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Disruptions in the normal rhythmic functioning of the heart, termed as arrhythmia,

often result from qualitative changes in the excitation dynamics of the organ. The

transitions between different types of arrhythmia are accompanied by alterations in

the spatiotemporal pattern of electrical activity that can be measured by observing

the time-intervals between successive excitations of different regions of the cardiac

tissue. Using biophysically detailed models of cardiac activity we show that the

distribution of these time-intervals exhibit a systematic change in their skewness during

such dynamical transitions. Further, the leading digits of the normalized intervals appear

to fit Benford’s law better at these transition points. This raises the possibility of using

these observations to design a clinical indicator for identifying changes in the nature

of arrhythmia. More importantly, our results reveal an intriguing relation between the

changing skewness of a distribution and its agreement with Benford’s law, both of which

have been independently proposed earlier as indicators of regime shift in dynamical

systems.

Keywords: cardiac arrhythmia, skewness, Benford’s law, first-digit phenomenon, dynamical transitions

PACS numbers: 87.19.Hh,05.45.-a

1. INTRODUCTION

Many vital physiological processes are characterized by rhythmic activity, ranging from the
circadian clock regulating the daily sleep-wake cycle to temporal patterns of respiration that occur
over a scale of seconds (Glass, 2001). The periodic beating of the heart, that results in constant
circulation of oxygenated blood throughout the body, is one of themost important of such naturally
occurring oscillatory phenomena in the body (Zipes and Jalife, 2013). Certain types of disturbances
in the cardiac rhythmicity, referred to as arrhythmia, can severely impair the normal functioning of
the heart and in the most critical instances, can result in sudden cardiac death (Winfree, 1980).
Such “dynamical diseases” (Mackey and Glass, 1977; Belair et al., 1995), i.e., diseases resulting
from abnormal activity in an otherwise intact physiological system, are a significant public health
burden in developed countries. For example, in the United States, diseases of the heart constitute
the leading cause of death (responsible for about 25% of all deaths), of which more than half can
be classified as sudden cardiac deaths (Hennekens, 1998; Zheng et al., 2001; Heron, 2013). Even in
developing countries, in recent times heart disease has overtaken other causes of death, e.g., sudden
cardiac deaths contributed to about 10% of overall mortality in certain regions in India, accounting
for upto half of all cardiovascular-related deaths (Madhavan et al., 2011; Rao et al., 2012).
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Several studies have shown that early detection of onset
of arrhythmia resulting in prompt therapeutic intervention
significantly improves the chances of surviving such
episodes (Gold et al., 2010; Travers et al., 2010). Thus, developing
methods for identifying signs of impending arrhythmic
events with potentially serious consequences can significantly
contribute toward reducing the mortality rate due to sudden
cardiac death. With this aim in view there have been a number
of attempts at applying time-series analysis methods on cardiac
activity data in order to extract robust indicators of imminent
instances of temporal irregularities in the heart. However,
the complexity of heart rate dynamics makes it difficult to
characterize and distinguish the temporal signatures of a healthy
heart from a diseased one (Christini et al., 1995; Kurths et al.,
1995; Cohen and Taylor, 2002; Goldberger et al., 2002; Voss et al.,
2009; Shiogai et al., 2010; Iatsenko et al., 2013).

Most studies of cardiac time-series have focused on heart
rate variability as measured by temporal changes in the R-R
interval, the duration between successive episodes of ventricular
depolarization which triggers contraction of the lower chambers
of the heart. Following the pioneering observations connecting
decreased variance in R-R intervals with higher mortality
risk in patients suffering myocardial infarction (Wolf et al.,
1978; Kleiger et al., 1987), it is now generally accepted that
healthy individuals have higher heart-rate variability compared
to those with diseased hearts (Lombardi, 2000). However, certain
pathological conditions including cardiac arrhythmia are seen to
be extremely irregular (Costa et al., 2002). In fact, it has been
observed that a transition from tachycardia, i.e., abnormally rapid
heart-rate, to fibrillation, characterized by erratic muscle activity
that prevents the heart from pumping blood, is marked by a
switch from relatively more periodic activity to a highly irregular
dynamical state (Garfinkel et al., 1997). While the R-R intervals
in normal sinus rhythm appear to have almost as unpredictable
a nature as that seen during fibrillation (Small et al., 2002), it
has been suggested that the “chaoticity” during normal cardiac
activity arises through interaction of the heart with the nervous
system (Nakai et al., 2010). In contrast, the spatiotemporal chaos
associated with fibrillation arises from intrinsic instabilities in
cardiac excitation dynamics (Weiss et al., 1999).

