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Intrauterine growth restriction refers to the inability of the fetus to reach its genetically

determined potential size. Fetal growth restriction affects approximately 5–15% of all

pregnancies in the United States and Europe. In developing countries the occurrence

varies widely between 10 and 55%, impacting about 30 million newborns per year.

Besides having high perinatal mortality rates these infants are at greater risk for severe

adverse outcomes, such as hypoxic ischemic encephalopathy and cerebral palsy.

Moreover, reduced fetal growth has lifelong health consequences, including higher

risks of developing metabolic and cardiovascular diseases in adulthood. Numerous

reports indicate placental insufficiency as one of the underlying causes leading to

altered fetal growth and impaired placental capacity of delivering nutrients to the

fetus has been shown to contribute to the etiology of intrauterine growth restriction.

Indeed, reduced expression and/or activity of placental nutrient transporters have been

demonstrated in several conditions associated with an increased risk of delivering

a small or growth restricted infant. This review focuses on human pregnancies and

summarizes the changes in placental amino acid, fatty acid, and glucose transport

reported in conditions associated with intrauterine growth restriction, such as maternal

undernutrition, pre-eclampsia, young maternal age, high altitude and infection.
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INTRODUCTION

Intrauterine growth restriction (IUGR) is defined as the failure of a fetus to reach its genetically
determined growth potential (Brodsky and Christou, 2004). IUGR affects approximately 5–
15% of all pregnancies in the United States and Europe, but varies widely among developing
countries (30–55% of infants born in South Central Asia, 15–25% in Africa, and 10–20% in
Latin America; Kramer, 2003; Saleem et al., 2011). Identification of fetal growth restricted
infants is made difficult by the lack of international consensus on the definition and diagnostic
criteria for IUGR. In clinical practice detection of IUGR fetuses is based on weight at birth
(<2500 g) or estimated fetal weight (<10th percentile), and by ultrasound assessments of fetal
growth (abdominal circumference <2.5th percentile). Moreover, altered Doppler velocimetry
indices, such as abnormal umbilical artery waveforms or decreased pulsatility of the middle
cerebral artery, suggest abnormalities in the fetal circulation and are indicative of IUGR.
Notably, the majority of small-for-gestational age (SGA) babies are constitutionally small and
healthy, while only 10–15% of SGA infants are growth restricted, i.e., with slow growth
velocity in utero (Alberry and Soothill, 2007). Likewise, fetuses with falling growth trajectories
might be IUGR cases, yet not SGA (Alberry and Soothill, 2007). However, it is not always
possible to establish whether an observed low birth weight results from in utero growth
restriction and evidence of low birth weight has been often used as a proxy for IUGR.
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FIGURE 1 | The human placenta at term. Right: a schematic cross-section

of the human term placenta with the fetal circulation in umbilical cord and

chorionic villi, while maternal blood pools in the intervillous space. Left:

representation of the placental barrier, which includes the syncytiotrophoblast

layer and the fetal capillary endothelial cells. The two polarized

syncytiotrophoblast plasma membranes, the microvillous plasma membrane

(MVM) and the basal plasma membrane (BM) are indicated. Modified

illustration from Nordisk Nutrition (Lager, 2013), re-printed with permission.

In fact, SGA infants with birth weight below the 2nd centile for
gestational age are at higher risk of being growth restricted (de
Jong et al., 1998).

IUGR is associated with an increased risk of stillbirth (Smith
and Fretts, 2007), while also a major cause of perinatal morbidity
and mortality (Salam et al., 2014). IUGR infants are at higher
risk of preterm birth, asphyxia, altered thermoregulation,
hypoglycemia, cardiac dysfunction, and infections. Moreover,
reduced fetal growth may have adverse consequences on
lifelong health, including impaired neuro-developmental
progress in childhood and higher risk for metabolic and
cardiovascular diseases in adulthood (Barker, 2006; Longo et al.,
2013).

PLACENTAL NUTRIENT TRANSPORT

As the interface between mother and fetus, the placenta mediates
exchange of nutrients, oxygen and waste products, thereby
ensuring proper fetal growth and development. In term human
placenta essentially two cell layers (fetal capillary endothelium
and syncytiotrophoblast) separate fetal andmaternal circulations.
The syncytiotrophoblast has two polarized plasma membranes: a
microvillous membrane (MVM) directed toward the intervillous
space and a basal membrane (BM) facing the fetal capillaries
(Figure 1).

