not only the analysis
of information from DNA sequences, but also characterizes
different sets of biomolecules, for instance: global profiles of
RNA sequences (transcriptome), of proteins (proteome), of DNA
methylation events in a genome (methylome), of metabolites
(metabolomics) among others. Data generated by all these Omic
approaches is generally regarded as HTBD.

Our current theoretical framework in Omic research has
developed around the assumption that analysis of HTBD
information should help to understand the underlying
mechanisms that determine biological phenotypes. This
assumption has proven effective in many instances, but
interpretation of HTBD is not straightforward, as we unveil how
truly complex life is (Amaral and Ottino, 2004).

Computational testing of Omics data, by a naïve approach,
would take more time than the age of the universe itself (Huang,
2000). For instance, taking 25,000 as the number of genes in
the human genome, and modeling its states as only “on” or
“off” would lead to the astronomical number of 5.6 × 107525

possible gene profiles. That is why, a highly efficientmathematical
approach that couples biological knowledge with HTBD is
needed, reducing dramatically the space of possible hypotheses
to be tested. In this regard, PA has established to provide one
possible answer to this new century problem.

2.2. Systems biology. An Integrative
Approach in Molecular Biology
Human engineered machinery, which components can be as
numerous as the 3 × 106 parts of a Boeing 747-400, can be
truly complicated, but each of their components’ role is well-
defined and governed by understood rules. In contrast, living
organisms “machinery” has proven to be even more complex to
understand, having large number of components that may act
by following dynamic rules that are not well-understood. Thus,
the study of isolated biological components is not enough to
understand biological systems, leaving many questions still open,
for instance, the ones related with the functioning of the human
brain and the development ofmultifactorial diseases (Amaral and
Ottino, 2004).

The study of life at a systems level requires information
capable of reflecting the nature of whole biological phenomena,
and an approach able to incorporate such information. As already
mentioned, biomolecular information that intends to represent
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organisms as systems is obtained through Omic approaches in
the form of HTBD. Analysis of such data, with an integrative
approach, may enable the elucidation of not yet reported
properties and underlying mechanisms. Systems biology is a
research area whose central task is to integrate many levels of
biological information, from DNA to ecosystems, into predictive
mathematical models that in turn can create coherent hypothesis
to be experimentally tested generating new knowledge. This
coupling of approaches can generate a cycle between discovery-
driven and hypothesis-driven science (Ideker et al., 2001). In this
manner HTBD and systems biology can act as the marble and
chisel of an elaborated process of knowledge generation.

Difficulties arise from the integration of myriads of
information variables and sources into coherent models that
enable to capture biological meaning. Two of the main problems
to tackle in HTBD analysis are: the curse of dimensionality,
caused by a greater number of variables than of samples; and the
development of algorithms that effectively integrate and analyze
biological information, embracing current and upcoming
knowledge. PA has developed and established as a plausible
answer to cope with both of these issues.

2.3. Pathways as Functional Biological
Units
Although the pathway concept has recently boomed with
attention, the idea of a set of genes functioning to accomplish
a specific task, has been around since the first genetic maps
were constructed in the 1950’s (Lawrence, 1999), observing non-
random associations of genes contributing to single functions
or phenotypes, as in Neurospora biosynthetic pathways (Barratt
et al., 1954) or as in the early developmental genes from
Drosophila (Lewis, 1952).

As one can note, rarely in nature a singlemolecule comprise an
entire functional trait, as well as a single function (Hartwell et al.,
1999). To understand the complexity of biological organisms at
a molecular level, many simplifications have been drawn. The
first of this is the acknowledgment of change in phenotype at the
single-gene-level. This is, that a given modification on a single
gene, would lead to a specific change in an organism, e.g., mice
lacking Apo B gene have infertility problems for heterozygotes
and embryonic lethality in homozygotes (Huang et al., 1995).
Although the above approach has been fruitful, and constitutes
an important part of our biological foundations, it is not ideal for
a bulk analysis of HTBD.

A helpful proposal in the trouble of analyzing HTBD, given
by Hartwell et al. (1999), is the recognition of functional
“modules” as a critical level of biological organization. A
module is a discrete entity whose function arises from the
interactions among its components and it is separable from
that of other modules (Hartwell et al., 1999). In line with
this proposal, a convenient addition is to conceptualize these
modules as networks. A network is defined by a set of
items, called nodes, with connections between them, called
edges (Newman, 2003). Generally nodes in biological networks
would represent biological physical entities, such as proteins,
nucleotides, carbohydrates, and small metabolites among others,

while edges would represent a relationship between biological
entities, for example, binding, activation or inhibition.

Though separable as units of study, Hartwell’s modules, here
on referred as pathways, are in reality connected and intertwined
into a single large network that conforms all the possible
interactions among life components. The nodes of pathways, here
on termed as pathway components, may be linked to different
pathways at the same time, and its individual function may vary
according to its cellular context, for instance, human genes as ras,
myc, rho, and NF-κB either stimulate survival and cell growth, or
induce apoptosis (Huang, 2000). In this manner, specification of
biological interactions increments a level of intricacy, both in the
analysis and elucidation of function.

Networks have established as a useful representation for
pathways. Networks and pathways have been for a long time
portrayed in textbook descriptions of regulatory, metabolic
and signaling processes. Although visually appealing, pathways
have not only helped people understand the theoretical
complexity of molecular models, at the same time (aided by
the interdisciplinary framework of systems biology) they have
constituted a scaffold for the development of new tools of study
for complex biological phenomena.

2.4. Pathways as Informatics Units
The acceptance of the pathway concept has led to many
publications that describe them; but literature knowledge is hard
to integrate one paper at a time. In this sense, the pathway
concept has been transported from a literature scheme to
an informatics framework, in the form of pathway data files
compiling the information from different sources into a single
model.