One possible route from tachycardia to fibrillation that has
been established through extensive simulation studies of models
of cardiac electrical activity is the degeneration of reentrant
spiral wave (corresponding to tachycardia) to disordered,
turbulent activity (characterizing fibrillation) through spiral
breakup (Fenton et al., 2002; Sridhar et al., 2013). This dynamical
transition has been reproduced in a wide range of systems,
from simple, excitable media to biologically detailed models,
underlining the robustness of the scenario (Sinha and Sridhar,
2015). Thus, the study of spatiotemporal dynamics in models of
electrical activity in cardiac tissue provides another perspective
to identify indicators for an impending onset of possibly life-
threatening arrhythmia.

In this paper, we focus on analyzing time-series data obtained
from spatially extended models of cardiac ventricular activity
in which, by tuning specific physiological parameters, one can
observe transitions to different dynamical regimes representing

various classes of arrhythmia. This allows us to look for statistical
signatures that can help in early detection of arrhythmic
episodes, where the observed patterns are exclusively due to
abnormal excitation activity that characterizes such arrhythmia
and unrelated to heart rate variability that arises from the
influence of the nervous system on the sinus node, the natural
pacemaker of the heart (Lombardi and Stein, 2011). This study,
therefore, provides a benchmark against which analysis of ECG
data obtained from clinical studies can be compared, enabling
distinction of statistical features of arrhythmic time-series that
are intrinsic to the dynamics of heart muscle from those
that are a result of changes in the autonomic modulation of
cardiovascular function (achieved through dynamical balance
between sympathetic and parasympathetic effects Purves et al.,
2001). As signature patterns (if they exist) that indicate
transitions from one dynamical regime of cardiac activity to
another may be masked by other effects in reality, establishing
them through analysis of the model output will allow us to look
for them in data obtained from experimental or clinical studies.

Here, for our statistical analysis, we have focused on the
sequence of time-intervals T between successive excitations of
ventricular muscle cells (analogous to the R-R interval for ECGs)
as a representative feature of heart rate dynamics (Figure 1).
An important result of our study is that the distribution
of these intervals exhibit clearly observable changes in their
moments—in particular, the skewness—around the onset of
qualitatively distinct dynamical behavior characterizing various
arrhythmic episodes (represented by the different panels in
Figure 1). Intriguingly, we also observe that at these transitions,
the distribution of the time-intervals appears to agree better
with Benford’s law (BL), an empirically established feature of the
frequency distribution of leading digits of numbers occurring
in many phenomena in various physical, biological and social
contexts (Nigrini, 1996; Hill, 1998; Sambridge et al., 2010; Friar
et al., 2012). Both variation in skewness (Guttal and Jayaprakash,
2008; Scheffer et al., 2009) and closer agreement with BL (De and
Sen, 2011) have independently been suggested as indicators of
regime shifts or phase transitions in different systems. Our work
not only finds both of these signatures to be indicative of the onset
of arrhythmic behavior, but additionally suggests that these two
phenomena (viz., increasing skewness and agreement with BL)
may be related.

2. MATERIALS AND METHODS

2.1. Model
To simulate spatiotemporal excitation activity in cardiac muscle
under different physiological conditions, we have used a two-
dimensional model of ventricular tissue having the generic form

∂V

∂t
=

−Iion(V, gi)

Cm
+ D∇2V, (1)

where V (mV) is the potential difference across a cellular
membrane, Cm(= 1µF cm−2) is the transmembrane capacitance,
D is the diffusion constant (= 0.001 cm2 s−1 for the results
reported in the paper), Iion(µAcm−2) is the total current density
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FIGURE 1 | Time-series of the transmembrane potential V representing

local excitation activity in a two-dimensional LR1 model (L = 400) for

different values of the maximum Ca2+ channel conductance Gsi , viz.,

(A) 0.005, (B) 0.04, and (C) 0.065mS cm−2. The distinct nature of the

corresponding spatiotemporal dynamics, viz., rigid rotation of a spiral similar to

monomorphic tachycardia (A), chaotic meandering of spiral core representing

polymorphic tachycardia (B), and spatiotemporal chaos indicating fibrillation

(C), is visually apparent in the varying pattern of intervals between successive

excitations. It is quantified in terms of the sequence of time-intervals {Tn}

(n = 1,2, . . .) between each pair of consecutive local supra-threshold

depolarizations (two such intervals are shown in C using double-headed

arrows). We consider a local supra-threshold excitation event to have occurred

when V exceeds −50 mV (broken line).

