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Genome-scale metabolic models (GEMs) have become a popular tool for systems

biology, and they have been used in many fields such as industrial biotechnology and

systems medicine. Since more and more studies are being conducted using GEMs,

they have recently received considerable attention. In this review, we introduce the basic

concept of GEMs and provide an overview of their applications in biotechnology, systems

medicine, and some other fields. In addition, we describe the general principle of the

applications and analyses built on GEMs. The purpose of this review is to introduce the

application of GEMs in biological analysis and to promote its wider use by biologists.

Keywords: genome-scale metabolic models, systems biology, metabolic capability analysis, in silico metabolic

engineering, systems medicine

INTRODUCTION

Genome-scale metabolic models (GEMs) are reconstructions of the metabolic networks of many
kinds of cells, including those of microorganisms, plants, and mammals. In some cases, GEMs
could represent the whole tissue or body of a multicellular organism. In these metabolic networks,
the gene-protein-reaction (GPR) relationships are annotated. In addition, all the reactions in GEMs
are mass- and energy-balanced, ensuring stoichiometric balance. Thus, GEMs enable researchers
to conduct system-level metabolic response analysis and flux simulation, which is not possible
using general metabolic pathway databases such as KEGG. Furthermore, since GPR relationships
are included in GEMs, other omics data such as transcriptomic and proteomic data could be
systematically integrated into GEMs. Thus, GEM-based multi-omic analyses are more informative
with stoichiometric balance and could possibly provide deeper biological insights.

In the past 15 years, GEMs have garnered considerable research attention. In 2000, the first
GEM, a model of Escherichia coliMG1655, was reported (Edwards and Palsson, 2000). A few years
later, a yeast GEMwas published (Doerks et al., 2002), thus initiating a new era for systems biology.
In the beginning, researchers tried to use GEM-based in silico simulations to guide the rational
design of industrial microorganisms (hereafter referred to as in silico metabolic engineering). In
2003, a method called OptKnock (Burgard et al., 2003) was published and it employed a bi-level
optimization program to search for reaction knockout targets that would yield overproduction
of a desired biochemical while maintaining optimal growth. Following that, a series of in silico
metabolic engineering methods were developed for various gene manipulations other than knock-
out (Pharkya et al., 2004; Pharkya and Maranas, 2006; Choi et al., 2010; Ranganathan et al.,
2010; Park et al., 2012; Chowdhury et al., 2014; Mahalik et al., 2014), leading to a marked
expansion in the usage of GEMs. Furthermore, many of the in silicometabolic engineeringmethods
were experimentally validated (Fong et al., 2005; Izallalen et al., 2008; Asadollahi et al., 2009;
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Brochado et al., 2010; Choi et al., 2010; Yim et al., 2011; Xu
et al., 2011; Park et al., 2012; Ranganathan et al., 2012; Otero
et al., 2013; Kim et al., 2014), which showed the power of GEM-
based applications. With the development of systems biology,
GEMs were also used as scaffolds for systematic integration of
omics data because GEMs could be used to reconstruct the
relationship among genes, enzymes, and metabolism. Numerous
algorithms have been developed to integrate various types
of omics data such as thermodynamics (Henry et al., 2007),
transcriptomics/proteomics (Becker and Palsson, 2008; Colijn
et al., 2009; Zur et al., 2010), fluxomics (Wiback et al., 2004),
and metabolomics (Cakir et al., 2006). In return, the integration
of omics data could improve the prediction of GEMs. More
recently, GEM has been applied to systems medicine. Since the
reconstruction of the first global GEM for humans, Recon 1,
which was established in 2007 (Duarte et al., 2007), researchers
have started to explore the possibility of clinical applications
of GEMs and have reported several successful cases (Agren
et al., 2014; Gatto et al., 2014; Jerby-Arnon et al., 2014). In
fact, GEMs and their applications have received considerable
attention recently.

Although GEMs are becoming increasingly popular, they are
not easy to understand or use by non-experts. The complex
code and script usually used for GEM-based computational
applications and analyses are not readily available to the
community of biologists, greatly hampering the wide usage
of GEMs. In this review, we describe the key concepts and
assumptions of GEMs. In addition, we describe the general
principle of the applications and analyses built on GEMs. The
information presented here is expected to promote the spread of
GEM usage by biologists.