A pathway can be represented then as a data file, specifying
which biological components are related in a common biological
theme, and in some cases, the relationships they keep. Pathway
data can be broadly divided into two different kinds: Gene-sets
and Pathway Topology. Gene sets are simple lists of biological
components, in which the listed entities share a common
biological theme. In contrast, pathway topology not only lists
the components of a pathway but also describes the interactions
between them, showing who is interacting with whom, and how
do these interactions happen, hence turning into a more detailed
description of how do the molecular components of a biological
process are working together.

Pathway topologymay contain additional information relative
to the connections between components. The character of the
interactions between components can be directed, if the presence
of a certain component is known to affect another in a given
sense. Additionally, the character of a directed interaction can be
positive or negative, depending on whether the role of the pointer
component is to activate or inhibit the pointed component.
An example of these three pathway representations: Gene set,
non-directed pathway, and directed pathway can be found in
Figure 1.

Although some authors have declared that gene sets are not
legitimate pathways (Mitrea et al., 2013), gene sets have proven
useful for analysis purposes, and the understanding of PA is
not complete without taking them into consideration. In this
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FIGURE 1 | Pathway data-types. Different types of pathway data can

represent one pathway in different levels of detail. Here we use the Hedgehog

signaling pathway modified from Kyoto Encyclopedia of Genes and Genomes

(KEGG) as toy example. (A) Gene sets are lists of biological components

pertaining a definite biological theme; while (B) Non-directed pathways

describe the existence of definite interactions between the same components

in the form of a network; finally (C) directed pathways disclose the character of

the interactions in the network. Arrows depict an activating impact from the

pointer component over the pointed one, and blunt edges an inhibiting one.

sense, this review subsequently accounts all three models as
pathways.

2.5. Pathway Databases
Efforts in structuring biological knowledge on pathways have
resulted in the generation of Pathway Databases (PDBs),
also referred as “knowledge bases,” which condensate current
biological knowledge of molecular interactions in pathway
data collections. PDBs usually retrieve and structure data
from different sources. Generally, experimental evidence is
curated from literature, and computational analyses are carried
out by the project itself to infer the possible functions of
homologous biomolecules. Additionally cross-reference of data
between similar databases is generally performed. For example,
Reactome (Vastrik et al., 2007) database annotations aremanually

curated from literature by expert biologists in collaboration
with their editorial staff, and cross-referenced it with several
other resources, as primary literature, and other pathway
related databases (Croft et al., 2010). Currently hundreds of
PDBs projects are established, and actively annotating biological
knowledge, each one in specialized contexts.

Pathway-database current catalog is truly abundant and
diverse, ranging in species focus, curation approach, kind of
pathways and interactions covered, among other differences. A
mandatory first stop for looking into the prospect of Pathway
Databases is the pathguide.org website (Bader et al., 2006),
currently listing 547 pathway-related databases, divided into 9
categories according to the kind of interactions they focus on,
accounting for more than 2.5 million pathways in total. A list
of commonly used PDBs and the focus category they fall can be
found in Table 1.

Since their development, PDBs have allowed a different
approach for biological knowledge gathering, use and discovery.
Frequently, different PDB projects work in conjunction
between them, sharing their information, generating fluxes
of information, cross validating their data, and converging
in coherent manners. This has permitted an increasingly
easier and automated data retrieval process, speeding up the
knowledge-discovery process.

However, an important feature to check when using
information from different PDBs, is the pathway ontology they
have adopted. Pathway ontologies are the notion or definition of
“pathway” used by each PDB. Different pathway ontologies are
best suited for different tasks, and the use of different pathway
concepts can lead to different outcomes in computational
studies (Green and Karp, 2006). However, a way to manage the
information from different PDBs, is using a unified ontology.

Unifying ontologies across PDBs is accomplished through the
use of pathway standard languages. These are standard formats
that seek to facilitate the exchange of pathway data between PDBs
and PA tools. A gold standard for pathway annotation in PDBs
does not exist, but most pathway data is based in the Extensible
Markup Language (.xml) or in plain text (.txt) formats. Encoding
pathways in such formats makes them readable for both humans
and machines. Examples of these standard languages are: the
Systems Biology Markup Language (SBML; Hucka et al., 2003),
the Systems Biology Graphical Notation (SBGN; Le Novere et al.,
2009), or the Biological Pathway Exchange (BioPAX; Demir et al.,
2010). An overview of the standard languages some PDBs have
adopted can be found in Table 1. Each one of these formats has
different characteristics and uses, although efforts are made to
ensure translatability across languages. Literature regarding their
use and comparisons between them can be found in Strömbäck
and Lambrix (2005), Suderman and Hallett (2007),Wierling et al.
(2007), Bauer-Mehren et al. (2009).

Additions and corrections to PDBs are made periodically,
thus increasing the quality and coverage of their biological
knowledge. Some databases are able to update their information
in a frequent basis, to maintain pace with new discoveries. For
example the KEGG database (Kanehisa, 1997) updates its data in
a weekly basis, but other PDBs do it less often, as Gene Ontology
(Ashburner et al., 2000), which updates its data in a monthly
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TABLE 1 | Pathway databases.

PDB Name Pathway focus URL Y.O.R. Standard formats

EcoCyc M,S biocyc.org 1995 SBML, BioPAX

KEGG M,S,D kegg.jp 1996 BioPAX

RegulonDB GR regulondb.ccg.unam.mx 1997 BioPAX

MetaCyc M metacyc.org 1999 SBML, BioPAX

STRINGDB PPI string-db.org 2000 PSI-MI

PANTHER S,D,PS pantherdb.org 2004 SBML, SBGN, BioPAX

Gene Ontology PPI,M,S geneontology.org 2000

REACTOME M,S,D reactome.org 2005 SBML, SBGN, BioPAX, PSI-MI

MSigDb M,S,GR broadinstitute.org/gsea/msigdb 2005

Ingenuity Knowledge Base* PPI,PCI,M,S,GR,D ingenuity.com 2005

NCI PID S,D pid.nci.nih.gov 2006 BioPAX

WikiPathways M,S,D wikipathways.org 2008 BioPAX

Small Molecule Pathway DB M,S smpdb.ca 2009 SBML, BioPAX

ConsensusPathDB PPI,PCI,M,S,GR consensuspathdb.org 2009 BioPAX, PSI-MI

Pathway Commons PPI,PCI,M,S pathwaycommons.org 2010 BioPAX

A brief example of the diversity of available PDBs found online. The second column shows the kind of biological focus pursued by each database: (PPI, protein-protein intereactions;

PCI, protein-compound interactions; M, metabolic; S, signaling; GR, gene regulation; D, diagrams; PS, protein sequence). The last column addresses the standard pathway languages

adopted to provide data. Additionally, in the third column the links to web sites are supplied. YOR, Year of release. *Commercial database.

basis. Nevertheless, some PDBs fail to update their information
in a regular basis, thus they become obsolete overtime, yet are
employed by users of PA tools, caution is suggested when using
outdated PDB data.