through ion channels on the cellular membrane, and gi describes
the dynamics of gating variables of different ion channels. The
specific functional form for Iion that we have focused on here is
that of the Luo-Rudy I (LR1) model which describes the ionic
currents in a guinea pig ventricular cell (Luo and Rudy, 1991):

Iion = INa + IK + IK1 + IKp + Isi + Ib,

where INa = GNam
3hj(V − 54.4) is the fast inward Na+ current,

Isi = Gsidf (V − Esi) is the slow inward Ca2+ current where Esi =
7.7 − 13.0287 ln ([Ca2+]i) is the reversal potential, dependent
on the intracellular ion concentration [Ca2+], IK = GKxx1(V +

77.62), IK1 = GK1K1∞(V + 87.95), and IKp = 0.0183Kp(V +

87.95) are three different types of K+ current, and Ib =

0.03921(V + 59.87) is a background current. The currents are
determined by ion channel gating variablesm, h, d, f and x, whose
time evolution is described by ordinary differential equations of
the form, dǫ/dt = (ǫ∞ − ǫ)/τǫ , where ǫ∞ is the steady state
value of ǫ (= m, h, j, d, f , and x) and τǫ is the corresponding
time constant obtained by fitting experimental data. Parameter
values used are as in Luo and Rudy (1991), except for GK which
is set to 0.705 mS/µF and Gsi that is varied to alter the stability
of spiral wave dynamics (Xie et al., 2001). We have explicitly
verified that our results are not sensitively dependent on model-
specific details, viz., the description of ion-channel dynamics, by
observing qualitatively similar behavior with another functional

form for Iion described in the ten Tusscher-Panfilov (TP06)model
of a human ventricular cell (ten Tusscher and Panfilov, 2006).

For numerical simulations, the two-dimensional spatially
extended system is discretized on a grid of size L × L (= 400
for LR1 model and 1024 for TP06 model) with a space step of
δx (= 0.0225 cm for LR1 model and 0.025 cm for TP06 model).
The equations are solved using a forward Euler method with time
step δt (= 0.05 ms for LR1 model and 0.02 ms for TP06 model)
and a standard 5-point stencil for the Laplacian describing the
spatial coupling between the lattice elements. No-flux boundary
conditions are implemented at the edges. The initial spiral wave
state is obtained by generating a broken wave front which then
dynamically evolves into a curved rotating wave. The movement
of the spiral wave core is obtained by tracing the trajectory of
intersection points of iso-contour lines for a pair of dynamical
variables of the model, viz., V and h in the LR1 model (Barkley
et al., 1990).

2.2. Inter-spike Interval Time-Series
We analyze the statistical properties of the time-intervals between
successive excitations (i.e., depolarization) at specific locations in
the simulated cardiac tissue. Each point in the simulation domain
is considered to be excited if the corresponding transmembrane
potential V crosses a threshold value (set equal to −50 mV
here, although our results are robust with respect to the choice
of threshold) from below, i.e., from a hyperpolarized state. The
time-interval T between two such successive crossings of the
threshold is recorded for constructing the data-set, values being
sampled from 400 equally spaced points arranged in a regular
grid on the simulation domain (for the LR1 model). Typically
time series of 5 s total duration were used for our analysis. From
the data-sets obtained at different values ofGsi, the corresponding
distributions for T are obtained and the moments calculated,
including mean µ, standard deviation σ , and skewness, the latter
being measured by the Pearson’s moment coefficient of skewness
defined as γ = E[(X − µ)/σ )3]. Using other measures for the
skewness did not qualitatively alter our results. The time-interval
distributions obtained for different parameters are also tested for
the degree of agreement with Benford’s Law.