Various factors influence transfer of substances between
maternal and fetal circulations. These factors include utero-
placental and umbilical blood flow, concentration gradients of
nutrients, as well as the thickness, exchange area, andmetabolism
of the placenta. The transfer of membrane permeable molecules,
such as oxygen and carbon dioxide, is greatly influenced by blood

flow and placental structure (Gude et al., 2004). Larger and less
membrane permeable substances rely on transporter-proteins to
cross the placenta, in a process fueled by ionic gradients (Lager
and Powell, 2012).

Both syncytiotrophoblast plasma membranes express
several amino acid transporters (Cleal and Lewis, 2008).
Amino acid transporters can be categorized according to
substrate specificity (system), sequence homology (family),
or physiological function (accumulative transporters or
exchangers). Accumulative transporters increase intracellular
amino acid concentrations by mediating uptake of specific amino
acids into the syncytiotrophoblast, usually by co-transporting
Na+ (e.g., System A, transporting non-essential amino acids
such as glycine and alanine, and System β, transporting
taurine). Exchangers alter the intracellular composition without
modifying the total amount of amino acids. In general,
exchangers substitute non-essential amino acids for essential
amino acids (e.g., System L; Broer, 2002). In human placenta,
about 20 different amino acid transporters have been identified.
Both accumulative and exchanger transporters are expressed in
the MVM. Efflux of amino acids from the syncytiotrophoblast
toward the fetal circulation is less well characterized. It has
been suggested the BM expresses transporters allowing for
facilitated diffusion, in addition to the accumulative and
exchange transporters (Cleal and Lewis, 2008).

Fatty acids cross the placenta in a multistep process. Lipases
associated with the MVM hydrolyze triglycerides into non-
esterified fatty acids; the placenta expresses several lipases,
including lipoprotein lipase (Herrera and Ortega-Senovilla,
2014). Then the membrane-bound fatty acid transport proteins
(FATPs) mediate uptake of long-chained fatty acids (Kazantzis
and Stahl, 2011). Five different FATP isoforms are expressed
in human placenta (Schaiff et al., 2005). Human placenta
also expresses CD36 (fatty acid translocase) (Campbell et al.,
1998), a receptor proposed to transport fatty acids or sequester
them close to cell membranes in order to facilitate their
uptake by FATPs (Schwenk et al., 2008). CD36 and FATPs are
expressed in both MVM and BM (Campbell et al., 1998; Dube
et al., 2012), suggesting an involvement in syncytiotrophoblast
fatty acid uptake and efflux. Further, fatty acids are delivered
to different intracellular compartments by fatty acid binding
proteins (FABPs) (Smathers and Petersen, 2011). The human
placenta expresses four FABP isoforms (Biron-Shental et al.,
2007). In addition, a membrane-associated version of FABP, with
exclusive MVM localization, has been described (Campbell et al.,
1998).

Placental glucose transport occurs by facilitated diffusion
through specific glucose transporter proteins (GLUTs), expressed
in both plasmamembranes of the syncytiotrophoblast (Baumann
et al., 2002). Glucose levels are higher in maternal circulation
than in fetal circulation (Taricco et al., 2009), resulting in a
net glucose transport to the fetus. The GLUT family contains
14 members (Mueckler and Thorens, 2013), of which several
are expressed in the placenta (Lager and Powell, 2012). The
expression pattern of the GLUTs varies slightly during gestation,
but GLUT1 is considered the primary placental transporter of
glucose (Baumann et al., 2002).
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FIGURE 2 | Maternal and environmental conditions associated with

IUGR. Several maternal/environmental conditions are associated with

placental insufficiency and decreased delivery of nutrients to the developing

fetus. Net placental transport is determined by multiple factors, such as

uteroplacental and umbilical blood flows, placental exchange area and

metabolism, as well as the activity and expression of placental nutrient

transporters.