BASIC CONCEPT OF GEMs

As mentioned above, GEMs are metabolic networks. Figure 1A
shows a partly visualized glycolysis pathway in a GEM of E.
coli, and within this part, we can see that metabolites are
linked with each other by reactions, which are associated with
enzymes, which are encoded by genes. It should be noted that
the stoichiometric coefficient in metabolic reactions in Figure 1A
(as shown in Figure 1B) could not be visualized in a graph.
Therefore, GEMs employ a stoichiometric matrix (S matrix) to
represent all the coefficients in metabolic reactions (Figure 1C).
In the S matrix, the ijth element represents the stoichiometric
coefficient of the ith metabolite in the jth reaction in the GEM. If
the coefficient is positive, the metabolite is produced; otherwise,
it’s consumed. In addition, the GPR relationships in GEMs are
simplified into a two-dimensional binary matrix showing the
association between genes and reactions (Figure 1D), in which
the ijth element is one if the ith reaction is associated with the jth
gene, and it’s zero if they aren’t associated.

GEMs have several notable features: (1) They are collections
of existing knowledge of the metabolism of a specific organism,
and in most GEM-based applications, it’s assumed that the
metabolic network is complete, with very few exceptions, such
as for gap finding and gap filling (Latendresse, 2014). (2) They
are stoichiometric-balanced networks, which means mass as

well as energy balance, reduction, and proton balance are well
considered. (3) GPR relationships are annotated in GEMs, but
the interactions are not quantitatively described. (4) Even though
GEMs describe the metabolism, concentrations of metabolites
are not directly included and flux balance analysis (FBA; Orth
et al., 2010) is employed for flux simulations, which assumes
that there is no (unexpected) accumulation of metabolites within
GEMs.

USING GEMs FOR ESSENTIALITY AND
SYNTHETIC LETHALITY ANALYSIS

As mentioned above, since GEMs are complete metabolic
networks, they can be used for gene/reaction essentiality analysis
(EA; Edwards and Palsson, 2000). In general, EA identifies
all essential genes or reactions whose knockout will disable a
specific biological function through FBA. EA could be easily
implemented in silico using GEMs by enumerating all single
gene/reaction knockouts and testing whether their biological
objectives are still functioning. In addition, synthetic lethality
analysis (SLA), which scans for combinatory knockouts of
multiple reactions/genes that lead to blocking of the target
biological function, could also be implemented in a similar way.
And recently, several methods have been developed to perform
advanced SLA efficiently (Suthers et al., 2009; von Kamp and
Klamt, 2014; Pratapa et al., 2015; Zhang et al., 2015).

It’s generally believed that gene/reaction EA could be
performed by topologic analysis of the metabolic network.
However, since the stoichiometric coefficients are absent in
topologic metabolic networks, they’re less accurate. For example,
Figure 2 shows the topologic network of the toy model from
Figure 1. Based on its topologic properties, this metabolic
work can use D-glucose-6-phosphate, NAD, and phosphate as
substrates and produce 3-phospho-D-glycerate, NADH, and
a proton. However, this pathway always consumes more
ADP than it produces, and produces more ATP than it
consumes. Therefore, this pathway will be blocked without ADP
supplementation and this finding was not possible by topologic
analysis.

Essentially, if a GEM is well established, its EA and SLA results
could be very accurate. For example, in the most used E. coli
and S. cerevisiae GEMs, around 90% of the predicted essential
genes have been validated in vivo (true-negative; Feist et al.,
2007; Heavner et al., 2013). This is within expectation, because
if a function is blocked in silico, it’s very unlikely that there
could be a complimentary solution in vivo to recover it. The
explanation for the very few false-negative predictions (negative
growth in silico and positive growth in vivo) is that there’s a
knowledge gap, such as unknown enzyme or unknown function
of an existing enzyme, which leads to the underestimation of the
capability of the GEM. On the other hand, even if the GEMs
are 100% complete, there may still be false-positive predictions
since themissing information of regulation and protein (enzyme)
efficiency could lead to extra constraints to GEMs, thereby
rendering a nonessential reaction/gene in silico essential in vivo.
It’s worth mentioning that, after a certain period of adaptive
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FIGURE 1 | Toy model showing the basic structure of GEMs. (A) Visualized toy model,(B) biochemical equations within the toy model, (C) stoichiometric matrix

of the toy model, and (D) gene-reaction association matrix. In (A), the dashed blue, green, and orange frames indicate the metabolic reactions, enzymes, and genes,

respectively. G6P, D-glucose-6-phosphate; F6P, D-fructose-6-phosphate; FDP, D-fructose-1-6-bisphosphate; G3P, glyceraldehyde-3-phosphate; 13DPG,

3-phospho-D-glyceroyl-phosphate; 3PG, 3-phospho-D-glycerate; and Pi, phosphate.

evolution, a false-positive knockout could become nonessential
in vivo again (Patil et al., 2005).EA and SLA have mainly been
used to validate newly constructed GEMs and in recent years, EA
and SLA were applied to study of systems medicine (see Section
Using GEMs in Studies of Systems Medicine).