2.3. BL and Benford Distribution
Named after the American physicist F. Benford who made the
first-digit phenomenon widely known, BL had been noticed
in numbers associated with a variety of natural (as well as
social) phenomena as far back as in 1881 by the astronomer S.
Newcomb. According to this empirical law, numbers beginning
with 1 or 2 occur more often than those beginning with 8 or
9 (Fewster, 2009). Specifically, the probability of the first or
leading digit of such numbers being i (i = 1, 2, . . . 9) is given
by the Benford distribution:

P(i) = log10

(

1+
1

i

)

.

The reason for the ubiquity of this distribution has been
connected to its scale-invariance and base-invariance (Hill,
1995). Thus, if indeed there is a universal principle underlying
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the distribution of the leading digits of numbers which is
independent of the units in which the numbers are measured or
the number base used, then the BL follows. Simple mathematical
arguments have been used to show that any distribution of
numbers arising from natural processes that spans several orders
of magnitude and is reasonably smooth will obey BL (Fewster,
2009). The Benford distribution, as mentioned earlier, is seen
in many empirical data-sets, including those arising in a
biological context, such as, the distribution of open reading
frames in prokaryotic and eukaryotic genomes (Friar et al.,
2012). Dynamical systems, such as those describing themolecular
dynamics of fluids or certain chaotic systems, also exhibit
BL in the numbers expressing coordinates of the generated
trajectories (Tolle et al., 2000; Snyder et al., 2001). More recently,
BL has been used as a signature for detecting phase transitions in
a quantum system (De and Sen, 2011).

In order to compare the distribution of the intervalsT between
successive excitations with that expected from BL, we first obtain
a set of normalized time-intervals t by subtracting the minimum
value of the series from all intervals T and dividing by the
range, i.e., t = [T−min(T)]/[max(T)−min(T)]. The leading
digits i of the normalized intervals t are then extracted as i =

⌊|t|/10⌊log10(|t|)⌋⌋, where |z| and ⌊z⌋ indicate the absolute value
of z and the largest integer not greater than z, respectively. The
distribution of i is then tested for agreement with BL using
statistical tests for goodness of fit.

2.4. Statistical Tests for Goodness of Fit
with BL
The goodness of fit between the two distributions (the empirical
and that predicted by BL) is measured by a two-sample
Kolmogorov-Smirnov test. We have used the function kstest2
implemented in MATLAB which returns a test decision for the
null hypothesis that both the sets are from the same distribution,
along with a p-value and the KS test statistic k describing the
degree of deviation from BL. In our study the test statistic is the
comparison parameter

k = max
i
(Fc(i)− Bc(i)),

which measures the maximum distance between the two
cumulative distributions, Fc(i) and Bc(i), of the leading digits
i of normalized time intervals and that expected from BL,
respectively. A lower value of k implies closer agreement with the
Benford distribution.

Apart from the KS test, we have also used the Pearson’s
chi-squared test to confirm the compliance of the empirical
distributions with BL. The test statistic

χ2 =

n
∑

j=1

(Fj − Bj)
2

Bj
,

quantifies the total magnitude (over all n entries of the empirical
time-series) of the difference between the two probability
distributions, F and B, for the leading digits of the normalized
time intervals and that expected from BL, respectively. As for the
KS test, a lower value of χ2 implies closer agreement with the
Benford distribution.

3. RESULTS

To identify the statistical signatures characterizing dynamical
transitions to different types of arrhythmia, we systematically
explore the spatiotemporal dynamics of the model systems
in different parameter regimes. The nature of the excitation
activity is varied in a controlled manner by changing the kinetic
properties of an ion channel, viz., increasing the maximum Ca2+

channel conductance Gsi for the LR1 model (keeping all other
model parameters unchanged) which is known to result in a
succession of dynamical transitions (Qu et al., 2000) as seen in
Figure 1. For the TP06 model, the maximum conductance GpCa

of the sarcolemmal pump current IpCa is increased that eventually
results in spiral breakup leading to spatiotemporal chaos (ten
Tusscher and Panfilov, 2006).

Representative images of the spatiotemporal dynamics (with
LR1 model ion-channel kinetics) in the different regimes are
shown in the top row of Figure 2, with the trajectory of the
spiral core (traced in the first three panels using a light color)
exhibiting characteristic changes in its qualitative nature. Starting
from an initial state characterized by a rotating spiral wave, for
small values of the conductance (e.g., Gsi = 0.005) we observe
rigid rotation with the core moving around an approximately
circular trajectory (Figure 2A), which corresponds to the clinical
phenomenon of monomorphic tachycardia. This gives way to
meandering at higher values of Gsi (≃ 0.025, see Figure 2B),
followed by the appearance of chaotic meandering around Gsi =

0.04 (Figure 2C) and finally the breakup of spiral waves leading
to spatiotemporal chaos, representative of fibrillation, for values
of Gsi > 0.055 (Figure 2D).