ETIOLOGY OF IUGR

IUGR is often associated with impaired placental development,
structure and morphology, which in turn alter placental
function and capacity of delivering nutrients to the fetus
(Baschat and Hecher, 2004; Lager and Powell, 2012). Several
causes, of environmental, maternal, and fetal origin, can lead
to placental insufficiency. These include pregnancies at high
altitude, conditions associated with altered uteroplacental blood
flow, young maternal age, undernutrition, placental infections
and inflammatory processes, cigarette smoke, illicit drugs use,
fetal genetic diseases, and congenital malformations (Figure 2).
Although optimal materno-fetal exchange of nutrients and gases
is of critical importance for fetal growth, studies describing
changes in placental transport capacity in the above situations are
rarely available in human cohorts and we will briefly summarize
them in this review.

Maternal Undernutrition
Decreased and/or imbalanced maternal nutrient availability is
associated with an increased risk of delivering a SGA infant (Stein
and Susser, 1975b; Ramakrishnan et al., 2012; Kozuki et al., 2015).
The perinatal and long term effects of maternal undernutrition
have been extensively studied taking advantage of the “natural
experiment” represented by the Dutch famine, a well-defined
famine period that lasted approximately 6 months (during the
winter of 1944–45) in the German-occupied western provinces of
the Netherlands. Studies on pregnancies during the Dutch famine
demonstrated that maternal undernutrition in the third trimester
inhibits placental growth (Stein and Susser, 1975a).

Maternal undernutrition due to a limited food supply
is the main cause of IUGR in developing countries and

constitutes a significant problem in industrialized countries
where low-income households still experience “food insecurity”
(Dowler and O’Connor, 2012). Other causes of low food
intake and decreased availability of nutrients for the fetus are
severe vomiting after the 16th week of gestation (hyperemesis
gravidarum; Snell et al., 1998), short interpregnancy intervals,
and adolescent pregnancies.

The impact of maternal undernutrition on fetal growth is
at least in part mediated by its effect on the placenta, as
this condition is associated with altered placental size, vascular
development, endocrine function, and nutrient transport.
Although to the best of our knowledge no data is available
concerning placental nutrient transport in human pregnancies
following maternal undernutrition, useful information are
provided by several animal models, including nonhuman
primates (Gaccioli et al., 2013). In a baboon model of global
maternal nutrient restriction (MNR) during pregnancy, fetal and
placental weights were reduced compared with controls. MVM
expression of glucose and amino acid transporters (GLUT1,
taurine transporter TAUT, SNAT2, LAT1, and LAT2) was
downregulated in MNR baboons compared to controls in late
gestation (Kavitha et al., 2014). Moreover, decreased transporter
expression was paralleled by lowerMVMactivity of SystemA and
System L in MNR baboons and reduced circulating fetal amino
acid concentrations (Pantham et al., 2015).

Pre-eclampsia
A hallmark of pre-eclampsia is new-onset of hypertension
and proteinuria occurring at or after 20 weeks of gestation.
IUGR is often an adverse perinatal outcome of pre-eclampsia
(Chaiworapongsa et al., 2014) and the two conditions share
certain traits, such as inadequate re-modeling of maternal spiral
arteries (Brosens et al., 2002). However, the etiologies of IUGR
and pre-eclampsia may differ (Villar et al., 2006).

With respect to nutrient levels, alterations in maternal
and fetal circulations have been reported in pre-eclamptic
pregnancies. Maternal amino and fatty acid blood levels are
elevated in pregnancies complicated by pre-eclampsia (Evans
et al., 2003; Alvino et al., 2008). Furthermore, total amino
acid concentrations are higher and inversely correlate with fetal
growth in cord blood from pre-eclamptic pregnancies (Evans
et al., 2003). Alterations in cord blood fatty acids levels with pre-
eclampsia have also been reported, suggesting lowered omega-3
fatty acids and elevated monounsaturated fatty acid levels (Roy
et al., 2014).

Several studies reported altered activity or mRNA levels of
placental nutrient transporters in association with pre-eclampsia.
Specifically, placentas from pre-eclamptic pregnancies have a
reduced capacity to transport the essential amino acid taurine
(Desforges et al., 2013).While placental mRNA levels and activity
of System A transporters are not affected, arginine transport
across the BM is increased in placentas from pre-eclamptic
pregnancies (Speake et al., 2003; Malina et al., 2005; Shibata
et al., 2008). Hence, pre-eclampsia has differential effects on
several amino acid transporters found in placenta. Expressions
of placental fatty acid transporters are altered by pre-eclampsia
as well. Placental mRNA levels of FATP1 and FATP4 are lower in
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pre-eclampsia compared to healthy pregnancies, while CD36 and
lipoprotein lipase levels remain unchanged (Laivuori et al., 2006;
Wadhwani et al., 2014). Whether protein levels and/or activities
are affected similarly remains to be established.