USING GEMs AS SCAFFOLDS FOR MULTI
OMICS DATA INTEGRATION AND
INTERPRETATION

Recently, increasing volumes of transcriptomic, proteomic, and
metabolomics data are becoming publically available, and it’s
believed that GEMs are good scaffolds to make use of these
multi omics data. In GEMs, omics data could be quantitatively
integrated as constraints for metabolic fluxes, thereby allowing
systematic and quantitative evaluation of these data, which was
not possible using traditional metabolic networks. This is the
most significant advantage of using GEMs as scaffolds.

Although, GEMs are metabolic networks, the most used
omic data for GEMs are transcriptomic and proteomic. This is
because the technic is really advancing in the field and makes
large number of high quality transcriptomic and proteomic data
available. However, since the GPR relationships are qualitative in
GEMs (Figure 1C), one needs to make assumptions to define the
quantitative relationship between gene/protein expression and
metabolic fluxes when integrating transcriptomic or proteomic
data into GEMs. This is problematic because the complicated
relation between fluxes and expression level of genes and
enzymes in vivo are unlikely to be captured by a general
assumption (MacHado and Herrgård, 2014). On the other hand,
there’re many well-defined approaches to integrate fluxomics
and metabolomics, data (Khodayari et al., 2014; Martín et al.,
2015; Miskovic et al., 2015). However, it’s very difficult (if
not impossible) to get genome scale data of them. Hence, we
suggest that even though omics data are integrated, one should
be skeptical about the quantitative results of simulations or
predictions from GEMs.
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FIGURE 2 | Metabolic networks vs. GEMs. Left, metabolic part of the toy model in Figure 1. Right, metabolic network based on the toy model. Circles linked to a

dashed orange arrow are unbalanced metabolites within the metabolic network according to topological analysis. Red circles in the right part are metabolites that

could not be balanced according to the flux balance analysis based on the toy model.

Nonetheless, we believe that it is better to qualitatively
interpret the omics data using GEMs. For instance, it would be
much more reliable to use omics data to determine the presence
or absence of reactions and to construct high-quality and specific
GEMs (Zur et al., 2010; Agren et al., 2012, 2014;Mardinoglu et al.,
2013; Yizhak et al., 2014). In addition, many researchers started
to integrate significance of differential expression of genes with
GEMs rather than their quantitative expression to interpret the
biological information behind omic data (Patil and Nielsen, 2005;
Cakir et al., 2006; Jensen and Papin, 2011; Fang et al., 2012; Navid
and Almaas, 2012). Moreover, qualitative interpretation of omics
data with GEMs have recently been applied to systems medicine
(see Section Using GEMs in Studies of Systems Medicine).
These studies demonstrated the usefulness of GEMs as scaffolds.
In short, we suggest that GEMs are powerful platforms for
integration of omics data for gaining biological insights rather
than quantitative results.

USING GEMs FOR IN SILICO METABOLIC
ENGINEERING

Using GEMs for in silico metabolic engineering has been a
widely discussed topic for years. It’s generally believed that
GEM-based methods could predict gene modification strategies
for overproduction of desired biochemicals and thus, accelerate
the overall metabolic engineering process. In the last decade,
various kinds of in silicometabolic engineeringmethods had been
developed and many of them were applied experimentally (Kim
et al., 2015; Long et al., 2015; MacHado and Herrgård, 2015).

Although in silico metabolic engineering methods seemed
quite different from each other, they follow a similar procedure:
(1) they define what a desired strain is and (2) identify
approaches that push the wild-type strain to become the
desired one. So far, a variety of approaches were used in in
silico metabolic engineering, such as reaction/gene knock-out
(Burgard et al., 2003; Patil et al., 2005; Kim et al., 2012; Ren
et al., 2013; Ruckerbauer et al., 2014; Zhang et al., 2015),
overexpression/suppression (Pharkya and Maranas, 2006; Choi
et al., 2010; Ranganathan et al., 2010; Park et al., 2012;
Chowdhury et al., 2014), foreign pathway knock-in (Pharkya
et al., 2004), and swapping the co-factor for a target enzyme
(NADH toNADPHor vice versa; King and Feist, 2013). However,
the methods for knock-out identification are the majority since
a knockout is much easier to define in silico than up-/down-
regulation of genes as mentioned before. On the other hand,
different methods could have independent definition of desired
strains. For instance, some of the methods define the desired
strain by simply setting thresholds for growth and production,
respectively, and others could define the desired strain following
some biological assumptions (Edwards et al., 2001; Segrè et al.,
2002).

Interestingly, methods pursuing different type of desired
strains could all lead to experimentally valid strategies for
metabolic engineering (Fong et al., 2005; Trinh et al., 2008;
Fowler et al., 2009; Choi et al., 2010; Yim et al., 2011; Ng et al.,
2012; Nocon et al., 2014), but the production of target products
predicted in silico seldom achieved in vivo. The explanation to
this is complicated, and could come from both the computational
and experimental side. However, one of the key reasons should
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be that GEM with only metabolic network is not enough
to quantitatively predict the behavior of strains in vivo. In
conclusion, we suggested that all kinds of in silico metabolic
engineering methods are instructive, but it’s better to use them
for gaining information rather than to develop exact strategies.