As information of PDBs seek to comprise our current
biomolecular knowledge, it is difficult to ascertain their quality.
Every annotation that PDBs contain is supported by different
kinds of evidence of differing regarded quality. Manually curated
experimental evidence is regarded of the highest quality, whilst
computationally inferred evidence and electronically annotated
evidence are commonly regarded of lower and lowest quality
respectively. A common practice in control-quality of pathway
information, when manually extracting data from PDBs, is
to discard annotations from electronically inferred evidence.
Although the assumption that electronically inferred annotation
is of lower quality has not been robustly proven (Rhee et al.,
2008), and doing so reduces dramatically the coverage of PDBs.

Different authors have showed that no PDB is comprehensive,
and suggest data integration from different PDBs for improved
quality of pathway data (Khatri and Drăghici, 2005; Adriaens
et al., 2008; Bauer-Mehren et al., 2009). Nevertheless, integration
procedures may prove to be extremely challenging, as an
analysis of some PDBs has shown low levels of consistency and
compatibility among them.

Coverage of PDBs is another important consideration to
have in mind when performing PA, and considering PDB
data quality. This is, the proportion of aggregated biological
components described in all the pathways from a PDB with
respect to a reference list of components. For example, one
of the most comprehensive public composite PDB, Pathway
Commons (Cerami et al., 2011), with the aggregated information
from 22 PDBs, currently has a coverage of 17,439 gene symbols
from the 39,241 accepted ones, this is roughly 45% of the

total symbols from the official HUGO Genome Nomenclature
Committee (HGNC) registers. Using the most up-to-date and
complete information is important for optimal information
extraction from experimental data. Accomplishing this is not
only a call for users to use the best PDBs available, but for
potential contributors to improve the coverage and knowledge
invested in databases. Most public databases encourage open
collaborative efforts, with corresponding revision of the shared
data. All such improvements in PDBs will ultimately lead to
a faster knowledge discovery and application of the biological
knowledge.

3. PATHWAY ANALYSIS METHODS

Because of the large amount of biological knowledge stored in
PDBs, it may be as difficult to grasp for the human mind as
happens with the information from HTBD. A bridge between
technology of Omics platforms and knowledge sources is created
with the help of PA methods. Though PA methodologies are
diverse in statistical approaches, and computations performed,
some authors have proposed general workflows they all work
along (Ackermann and Strimmer, 2009; Mitrea et al., 2013).
These workflows can be summarized in three phases: Input,
Analysis, and Output.

3.1. General Pathway Analysis Workflow
Description
3.1.1. Input phase
This phase consists in the arrangement of all things necessary to
start the analysis, and its input in the PA method. Besides the
important preliminary choice of a PAmethod, this phase consists
in the preparation of two datasets . TheHTBD to be analyzed, and
the pathway data, extracted from PDBs, in which the analysis will
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be performed. These two data sets will be the input to virtually
any method we choose. A helping analogy can be the following:
a haystack from where we want to find needles. Organizing the
haystack and recognizing characteristics of the needles will make
easier our task.

A key step in the setup of the analysis is the selection
of null hypothesis. These can be broadly classified in three
kinds (Ackermann and Strimmer, 2009) and briefly explained
as follows: “competitive null hypothesis” (Q1): the genes in
a pathway are differentially expressed as often as the rest of
the genes; “self-contained null hypothesis” (Q2): no genes in
a pathway are differentially expressed; and the “nested null
hypothesis” (Q3): the false discovery rate (FDR) estimates for
genes in a pathway are the same estimates for all genes (Efron
and Tibshirani, 2007; Ackermann and Strimmer, 2009; Heinig,
2011). Using a null hypothesis over others should depend on
the biological interpretation given to it (Goeman and Bühlmann,
2007), and ultimately accounting this will be crucial for the PA
method choice. Discussion about the null hypothesis employed
in PA, their importance, and validity can be found in Allison et al.
(2006), Goeman and Bühlmann (2007), Nam and Kim (2008),
Glazko and Emmert-Streib (2009).

Experimental dataset preparation is already considered into
most common preprocessing stages of HTBD preparation,
however, one may need to perform particular preprocessing
procedures before introducing HTBD into the workflow of
most PA methods. Common preprocessing steps may include:
normalization of data across samples; batch effect correction, if
the data’s origin is from different but comparable experiments;
collapse data to unique gene identifiers, most commonly gene
symbols; gene selection by differential expression analysis;
experimental vs. control data labeling; etc. A broader description
of these preprocessing procedures can be found in Hung et al.
(2011).

Pathway information dataset preparation must encompass:
the HTBD to be analyzed and the biological hypothesis we want
to obtain. Searching for PDBs that cover information about
the specific biological components we are working with is also
mandatory. Species-specific PDBs are examples of high relevance,
as most general use databases will have pathways pertaining to
Homo sapiens or a consensus pathway between different species.
For example, to analyze the pathways of Saccharomyces cerevisiae,
a suitable PDB would be the Saccharomyces Genome Database
(SGC; Cherry et al., 1998).

3.1.2. Analysis Phase
The Analysis phase consists of all statistical and mathematical
computations, performed by the PA method, with the
aforementioned datasets. Although the algorithms used are
diverse, they share commonalities and are guided by the same
approach. Fundamentally all PA methods statistically test the
possibility that any given pathway is represented by the HTBD,
resulting in the identification of pathways that have the smallest
possibility of being represented by randomly generated data.