The panels in the middle row of Figure 2 show the probability
distribution of time intervals between successive excitations,
T, for the Gsi values corresponding to the panels in the top
row. We observe that the range of these intervals become
broader at larger Gsi values as the dynamics of the spiral wave
becomes more complex. A very narrow range of intervals is
dominant at low Gsi, as expected for a rigidly rotating spiral
wave having a characteristic period of rotation (Figure 2E). With
increased meandering of the core, however, the time interval
between successive excitations of a local region becomes more
irregular, which is manifested as a broader distribution of T
(Figure 2F). As the spiral core trajectory becomes even more
complex, covering a larger portion of the simulation domain,
we see that the distribution not only widens further but also
develops multiple peaks at the extremities (Figure 2G). Finally,
following breakup and spatiotemporal chaos, the time between
successive excitations become essentially random in character
with a distribution that spans a relatively large range of T
(Figure 2H).

To see how closely the dynamical process follows the
Benford distribution in the different regimes, in the bottom
row of Figure 2 we show the probability distributions of the
leading digits i of the normalized intervals t. It is evident
that the distribution of i moves closer to the form expected
for the Benford distribution (indicated by a broken curve) at
larger values of Gsi. In fact, the empirical distribution shows
the best agreement with BL in the spatiotemporally chaotic
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FIGURE 2 | (A–D) Pseudocolor images of spatiotemporal activity (measured in terms of transmembrane potential V) for the two-dimensional LR1 model (L = 400)

showing the different dynamical regimes obtained by increasing the maximum Ca2+ channel conductance Gsi (expressed in units of mS cm−2). The successive

panels represent a spiral wave undergoing (A) stable rotation (Gsi = 0.005), (B) quasiperiodic meandering (Gsi = 0.025), and (C) chaotic meandering (Gsi = 0.04).

Further increase of Gsi results in breakup of the spiral wave leading to (D) spatiotemporal chaos (Gsi = 0.065). The trajectory of the spiral core (the tip of the spiral

wave, defined to be a phase singularity) for a duration of 500 ms is indicated in all panels except for the one corresponding to chaotic activity where there is a large

multiplicity of singularities. (E–H) The probability distribution of time intervals T between successive supra-threshold activations of a local region corresponding to the

dynamical regimes indicated in (A–D), respectively. (I–L) Probability distribution of the leading digits i of the normalized time intervals between successive

supra-threshold activations of a local region corresponding to the dynamical regimes indicated in (A–D), respectively. The broken curve indicates the distribution

predicted by Benford’s law. Each distribution in (E–L) is obtained by averaging over data collected from many spatial positions in the simulation domain (indicated by

points in A) and also over several realizations, with error bars indicating the standard deviation.

state corresponding to Gsi = 0.065 (Figure 2L), which is
consistent with the corresponding time interval distribution
being exponential in nature - as it is known that values distributed
exponentially follow BL. We see that that this distribution
of leading digits i is closest to BL at the transition points
corresponding to chaotic meandering (Gsi = 0.040) and spiral
breakup (Gsi = 0.065).

To understand the nature of the distributions in the different
dynamical regimes better, we show how the moments of
the distribution for the time intervals T and that for the
corresponding leading digits i of the normalized intervals vary
with increasingGsi (Figure 3). We observe that the mean value of
the interval between successive excitations steadily rises with Gsi

as the complexity of the spiral core trajectory increases excepting
for a small dip around Gsi = 0.055 which is the point of
transition to spiral breakup (Figure 3A). The dispersion of the T
distribution, measured by its standard deviation σT (Figure 3B)
shows a similar increasing nature with Gsi although, around
Gsi = 0.04, where a transition occurs from quasiperiodic to
chaotic meandering of the spiral core, there is a small decrease.
The skewness γ of the distribution is the most informative of

all the moments considered here, as it shows large deviations
from zero only around critical values of Gsi associated with
transitions between different dynamical regimes. In particular,
we notice peaks in the skewness at Gsi = 0.025, 0.04, and 0.055
which correspond to transition to quasiperiodic meandering,
chaotic meandering and spiral breakup, respectively (Figure 3C).
In order to make the relation between the different moments and
the dynamical transitions even more clear, we have also shown
the nature of variation of a derived quantity, exp(γT)/σT , as a
function of Gsi. It can potentially be used as a statistical indicator
for the onset of certain types of arrhythmia that may be hard to
detect by observing the skewness alone. We see from Figure 3D

that the measure amplifies the signal indicating a transition close
to Gsi = 0.025 where the spiral begins to noticeably meander.