USING GEMs IN STUDIES OF SYSTEMS
MEDICINE

Using GEMs for systems medicine studies have recently been
highlighted (Mardinoglu and Nielsen, 2015; Yizhak et al., 2015).
GEMs simulate the human metabolism in a holistic way, and
this greatly advances systems medicine studies by enabling
systematic evaluation of metabolic feature of human disease.
Great efforts had been made in reconstructing GEMs of human,
and there’re now several publically available generic human
metabolic networks such as Recon 1, Recon 2, EHMN, and
HMR (Duarte et al., 2007; Ma et al., 2007; Agren et al.,
2012; Thiele et al., 2013). In addition, since the technology is
advancing, tissue specific or cell specific genomic, proteomic
and transcriptomic data are becoming available (Cancer Genome
Atlas Research Network, 2008; Uhlén et al., 2015). These led to
rapid development in reconstruction of high quality tissue or
cancer specific GEMs (Zur et al., 2010; Agren et al., 2012, 2014;
Mardinoglu et al., 2013) and, therefore, enabled more confident
interpretation of metabolism of diseases.

For instance, cancer specific GEMs together with EA
and SLA analysis were recently used for identification of
oncogenes/metabolites and biomarkers for diagnosing specific
cancer (Agren et al., 2014; Jerby-Arnon et al., 2014; Gatto et al.,
2015; Gatto and Nielsen, 2015). Since this procedure mainly
uses the true-negative part of EA and SLA, the analysis could
be highly reliable. For example, (Agren et al., 2014) identified
101 drug targets for liver cancer treatment; and 83 of them are
currently in use or have shown strong correlation with cancer
progression. In addition, together with multi-omic data, GEMs
were used to find the mechanistic explanation of various diseases.
By interpreting clinical omic data with GEMs, the mechanistic
understanding of non-alcoholic fat liver disease and type two
diabetes were reported (Mardinoglu et al., 2014; Väremo et al.,
2015). Moreover, GEMs were also used to explore the effect of
microbiota (Ji and Nielsen, 2015). By simulate and predict the
interaction of gut microbiota and their effect on hosts, several
recent studies revealed that microbiota modulate the amino acid
and glutathione metabolism of their host (Shoaie et al., 2013,
2015; Mardinoglu et al., 2015). These exciting studies exhibited
the great potential of GEMs in the field of systems medicine, and
hopefully there would bemuchmore excellent works coming out.

DISCUSSION

GEMs are very useful platforms and tools for systems biology,
but they’re still very young compared to traditional ones.

Fluxes of reactions could be quantitatively simulated using
GEMs, although caution should be exercised before drawing
conclusions based on simulated fluxes owing to the huge

solution space of GEMs (Reed, 2012). Although solution space
could be reduced by adding constraints through integration of
omics data, it would be better to gain biological insights by
qualitative interpretation of omics data rather than quantitative
fluxes.

In order to achieve accurate quantitative prediction, the scope
of GEMs should be expanded. The establishment of ME-models
set a good example for this (Thiele et al., 2009, 2012). In
ME-models, the interaction of genes (mRNA), enzymes, and
metabolic fluxes are quantitatively expressed, enabling proper
integration of transcriptomic and proteomic data. However, it
is still difficult to integrate metabolomics data into ME-models.
A potential option to integrate metabolite concentration into
GEMs is cybernetic modeling. However, to date, there has been
no study on genome-scale cybernetic modeling because there
are too many parameters to simulate, making it computationally
infeasible.

In general, no model is perfect. Genome-scale modeling
methods are still under development and have several drawbacks.
In addition, it has been recently reported that many published
GEMs are of low qualities (Chindelevitch et al., 2014;
Ravikrishnan and Raman, 2015). Therefore, they should be
used with caution. As concluded in this review, GEMs are
more suitable for qualitative applications at this stage, such
as EA and SLA analysis. When using GEMs for quantitative
applications such as in silico metabolic engineering, one should
be aware of the key assumption behind the method and
take the results as instructions. However, it should also be
noted that, GEMs are open platforms and have great potential
in a wide array of applications. Currently, GEMs are used
for simulating the interactions between multiple organisms,
multiple tissues (Bordbar et al., 2011), and even between
microbiota and human tissues. On the other hand, EA and
SLA were developed years ago, but they were not used in the
discovery of anti-cancer drugs until recent years. These are good
examples of how to explore novel applications based on classical
methods. Thus, in future, GEMs can be expected to be more
widely used in biotechnology, bioengineering, and many other
fields.
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