PA software can be generally found in three different manners:
as stand-alone software, as web-based applications and as
programming packages. The first two classes are frequently easier

to use, as they do not require extraordinary analytical skills or
programming abilities. The last kind, is mostly coded in the R and
Python languages, and shared openly through the BioConductor
(Gentleman et al., 2004) and GitHub (Dabbish et al., 2012)
projects. The main benefit of using PA software developed as
programming packages, is the customization potential of every
part of the analysis, as well as the possibility of automation via
scripted analysis pipelines. Choosing between software platforms
may be a mixed question between user skills, and cost-benefit
ratio of time invested in arranging all things necessary to run the
analysis.

In opposition to black box approaches, PA methods are
commonly well-explained and documented in their publications,
an important fact since understanding what each method
calculates is essential to generate relevant hypothesis. This
ultimately should reduce computational costs, as well as
experimental verification costs and human time.

3.1.3. Output phase
Finally, the output phase consists in visualization and analysis of
the results. More important, they are presented in a ranked list
of relevant pathways, where the top pathways are often ordered
by confidence values such as p-value or the multiple testing
corrected q-value. Other formats (used mainly for visualization
of results) are in the form of directed acyclic graphs in which
relevant categories are hierarchically ordered according to its
relationship, for example, within the Gene Ontology categories.
Heatmap formats are also popular for visual interpretation of
results as pattern generation across related pathways and samples
is easier to observe in this way. Additionally, most web-based
and stand-alone software provide links to web pages in PDBs, as
well as other online resources, for easier integration of the results.
Figure 2 shows examples of outputs for different PA tools.

3.2. Classification of Pathway Analysis
Methods
Though diverse in computations and data used to perform the
analysis, PA methods share commonalities between different
methods. Hence many authors have proposed different systems
to classify them (Nam and Kim, 2008; Ackermann and Strimmer,
2009; Glazko and Emmert-Streib, 2009; Huang et al., 2009; Khatri
et al., 2012). Evolution and diversity of PAmethods canmake any
classification questionable, but every attempt has helped to grasp
the potential use of these methods as a whole.

A key methodological difference that divides all PA methods
is the use of univariate or multivariate statistics, performed
in the analysis phase. Univariate analyses account for one
variable at a time, in this case genes or other biomolecules,
while multivariate analyses consider more than one variable
simultaneously. Examples of PA methods that use an univariate
approach can be found in Zeeberg et al. (2003), Boorsma et al.
(2005), Subramanian et al. (2005), and methods that use an
multivariate approach can be found in Goeman et al. (2004),
Kong et al. (2006), Hummel et al. (2008), Jacob et al. (2012).

Intuitively it is expected that multivariate analyses, testing
the joint distribution of genes, accounting for interdependencies
among them, is of greater statistical power than univariate
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FIGURE 2 | Common outputs of PA tools. (A) Heatmap. Each cell of a heatmap represents a numerical value with a color code. In this case lower values are

represented in blue, while higher values turn to red. This example shows data analyzed with Pathifier (Drier et al., 2013), the phenotypic information for data used in

these calculations is irrelevant, it was used only for illustrative purposes. (B) Directed Acyclic Graph (DAG). DAGs can be used to represent partially ordered items. In

this case, relevant GO categories are highlighted in red with their respective confidence values. This DAG is a partial result from the example data provided in

WebGestalt (Zhang et al., 2005) website. (C) Statistical Relevance List. This kind of lists is the most common output in PA methods. In it, the statistical significance of

the top pathways ranked on their p-values (NOM = nominal, FWER = Family wise error rate corrected, Size = size of the pathway) is shown. This is an example of

data analyzed through Gene Set Enrichment Analysis (GSEA; Subramanian et al., 2005), used only for illustrative purposes.

analyses, testing differences only between the marginal
distributions (Glazko and Emmert-Streib, 2009). However,
evaluation performed on simulated and real biological data
showed that both approaches have similar statistical power at the
less severe significance cutoffs (p 6 0.05), and notably, univariate
approaches are more powerful at more severe significance cutoffs
(p 6 0.001). Nevertheless, every method found different sets of
pathways to be significant, differences in the results are regarded
due to the inherent use of different null hypothesis by each
method. Additionally, as each test projects on different aspects of
the data, they are complementary, increasing statistical power in
the analysis of biological data, compared to individual use of any
particular test (Glazko and Emmert-Streib, 2009).

It is not our goal to propose yet another classification for
these methods. Instead we direct attention to the one proposed
by Khatri and collaborators (Khatri et al., 2012), and keep
elaborating over it. This is based on the type of analysis different
PA methods perform. Main differences between classes abound
in the input datasets, as well as in the analysis computations
they carry out. An extensive but non-exhaustive collection of
PA methods with their respective references and websites can

be found in Supplementary Table 1. On what follows we shall
describe a chronologically-sorted list of PA methods: over-
representation analysis, functional class scoring and pathway
topology-based analysis.

3.2.1. First Generation. Over Representation Analysis
The basic hypothesis in an over representation analysis (ORA),
is that relevant pathways can be detected if the proportion of
differential expressed genes, within a given pathway, exceeds the
proportion of genes that could be randomly expected.

In this way, ORA methods act along the main workflow
of statistically evaluating the fraction of pathway components
found among a user-selected list of biological components.
This list generally fulfills certain criteria, commonly: log fold
change, statistical significance or both, ranking and cutting-off
the majority of components from an original list, for example, all
genes tested in a microarray experiment. Then a confidence value
is calculated using statistical methods such as the hypergeometric
distribution, chi-square, binomial probability or the Fisher’s exact
test, etc., ranking pathways from the lowest p-value to the largest.
Additional correction for multiple testing is generally performed,
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since evaluating data with several hypotheses simultaneously (in
this case pathways) can lead to false positives. The final result
from an ORA method generally consists in a list of the most
relevant pathways, ordered in accordance to a p-value and/or a
multiple-hypothesis-test-corrected p-value (Figure 3).