When we observe the corresponding moments for the
distribution of leading digits i as a function of Gsi, we note that
both the moments µi and σi (Figures 3E,F) have very similar
nature of variation, viz., both exhibit dips around the values ofGsi

at which the different dynamical transitions occur. In contrast,
the skewness exhibits an almost opposite nature, with peaks
occurring at the transition points (consistent with increasing
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FIGURE 3 | Analysis of various moments for the distributions of the time intervals T between successive supra-threshold activations of a local region

(A–D) and that of the leading digits i of the normalized time intervals (E–H) as a function of the maximum Ca2+ channel conductance Gsi in the

two-dimensional LR1 model. Variation in (A) the mean µT , (B) standard deviation σT , (C) skewness γT measured in terms of the Pearson’s moment coefficient,

and (D) the derived quantity exp(γT )/σT , correspond to the distribution of the time intervals T, while the variation shown for (E) the mean µi , (F) standard deviation σi ,

(G) skewness γi (again measured in terms of the Pearson’s moment coefficient), and (H) the quantity exp(γi )/σi , correspond to the distribution of the leading digits i.

Large changes in both the skewness measures (γT and γi ), and to an extent, the dispersion measures (σT and σi ) correspond to successive dynamical transitions

between rigid rotation, quasiperiodic meander and chaotic meander of the spiral core, finally giving rise to spatiotemporal chaos resulting from spiral breakup. The

measure exp(γi )/σi combines the information obtained from the variation of standard deviation and skewness, enabling it to indicate some of the dynamical transitions

more clearly. The linear correlation coefficient between the skewness of T and that of i is rγ = 0.67 (p = 0.001).

skewness of the T distribution at these values). This indicates
that at these points the distribution comes close to the form
expected from BL, as the latter is associated with positively
skewed distributions. The derived quantity exp(γi)/σi conserves
this pattern, showing increased values at these points. We find
that the skewness of T and that of i are correlated, the linear
correlation coefficient between γT and γi being rγ = 0.67
(p = 0.001). This indicates an inter-dependence between the
variations in skewness of the time-interval distribution and that
of the leading digit distribution, that occur at different dynamical
transitions.

To quantify how closely the system obeys BL in the different
dynamical regimes, we show the results of different statistical
tests for goodness of fit between the empirical and Benford
distributions. Figure 4A shows the Kolmogorov-Smirnov (KS)
test statistic as a function of the Ca2+ channel conductance Gsi

which clearly indicates that the distribution of leading digits
follow BLmost closely, indicated by dips in the test statistic, at the
values of Gsi characterizing the different dynamical transitions,
viz., Gsi = 0.025, 0.04, and 0.055 (p-values for the statistic
are effectively zero for all Gsi). Note that low values of the KS
test statistic (i.e., better agreement with BL) are associated with
high positive skewness of the distribution of leading digits of the
normalized intervals. This is underlined by the strong negative
correlation between the test statistic k and the skewness γi (see

Figure 4B), having a linear correlation coefficient r = −0.96
(p = 10−12). As mentioned earlier, this is consistent with the
fact that BL is associated with distributions having high positive
skewness. Figure 4C shows the result of another statistical
test, viz., Pearson’s Chi-squared test, with the lowest values
of Pearson’s error—corresponding to better agreement with
BL—occurring at the same values of Gsi where the dynamical
transitions occur. The points at which the empirical distribution
best matches BL are seen to be consistent for the two tests (the
dips of the two test statistics occurring at the same values).