Maternal Age
Adolescent pregnancies are associated with an increased
incidence of low birth weight and SGA infants along with other
adverse outcomes and maternal/perinatal mortality (Fraser et al.,
1995; Shrim et al., 2011; Weng et al., 2014). Although several
socio-demographic factors may play a role in the poor outcomes
of adolescent pregnancies, the biological immaturity of these
mothers is an independent risk factor (Fraser et al., 1995). It has
been proposed that this effect may be due to the maternal young
gynecologic age and continued growth during pregnancy. This
can impact upon uterine blood supply and govern competition
for nutrients between the mother and fetus. However, it is
still controversial whether maternal growth is associated with
preferential partitioning of nutrients to the still growing mother
and, consequently, poor pregnancy outcomes (Stevens-Simon
and McAnarney, 1993; Scholl et al., 1994; Frisancho, 1997; Jones
et al., 2010).

Work by Hayward and colleagues demonstrated that although
placental growth and development were not influenced by
maternal age, teenage mothers had lower placental System A
activity and reduced mRNA expression of the System A isoforms
SNAT1 and SNAT2 compared to adult mothers (Hayward et al.,
2011, 2012). This result may partially explain the higher risk of
delivering SGA infants in adolescent pregnancies, although in
this small UK study cohort there were no significant differences
in System A activity between placentas of appropriate-for-
gestational age (AGA) and those from SGA infants delivered
to teenagers. When stratifying adolescent mothers into growing
and non-growing, placental System A activity was comparable
in the growing teenagers and adult mothers, while non-growing
teenagers had significantly lower placental System A activity
compared to the other two groups. Such data suggests that
maternal growth is not detrimental in nutrient partitioning to
the fetus, although it is not completely clear whether the non-
growing adolescents in these studies were skeletally mature or
poorly nourished. In the latter scenario a lower placental System
A activity could indicate an attempt to spare amino acids for the
undernourished mother (Hayward et al., 2011, 2012).

High Altitude
Risk of reduced birth weight is increased in pregnancies at high
altitude (Jensen and Moore, 1997; Krampl et al., 2000; Giussani
et al., 2001), but in populations with multigenerational high
altitude residence (Andean and Tibetan) birth weight decline
is less than populations with shorter residence time (Europens
and Han; Moore, 2001; Moore et al., 2011). However, it is still
controversial whether impaired oxygen delivery to the fetus
contributes to reduced fetal growth in women of European
ancestry at high altitude compared to their Andean counterparts.
The team led by Moore suggested that a greater increase in
uteroplacental blood flow and oxygen delivery, observed as early
as 20 weeks of gestation, contributed to the higher birth weight

observed in pregnancies of Andean compared to European
mothers (Vargas et al., 2007; Wilson et al., 2007). Although
Zamudio and co-workers confirmed reduced uterine artery
blood flow in high altitude pregnancies of Europeans compared
to Andeans, they proposed that maternal oxygen delivery
was similar between ancestry groups due to higher maternal
hemoglobin content and hematocrit in European mothers
(Zamudio et al., 2007). Moreover, umbilical blood flow and
absolute oxygen delivery were lower in pregnancies of European
women, but their fetuses had increased venous to arterial oxygen
extraction (Postigo et al., 2009). These observations led Zamudio
and co-workers to exclude that decreased fetal oxygen delivery
is associated with differences in fetal growth between the two
populations.

Independent of ancestral origin, at high altitude placental
weight and size are not altered (Postigo et al., 2009; van Patot
et al., 2009). Therefore, these placentas are larger in relation
to fetal size, and have increased branching and diameter of
fetal capillaries compared to their sea-level counterparts (Ali
et al., 1996; Espinoza et al., 2001). Such morphological changes,
together with a thinner villous membrane (Jackson et al., 1985),
would facilitate placental diffusion in high altitude pregnancies.

To our knowledge no studies on placental amino acid
transporter in human pregnancies at high altitude have been
performed. In contrast, lower BM expression of the glucose
transporter GLUT1 at >3000 meters compared to 1600 meters
or 400 meters might indicate that placental glucose transport
capacity is downregulated in pregnancies at high altitude
(Zamudio et al., 2006, 2010). Moreover, Zamudio et al. reported
an increased placental glucose consumption at high altitude and
suggested that placental anaerobic metabolism spares oxygen but
limits glucose availability for fetal growth (Zamudio et al., 2010).