The main advantages of using ORA methodologies over non-
knowledge-driven (i.e., purely data-driven) analysis is that gives
Omic data a biological context, allowing to formulate hypothesis
and subsequently test them experimentally, thus easily turning
into a knowledge generation cycle, proper of the Systems Biology
approach.

One of the most cited ORA methods is GoMiner (Zeeberg
et al., 2003), which was developed for interpretation of gene-
expression microarray data. It takes a list of genes that are over
and under-expressed, plus the total set list of the microarray
used as input, then calculates over-representation, and under-
representation for Gene Ontology categories using Fisher’s exact
test.

Another example of ORA is WebGestalt (Wang et al., 2013),
a web-based tool first published in 2005 but continually updated,
(last up-date inMay 2014). It performs on the basis of integrating
the ORA with several central public PDBs in an interactive user-
friendly platform. In this way, the method enables data analysis
on different biological contexts: metabolic, Gene Ontology, gene-
phenotype, gene-disease, gene-drug association, etc.

WebGestalt was used by Dopico and colleagues to inspect
the functions of seasonal genes (Dopico et al., 2015). Their
work found 10 gene modules which were analyzed using
the biological pathways from the KEGG PDB. The analyses
found that these modules are related to biological pathways
of response to bacterial infections, RNA processing, metabolic
pathways, and B-cell receptor signaling. Dopico et al. propose
an influence of this seasonal gene expression signatures with
the adaptation of human immune response. Using an ORA
method like WebGestalt, enabled to give immediate meaning
to the list of genes that were meticulously filtered. But in this
particular example, given the time-series nature of the data, no
PA method is directly capable of analyze the timed-data taking
into consideration the correlations they may possess. In this
case ORA, as being one of the most simple PA method class, it
can be more easily tailored to analysis contexts in which gene
expression or additional data would be difficult to integrate. Still
the use of ORA for this kind of analysis reflects the lack of
PA methods that can input time-series data directly into their
workflows.

However, although ORA is efficient at rapidly identifying
major biological meaning among large data sets, these methods
have several limitations:

1. These methods set aside a large quantity of basal level
information, due to the user selected cut-off method.
Often, potentially important components close to the cut-
off threshold are omitted in the analysis. This also has
repercussion in results stability, as different cut-off methods
yield different results (Pavlidis et al., 2004) and selection of the
cut-off thresholds is arbitrary, there is no rule of thumb for
establishing a cut-off threshold.

FIGURE 3 | ORA general workflow. The main input for ORA methods is

information from HTBD in the form of cut-off lists derived from expression

analysis, and the pathway data in gene set format. Selected genes are

mapped in the pathways, and statistical assessment of each pathway is

performed using different tests.

2. They evaluate every component in the pathway giving them
equal weight or importance, discarding any information
inherent to the interactions, (e.g., gene expression level,

Frontiers in Physiology | www.frontiersin.org 8 December 2015 | Volume 6 | Article 383

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


García-Campos et al. Pathway Analysis: State of the Art

position in pathway, interaction between genes). In this way
analysis of two pathways with the same genes but different
topologies would yield the same result (Khatri et al., 2012).

3. They assume that pathways are independent to each other,
which is contrary to the acknowledgment of the interaction
and overlapping between pathways (Barabasi and Oltvai,
2004).

Looking for a more precise modeling of biological systems, PA
has then to evolve and develop new algorithms that addressed
these limitations. This led to the second generation of PA
methods.

3.2.2. Second Generation. Functional Class Scoring
These methods work under the main hypothesis that not only
large changes in gene expression have significant effects on a
pathway, but also lesser but coordinated changes in the genes
that assemble the pathway have an impact on the overall
pathway state. In this way Functional Class Scoring (FCS)
methods use all the available measurements in HTBD to evaluate
their enrichment scores, discarding the ORA cut-off threshold
limitation, but still using pathways as gene sets to perform their
computations.

Fundamentally every FCS method works along a three-step
workflow (Figure 4). (1) A basal-level statistic is calculated using
all the HTBD, computing differential expressions of individual
components. Commonly used basal-level statistics in PA are: fold
change (Qureshi and Sacan, 2013), t-statistic (Boorsma et al.,
2005), log-likelihood ratio (Edelman et al., 2006), and signal-
to-noise ratio (Subramanian et al., 2005). When sample size is
small, regularized versions of these test statistics is preferred
(Ackermann and Strimmer, 2009). (2) After this, the basal-level
statistics from the components of each pathway, are aggregated
into a single pathway-level statistic. Examples of pathway-level
statistics are: Kolmogorov-Smirnov statistic (Subramanian et al.,
2005),Wilcoxon sum rank statistic (Barry et al., 2005), max-mean
statistic (Efron and Tibshirani, 2007), and χ

2 (chi-squared) test
(Irizarry et al., 2009). (3) Ultimately the statistical significance of
the pathway-level statistics is assessed according to the selected
null hypothesis. If we recall the three null hypotheses defined
in Section 3.1.1, Q1 is linked to a gene sampling methodology,
while Q2 is to sample label permutation, and Q3 is to re-
standardization strategy (Ackermann and Strimmer, 2009).

The fundamental advantages of FCS methods, over ORA are
that:

1. They use all available information and do not need an arbitrary
cut-off threshold of differentially expressed genes.

2. They can detect differences between pathways that are barely
passing the differentially expressed thresholds and the ones
that are passing them with significance levels several orders
of magnitude.

3. They can detect subtle but coordinated associations between
gene-expression levels of molecules and their belonging
pathways.

4. Some methods can even identify the most relevant genes in
any given pathway; for instance, GSEA calls these genes the
core of the pathway.

FIGURE 4 | FCS general workflow. The main input for FCS methods are the

HTBD and the pathways extracted from PDBs, in gene set format. All HTBD is

used to calculate the basal level statistics, giving each component a value

dependent of its differential expression. After this, the basal-level statistics of

the components of each pathway is aggregated in a pathway-level statistic.

Finally statistical assessment of the pathway-level statistics is performed.