The change in skewness and the agreement with BL around
the transition to spiral breakup shown here do not appear to
be model specific. We have explicitly verified that qualitatively
similar results can be obtained by using the TP06 model for
a human ventricular cell. The top row of Figure 5 shows
images representative of the spatiotemporal dynamics of a two-
dimensional medium in different regimes as the maximum value
of conductance GpCa of the sarcolemmal pump current IpCa is
increased. For small values of GpCa a single spiral wave is seen
to rotate stably in the medium, until around GpCa = 0.125 nS
pF−1 it undergoes breakup and degenerates into spatiotemporal
chaos for higher values of GpCa. The panels in the bottom row
show the distributions of the leading digits for the normalized
intervals at the corresponding values of GpCa indicating that
the fit with Benford distribution is closest during the dynamical
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FIGURE 4 | (A) Deviation of the distribution of leading digits i of the normalized time intervals t from Benford’s law in the two-dimensional LR1 model measured in

terms of the Kolmogorov-Smirnov test statistic k and shown as a function of the maximum Ca2+ channel conductance Gsi . (B) There is a strong negative correlation

(r = −0.96, p = 10−12) between k and the skewness of the leading digits γi . (C) The error in using BL for describing the empirical distribution of leading digits i of the

normalized time intervals t is measured using Pearson’s chi-squared test and shown as a function of Gsi . Agreement with BL improves whenever there is a dynamical

transition, as seen by dips in k and the χ2 test statistic for values of Gsi where successive transitions between rigid rotation, quasiperiodic meandering and chaotic

meandering of the spiral core and spatiotemporal chaos occur.

FIGURE 5 | (A–D) Pseudocolor images of spatiotemporal activity (measured in terms of transmembrane potential V) for the two-dimensional TP06 model (L = 1024)

showing the different dynamical regimes obtained by increasing the maximum conductance GpCa of the sarcolemmal pump current (expressed in units of nS pF−1).

The successive panels represent a single spiral wave at GpCa = 0.1 (A), the initiation of spiral breakup at GpCa = 0.125 (B) and successive states leading to

spatiotemporal chaos at GpCa = 0.15 (C) and GpCa = 0.175 (D). (E–H) Probability distribution of the leading digits i of the normalized time intervals between

successive supra-threshold activations of a local region corresponding to the dynamical regimes indicated in (A–D), respectively. The broken curve indicates the

distribution according to Benford’s law. The analysis shown in (E–H) is performed for data obtained from a grid of 225 equally spaced points in the two-dimensional

medium.

transitions. This is rigorously shown in Figure 6 where the
results of different statistical tests for goodness of fit are given.
Figures 6A,B show that both the KS and Pearson’s Chi-squared
tests point to a better agreement with BL at the transition
point GpCa = 0.125 nS pF−1. As with the results for LR1
model reported earlier, the transition is also associated with a
large deviation in the skewness γi (Figure 6C) and a strong
negative correlation between the test statistic k and the skewness
(Figure 6D) with a linear correlation coefficient r = −0.99
(p = 10−6).

To summarize the results, around the parameter values
where the transitions between dynamical regimes representative
of different types of cardiac arrhythmia occur, we observe
both higher positive skewness and closer agreement with
BL (as indicated by statistical tests). We note that both
increased skewness and better match with BL have independently
been suggested earlier as possible signatures for dynamical
transitions, although not in the context of physiology or
clinical applications. Apart from the potential utility of this
observation for devising robust indicators of the onset of
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FIGURE 6 | (A,B) Deviation of the distribution of leading digits i of the

normalized time intervals t from BL in the two-dimensional TP06 model

measured in terms of (A) the Kolmogorov-Smirnov test statistic k and (B)

Pearson’s Chi-squared test statistic χ2, shown as a function of the maximum

conductance GpCa of the sarcolemmal pump current (expressed in units of nS

pF−1). Agreement with BL is highest around the value of GpCa = 0.125 where

breakup of the spiral wave is initiated, as seen by dips in k and the χ2 test

statistic. (C) Skewness γi in the distribution of the leading digits of the

normalized time interval, with the peak occurring at GpCa = 0.125

corresponding to the spiral breakup transition point. (D) There is a strong

negative correlation (r = −0.99, p = 10−7) between k and the skewness of the

leading digits γi .

life-threatening disturbances in the cardiac rhythm, it suggests
a deep relation between the appearance of BL in natural
phenomena and the degree of skewness in the distributions of the
underlying variables.