Infection and Inflammation
Fetal growth may also be impaired by placental inflammation
(villitis) and infection. Villitis, described as infiltration of
inflammatory cells into placental villi, has been reported to be
more common in placentas of SGA or IUGR fetuses than in AGA
fetuses (Derricott et al., 2013). As with placental inflammation,
certain bacterial and viral infections during pregnancy have
been associated with reduced fetal growth (Brocklehurst and
French, 1998; AdamsWaldorf andMcAdams, 2013; Pereira et al.,
2014). However, whether villitis, bacterial, or viral infections are
associated with altered placental capacity to transport nutrients
remains to be determined.

Malaria is an infectious disease caused by the parasitic
protozoa Plasmodium. Malarial infection during pregnancy is
associated with reduced birth weights (Umbers et al., 2011;
Griffin et al., 2012). Moreover, malarial infection affects uterine
and umbilical artery blood flows (Griffin et al., 2012) and
impairs placental capacity of transporting nutrients to the fetus.
Specifically, System A activity is reduced in the placental MVM
membrane and glucose transporter GLUT1 expression is lower in
the BM in these pregnancies (Boeuf et al., 2013; Chandrasiri et al.,
2014). Therefore, changes in blood flows and reduced nutrient
transport across the syncytiotrophoblast may contribute to lower
birth weights associated with placental malaria infection.

Frontiers in Physiology | www.frontiersin.org 4 February 2016 | Volume 7 | Article 40

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Gaccioli and Lager Placental Function and IUGR

Alcohol, Smoking, and Cocaine
Manywomen consume alcohol during pregnancy (O’Keeffe et al.,
2015).While birth weightsmay not be affected by a low-moderate
alcohol exposure, impaired perinatal growth is a characteristic
of the fetal alcohol syndrome (O’Leary, 2004; Henderson et al.,
2007). In diverse placental in vitro models, ethanol exposure
has been shown to reduce taurine (System β) transport (Lui
et al., 2014) and transfer of the fatty acids α-linolenic and DHA
(Haggarty et al., 2002). Contrasting, ethanol does not affect
placental glucose or System A amino acid transport (Schenker
et al., 1989a).

About 10% of women in Europe and United States smoke
during pregnancy (Baba et al., 2013; Dhalwani et al., 2014; Yang
et al., 2014). Maternal smoking is associated with reduced birth
weights (Andres and Day, 2000; Baba et al., 2013; Iñiguez et al.,
2013; Wang et al., 2014). Similarly, the use of snuff tobacco
is also associated with an increased risk of delivering a SGA
infant (Baba et al., 2013). Maternal tobacco usage has been
shown to have several effects on the placenta, such as reduced
mitochondrial function (Bouhours-Nouet et al., 2005), increased
double-stranded DNA breaks (Slatter et al., 2014), and lower
volume of placental capillaries (Burton et al., 1989). With regards
to placental amino acid transport, nicotine reduces the transport
of arginine (Pastrakuljic et al., 2000) and inhibits System A
amino acid transport (Fisher et al., 1984), but conflicting findings
have been reported (Schenker et al., 1989b). Transport of fatty
acids appears to not be affected by maternal smoking (Haggarty
et al., 2002).

Maternal use of cocaine is also associated with reduced birth
weights (Bateman and Chiriboga, 2000; Keegan et al., 2010).
In perfused placental cotyledons, cocaine reduces transport of
arginine, phenylalanine, and valine (Pastrakuljic et al., 2000),
but does not affect transport of alanine and lysine (Krishna
et al., 1995). Whether cocaine also affects fatty acid and glucose
transporters is currently unknown.

CONCLUDING REMARKS

Placental transport capacity is one of the pivotal factors affecting
the net transfer of nutrients to the developing fetus. Altered
placental transport of amino acids, fatty acids, or glucose has
been associated with several conditions known to increase the
risk of delivering a small or growth restricted infant. With
the aim of ameliorating the perinatal and long term outcomes
in these infants, further work is needed to understand the
mechanisms regulating placental nutrient transport capacity in
human pregnancies with IUGR fetuses.
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