One of the first and most popular methods deploying the
FCS approach is the Gene Set Enrichment Analysis (GSEA;
Subramanian et al., 2005), which was developed for gene
expression analysis from microarray data. In a nutshell, it
uses a list of ranked genes in accordance to their differential
gene expression between two phenotypic classes (by signal-to-
noise ratio basal-level statistic). Then evaluates their distribution
on a priori defined set of genes, (i.e., gene sets from the
MSigDB) thus defining an enrichment score (ES) for each set of
genes (through a Kolmogorov-Smirnov pathway-level statistic).
Afterwards significance of the ES and adjustment for multiple
hypothesis testing is assessed.

As an example of the methodology, the work of Folger et al.
(2011) used the GSEA methodology to validate the proliferative
role of growth-supporting genes they predict to be of interest in
cancer treatment. In this study, the use of a gene-set external
of any PDB is highlighted, as it is derived from the shRNA
screening performed by Luo and colleagues in 12 cancer cell
lines (Luo et al., 2008). Notably, the use of external pathway
data is exploited primarily in ORA and FCS methodologies,
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as topology information is hard to ascertain, and is primarily
obtained from PDB’s crowd knowledge. Nevertheless, pathway
information relative to the cell-cycle and proliferation are already
available through most PDBs as KEGG and Gene Ontology.

Nonetheless, limitations to the GSEA approach were evident
as soon as its first version was released (Damian and Gorfine,
2004) resulting in corrections and updates from the developers
(Subramanian et al., 2005), and other groups, further extending
and developing the method (Efron and Tibshirani, 2007; Jiang
and Gentleman, 2007).

More recently developed, Pathifier (Drier et al., 2013) is
another FCS relevant algorithm (Figure 5). It seeks to integrate
the HTBD of each sample with pathway information, into a
compact and biologically relevant representation, a Pathway
Deregulation Score (PDS). The representation of samples in a
pathway-focused manner can ultimately be useful for insight
extraction. This method differs to other FCS in that it does not
calculate a basal-level statistic per se.

Doing a brief summary, Pathifier evaluates HTBD one
pathway at a time performing a principal component analysis
(PCA; Pearson, 1901) over it, reducing dimensionality and noisy
genes effect. Then it localizes every sample in the resulting
coordinate system according to their HTBD forming a cloud
of points. Afterwards a principal curve, that captures the
overall sample variation, is calculated using Hastie and Stueltzle’s
algorithm (Hastie and Stuetzle, 1989), assigning as initial point
the centroid of the control group. Finally the sample points
are projected to their closest point to the principal curve, and
assigned a PDS respective to their distance along the curve to the
initial point (Drier et al., 2013).

Relevance of Pathifier comes from the authors
acknowledgment of gaps in knowledge from PDB, therefore is
constructed as a knowledge-data-driven hybrid approach. In
this way it copes with the informational gaps that PDBs still
have in pathway topology data. One of the greatest differences
of Pathifier to other FCS is that its results are not a list of
relevant pathways, but a score for each sample-pathway pair in
comparison with a group of control samples.

Despite the fact that FCS analyses address limitations from
ORA methods, they still carry with some issues. Mainly due to
the use of pathways as gene-sets and not as networks. Examples
of such limitations are:

1. Most of them still give all the components in the pathway the
same weight to determine the pathway statistic—as the first
release of GSEA did—, independently of a priori knowledge of
the pathway (Khatri et al., 2012).

2. These methods still under-use the information from many
PDBs as they do not take the relationships between pathways
components into account, as well as other information
regarding the network structure of the pathways. This can
lead into diminished detection of relevant pathways (Draghici
et al., 2007).

3. The methods still analyze pathways independently from each
other, not accounting for overlapping between them and the
influence that a pathway can exert over another (Barabasi and
Oltvai, 2004).

FIGURE 5 | Pathifier workflow. Pathifier needs two inputs, a list of pathways

in the gene set format, and HTBD labeled for two groups (controls vs.

samples). It analyzes HTBD one pathway at a time. In this manner it gives a

PDS for each sample-pathway pair, resulting in a matrix that can be examined

through data driven approaches, in this case a hierarchical clustering analysis.

3.2.3. Third Generation. Pathway-Topology Based
Following advancements in pathway annotation from PDBs,
topology of the underlying networks of pathways has been
made publicly available through different databases, following
immediate integration into PA methodologies. This was greatly
encouraged by the increased attention network theory had in life
sciences (Amaral and Ottino, 2004; Emmert-Streib and Dehmer,
2011).

The key hypothesis of pathway topology based (PTB) analysis
is that interactions found in pathway topology, annotated in
PDBs, bear information for interpreting correlated changes
between pathway components. PTB methods can be seen
as extensions of the ORA and FCS methods, as in general
they perform along the same general steps, but they add
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pathway topology for assessing statistical relevance of the
pathways.

In the case of ORA extended methods, user selected genes
are mapped on the pathway topology and subsequent network
and statistical analyses are performed. In the case of the
FCS extended methods, the HTBD along with the topology is
used to compute the basal-level statistics, and proceed further
in a similar way to a FCS approach (Khatri et al., 2012;
Figure 6).

By analyzing pathways as networks, PTB analysis cope with
limitations from the ORA and FCS methods as:

1. Based on topology information they can account for
biologically relevant differences between components, by
giving more weight to changes in genes with greater influence
over the pathway.

FIGURE 6 | PTB analysis general workflow. The main inputs for PTB

methods are the HTBD and the pathways extracted from PDBs, in pathway

topology format. All HTBD and pathway topology is used to calculate the

basal-level statistics. After this, the basal-level statistics of the components of

each pathway is aggregated into a pathway-level statistic. Finally statistical

assessment of the pathway-level statistics is performed.

2. By taking into account different topological information, they
enable a more precise analysis of a same set of pathway
components, as some interactions may be known to be
different under certain biological conditions.

3. Account for causal interactions within the pathways, as
modifications in upstream components are expected to change
the behavior of downstream components.