4. DISCUSSION

Statistical analysis of data (in particular, ECG) that is
representative of cardiac functionality can provide us with
effective signatures for the detection of arrhythmia at an early
stage. Despite such analyses, certain kinds of arrhythmia fail
to get detected merely due to the complexity involved. Part
of the difficulty lies in cardiovascular activity being a joint
outcome of intrinsic spatiotemporal excitation dynamics in heart
muscle and modulation of the sinus node by the sympathetic
and parasympathetic nervous system. Here we have studied
biophysically detailed models of ventricular activity to infer
signatures of dynamical transitions characterizing the onset
of different kinds of arrhythmia. This makes it possible to
disentangle the effects of intrinsic excitation dynamics in the
heart from the influence of the nervous system. In principle, it
allows identification of patterns that may alert one to impending
harmful disruptions in the rhythmic activity of the heart,
but which could be masked in the ECG signal by autonomic
modulation effects. Our results show that as the spatiotemporal
excitations in the ventricles become more disordered, leading
to phenomena identified with sustained monomorphic and
polymorphic tachycardia as well as the onset of fibrillation, these

transitions are marked by characteristic changes in statistical
moments associated with the distribution of inter-activation
intervals. In addition, the leading digits of these intervals show
a closer agreement with BL at the transition points. Our result
can potentially be applied in augmenting algorithms used in
implanted devices (ICDs) for detecting transitions to possible
life-threatening arrhythmia so as to initiate a program of
treatment (Schuckers, 1998). Thus, when continual monitoring
of heartbeat time-series shows either increased skewness or a
closer agreement to BL, it may signal a transition in the dynamical
state of the heart so that suitable pacing therapy can be started.
However, for such an application, our observations would need
to be validated in ECG recordings made during tachycardia and
onset of fibrillation in live animals. Such validation is necessary
in view of the limitations of the present study, involving as it
does two-dimensional monodomain models of homogeneous
cardiac tissue.

Examining the passage from normal cardiac activity to
different arrhythmic regimes from the perspective of phase
transitions can provide novel insights, as has been pointed out
by several earlier studies. For instance, power-law behavior,
which characterize critical phenomena in physical systems, have
been reported in R-R interval fluctuations and are seen to
be remarkable predictors of arrhythmic death, with a steeper
negative slope of the power spectra (in log scale) clearly
distinguishing a diseased heart from a healthy one (Bigger et al.,
1996). More recently, it has been shown that phase transition-like
dynamics is exhibited by healthy human heart rate, indicated by
long range correlations which is a hallmark of criticality (Kiyono
et al., 2005). In contrast, the dynamics of an abnormal heart
rate reveals significant digression from critical behavior. In
addition, scale invariance, which is seen in systems close to
critical point, has been shown to be indicative of a healthy heart—
with its absence being a statistical feature that can alert us about
pathological conditions (Kiyono et al., 2004). Our results provide
yet another connection between onset of arrhythmia and phase
transitions by showing that sharp changes in the skewness of
the distribution of dynamical variables, that has previously been
associated with dynamical transitions in other systems (Guttal
and Jayaprakash, 2008; Scheffer et al., 2009), can potentially
act as a robust indicator of transitions between monomorphic
tachycardia, polymorphic tachycardia and fibrillation in the
heart.

As mentioned earlier, the appearance of BL has also been
linked to phase transitions in physical systems (De and Sen,
2011). As the Benford distribution follows from requirement of
scale invariance of the underlying numbers (Hill, 1995), it is
tempting to connect this with the scale invariance of distribution
of dynamical variables associated with critical points at which
transitions occur. We observe from our results that parameter
regimes that give rise to relatively broad distributions of the time-
intervals (as is the situation for spatiotemporally chaotic states)
show better agreement with BL than those associated with highly
confined distributions (as in the case of a rigidly rotating spiral).
However, the occurrence of chaos in dynamical systems by itself
does not guarantee that BL will be obeyed (Tolle et al., 2000).
Thus, it appears that the appearance of Benford distribution is
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more closely associated with the onset of dynamical transitions
rather than the specific nature of the dynamical states on either
side of the transition point. We also note that distributions that
follow BL are, in general, associated with high skewness (Scott
and Fasli, 2001). This suggests that the highly skewed nature of
distributions during dynamical transitions and the observation of
better agreement with BL at those points may not be independent
of each other. Thus, our results imply that the increased
skewness associated with regime shifts and the appearance
of Benford distribution during phase transitions—which have
been reported earlier in different contexts—are, in fact,
related.
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