One of the earliest methods that implemented pathway topology
in its analysis was Pathway-Express, as part of the Onto-tools
suite (Khatri et al., 2005; Draghici et al., 2007). Inspired by the
sentiment that as more data become available, the question “Is
there a known pathway containingmy gene(s) of interest?” would
transform into “How do I find the most interesting pathway(s)
involving my gene(s)?”

This method calculates two probabilistic terms, (1) the gene
perturbation factor, which uses a similar approach to the Page-
Rank index used byGoogle (Page et al., 1999), taking into account
the normalized fold change of each input gene, and the amount of
perturbation of genes downstream it, reflecting the relevance of
each differentially regulated gene; and (2) the impact factor of the
entire pathway, which takes into account the gene perturbation
factors of all the genes in each pathway, and the proportion of
differentially regulated genes on it. Finally presenting a ranked
list of pathways according to their impact factor and multiple-
hypothesis testing correction as given by its false discovery rate
statistic.

More recently, the same developing team of Pathway-express
developed the Signaling Pathway Impact Analysis (SPIA; Tarca
et al., 2009), which is an improved version of the first. The impact
analysis of SPIA seeks to determine and combine two types of
evidence, assuring independence between the probabilities of
each one: (1) the over representation of differentially expressed
genes in a given pathway, and (2) the abnormal perturbation of
the pathway, measured by propagating expression changes across
the pathway topology.

Another established PTB methodology is PARADIGM (Vaske
et al., 2010), which has been developed to integrate any number
of Omic datasets to infer pathways altered in a patient-specific-
or sample-specific-manner. It uses a probabilistic graphical
model framework for learning the underlying causal networks
compliant with the provided observations from HTBD.

In their model-testing, Vaske and collaborators used copy
number variation and gene expression data from a glioblastoma
dataset, along with the pathway topology information from
the National Cancer Institute Pathway Interaction Database
(NCI-PID), to successfully stratify the patient samples into
clinically relevant clusters. PARADIGM, as well as the previously
mentioned methodology Pathifier (Drier et al., 2013), do not
provide a list of relevant pathways, but give a score about
each sample status paired to every analyzed pathway. This
score in the PARADIGM methodology is called the Integrated
Pathway Activity (IPA) score—not to be confused with Ingenuity
Pathway Analysis—. Thus, the final result of such an analysis
is a matrix, where columns correspond to samples and rows
to pathways, and each value in it, is calculated for each
Sample-Pathway pair. With this matrix, a clustering analysis
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can be performed, grouping samples in molecular subtypes by
pathway-relevant means, instead of a more traditional gene-wise
approach.

An illustrative use of the PTBmethods is the work fromHeiser
and colleagues, in which they used PARADIGM to determine
if cell lines were similar to tumor samples of the same subtype
(Heiser et al., 2012). In this study, the pathway information from
the PDBs BioCarta, Reactome, and NCI-PID, as well as gene
expression and copy number data, were used as input. A potential
caveat for this study is inherent to PTBmethods limitations, is the
gap that crowd knowledge may have on the topology of pathways
which limits the pathways and PDBs to be analyzed, to the ones
with available topology information.

Limitations to PTB methodologies are hard to address as they
portray a change in one of the current paradigms in life sciences.
Life components do not work isolated, functioning by their own,
they rather do so in precise concert to accomplish life functions,
and their behavior as a whole system is dynamic, adaptable and
robust (Hartwell et al., 1999; Tononi et al., 1999; Amaral and
Ottino, 2004). In summary, life is a complex system. However,
some limitations of PTB methods can be pointed out, that will
certainly be addressed in future methods, as experimental and
annotation barriers are surmounted:

1. Some PTB methods do not recognize direction of the
connections between the pathway components. Chain effects
of deregulation can be missed (Tarca et al., 2009).

2. PTB methods do not take into account the interconnections
between pathways, for improving detection of relevant
pathways. Take for instance that, downstream components in
“pathway A” can be upstream components in “pathway B,”
therefore it can be expected that pathway A has influence over
pathway B (Yaffe, 2008).

3. There is a lack of consideration about time and spatial
distribution for pathway components in their models.
Pathway behavior may be dependent of biomolecule
compartmentalization, for instance: transcriptional regulation
in the nucleus, protein transport in endoplasmic reticulum
and mitochondria mediated signaling. Pathway standard
languages such as BioPAX, SBGN, and SBML already support
compartments in their pathway ontologies (Hucka et al.,
2003; Le Novere et al., 2009; Demir et al., 2010).

4. Additionally, molecular regulation in a time-scale manner
is also relevant to understand the mechanisms by which
pathways are working in the cell. As technology becomes
cheaper, experimental costs should drop and time scale
analyses would become more frequent, thus increasing the
need for better PA tools able to analyze such data (Bar-Joseph
et al., 2003).

5. Most methods cannot recognize the multiple states and
variants that a pathway component can have. For instance,
most PA methods collapse splicing variants from gene
expression data to a single HGNC gene symbol. Improvement
in this regard should acknowledge for biologically relevant
information as: single nucleotide polymorphism (SNP)
variants, splicing variants, epigenetic modifications and
postranslational modifications, as well as their potential

influence in phenotype and pathway functioning (Khatri et al.,
2012).

4. CHALLENGES AND PERSPECTIVES

There are still many challenges in the development and usage of
PA methods as well as in the refinement of their foundations.
Similarly to the previous division of introductory topics, the
challenges can be approached in three categories: improvements
in Omics technologies, annotations of PDBs, and of PA methods
development and usage, according to the progression of their
foundations.

4.1. Omic Technologies
As costs minimize and coverage of different sets of biomolecules
increases, PA methods should develop toward more integrative
models of biology, such as the one employed in the PARADIGM
methodology (Vaske et al., 2010) in which different kinds of Omic
data can be integrated to increase the detection of pathways in
each sample. In line with Bayes’ theorem, in which additional
evidence from an event updates the probability ratios, in such
a way that posteriors improve substantially over priors, the
addition of complementing Omic datasets should enrich the
information of any study, and therefore improve its analysis
through PA.

Time scaled data and subcellular fractionation experiments
are also expected to give more precise insight into how are
pathway components interacting. Information derived from such
experiments should be included into both the annotations of
PDBs, as well as in the analytical capabilities of PA methods.

Since PA methods have developed for over little more than
a decade, its common analysis targets are microarray data and
SNP data, still overlooking new technologies. Next generation
sequencing technologies (NGS) are becoming a new standard in
modern life sciences research, demand of analytical techniques
developed for NGS data analysis is growing. RNA sequencing
(RNA-seq), is a NGS technology that generates data not only
of the expression levels of the RNA transcripts in a tissue
(or cell), but also data regarding sequence polymorphisms and
structure of the RNA templates. Using standard PA methods
to analyze RNA-seq data may give biased results due to over
detection of differential expression for long and highly expressed
transcripts (Oshlack and Wakefield, 2009). An FCS method
that seeks to address this issue is GOseq (Young et al., 2010),
using Gene Ontology as its main PDB. Another FCS method
that addresses the previous biases is SeqGSEA (Wang and
Cairns, 2014), and additionally integrates splicing data into its
analysis, addressing the sequence polymorphisms, afterwards
it implements the traditional methodology of GSEA. To our
knowledge there is no PAmethods that directly inputs epigenome
or chromatin immunoprecipitation sequencing (ChIP-seq) data
into their workflows. As NGS technologies continue to grow in
usage, development of tools that can integrate their wealth of
data will be of great advantage toward reproducibility of research,
as current pathway-oriented analysis of these datasets may use
tailor-made methodologies.
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4.2. PDBs Annotation
As mentioned before, there is no agreement as to a universal
definition of pathways, nor a unified definition and usage of a
pathway ontology. Perhaps this was primed by the biological
focus each separate project had in its beginnings, or as a
result of cellular functions being too disparate to be contained
within a single paradigm. However, unification of similar
ontologies and usage of standard languages should prove to be
the most pragmatic and viable solution, across PDBs and PA
methodologies.

Annotation coverage should also be increased. As mentioned
before, more than half of the symbols used by the HGNC project
have no allocation within any pathway on the PDB Pathway
Commons (Cerami et al., 2011), one of the biggest composite
databases. This fact leaves a great potential working space for
manual curation, computer-driven annotation and experimental
discovery. Additionally, procedures such as, including as
publishing requirements the annotation of experimental results
into PDBs employing pathway standard languages, may drive
annotation efforts forward.

Assert interconnection between pathways is a reasonable
yet difficult task, as different ontologies of pathways may
lead to different result to ascertain the connection between
pathways (Green and Karp, 2006), yet it is evident that for an
integrative model of biology, this connections should be taken
into consideration (de Anda-Jáuregui et al., 2015).

4.3. PA Methods Development and Usage
As diversification of PA progress, selection of suited methods
becomes daunting, since evaluation standards for these methods
do not exist yet. One is generally given the option to employ the
most popular and well-understoodmethods, which in some cases
may not be optimum.

Difficulties in the generation of such evaluation standards
may come from the fact that the “absolute truth” about the
state of pathways in real experiments is not ultimately known.
Thus, asserting statistical performance for precision, recall and
specificity is not obvious. Additionally, some methodologies are
certainly different in statistical and mathematical approaches
employed, making them not comparable between them.

Shedding some light into this problem, Tarca and
collaborators pointed out that in the absence of gold standards
for evaluation, the best alternative is to compare between
methods in the light of the existing biological knowledge (Tarca
et al., 2009). Also Mitrea and collaborators suggest the design of
benchmark data for asserting the statistical power of the methods
(Mitrea et al., 2013), but this has proven to be a difficult task.

Regarding the output formats, it is important to call attention
to the ones provided by PA methods such as ASSESS (Edelman
et al., 2006), Paradigm (Vaske et al., 2010), and Pathifier (Drier
et al., 2013). Such outputs are composed fundamentally of a
matrix of paired scores, which integrate the PA for each sample
within the space of the analyzed samples. This in turn, can give
a representation of how different is the functioning of every
pathway in every sample, in contrast with the control group.

Representation of molecular functioning status in a sample-
pathway perspective may prove to be helpful, and can provide

insight into functional molecular heterogeneity, as between
samples grouped under the same phenotype, but with different
molecular origin. For instance, cancer, in which there are
different malfunctioning pathways behind the disease main
characteristics, converging in similar phenotypes (Hanahan and
Weinberg, 2011).

Since these scores depend on single sample measurements,
embedded in the sample space, statistical certainty is difficult to
estimate. Discussion on methods to verify the confidence of these
scores is thus needed. Nevertheless, advancements in discussion
and improvements of such methodologies, may help to develop
a new generation of PA methods, in which every sample is
on the focus, instead of the overall sample-set, extending the
now existing methods toward the understanding of pathway
phenomena at a deeper biological level.

5. CONCLUDING REMARKS

PA is a blooming interdisciplinary research area that is steadily
growing and developing. Most current methodologies are
developed to use pathway topology information stored in
different PDBs and all the measurements coming from high
throughput technologies, yet there are challenges that need
to be surpassed for better identification of relevant pathways.
Particularly relevant are the annotation depth and coverage
challenge, which PDBs as collective knowledge suffer, and
the need for all scientific community to collaborate in their
advancement.

Attention needs to be given to newer methodologies that
attempt to zoom the analysis scope to the sample scale,
as they can be useful in the generation of personalized
pharmacological therapy. Transformation from thousands of
gene-level measurements to tens of biologically meaningful
pathways in the sample scale is a desirable approach. This may
facilitate further analysis and hypothesis generation at a personal
level.

As already noted, PA is a very diverse set of methodologies
that may help formulate more educated hypothesis about the
data Omic technologies generate in any research endeavor that
employs this kind of biological data retrieval approach. After
all the issues we have discussed, one thing may already become
evident: PA methods should never be taken as black boxes from
where experimental data goes-in, and true statements come-out,
but perhaps more as cleaners of haystacks from where we are
pursuing to find biological meaningful needles.
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