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Obstructive sleep apnea syndrome (OSAS) is associated with augmented sympathetic

nerve activity, as assessed by multi-unit muscle sympathetic nerve activity (MSNA).

However, it is still unclear whether single-unit MSNA is a better reflection of sleep

apnea severity according to the apnea-hypopnea index (AHI). One hundred and two

OSAS patients underwent full polysomnography and single- and multi-unit MSNA

measurements. Univariate and multivariate regression analysis were performed to

determine which parameters correlated with OSAS severity, which was defined by the

AHI. Single- and multi-unit MSNA were significantly and positively correlated with AHI

severity. The AHI was also significantly correlated with multi-unit MSNA burst frequency

(r = 0.437, p < 0.0001) and single-unit MSNA spike frequency (r = 0.632, p < 0.0001).

Multivariable analysis revealed that SF was correlated most significantly with AHI (T =

7.27, p < 0.0001). The distributions of multiple single-unit spikes per one cardiac interval

did not differ between patients with an AHI of <30 and those with and AHI of 30–55

events/h; however, the pattern of each multiple spike firing were significantly higher in

patients with an AHI of >55. These results suggest that sympathetic nerve activity is

associated with sleep apnea severity. In addition, single-unit MSNA is a more accurate

reflection of sleep apnea severity with alternation of the firing pattern, especially in patients

with very severe OSAS.

Keywords: microneurography, sleep apnea syndromes, muscle sympathetic nerve activity, single-unit recordings,

apnea-hypopnea index

INTRODUCTION

Obstructive sleep apnea syndrome (OSAS) is a known risk factor for cardiovascular events (Mooe
et al., 1996), and increased sympathetic nerve activity can worsen the mortality and severity of both
cardiovascular disease and OSAS. Several mechanisms are hypothesized to increase sympathetic
nerve activity in OSAS patients. In patients with OSAS, blood oxygenation levels decrease during
sleep, and carbon dioxide levels increase as a result, and these reactions stimulate peripheral
chemoreceptors to increase central sympathetic nerve activity (Leuenberger et al., 1995; Morgan
et al., 1995). In addition, afferent vagal signals from pulmonary stretch receptors are diminished,
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resulting in augmented sympathetic nerve activity (Bradley et al.,
2003). The decrease in blood pressure and oxygenation also shift
the set point of the arterial baroreceptors to the high pressure
range, and as a result, blood pressure is increased both during
the day and night (Cooper et al., 2005, 2007). These results
suggest that decreasing sympathetic nerve activity and improving
hypoxia are both important when treating OSAS.

To assess sympathetic nerve activity, muscle sympathetic
nerve activity (MSNA), a direct recording of efferent sympathetic
nerve activity, is still recognized as the gold standard method
(Vallbo et al., 1979). Multi-unit MSNA frequency (BF) and
incidence (BI) are generally used to assess sympathetic nerve
activity quantitatively; however, the multi-unit MSNA index may
underestimate the actual degree of central sympathetic nerve
signaling to peripheral organs. Recently, we demonstrated that
single-unit MSNA is more accurate than multi-unit MSNA,
especially in intense sympathoexcitation states such as heart
failure (Murai et al., 2006, 2009; Ikeda et al., 2012). Elam
et al. (2002) reported that the number of multiple firings
during one cardiac interval in OSAS patients was significantly
increased compared with systolic heart failure (HF) patients,
although multi-unit MSNA levels were similar between groups.
Despite the interesting results from this study, only eight OSAS
patients were included, so interpreting the relationship
between sleep parameters and single-unit MSNA may
be hard.

The apnea-hypopnea index (AHI), which is used to grade
the severity of apnea in OSAS patients, is strongly related to
mortality risk (Young et al., 2008). To date, little research
has been performed using multi- and single-unit MSNA to
examine the relationship between AHI and sympathetic nerve
activity in OSAS patients. In addition, the degree to which the
firing characteristics of central sympathetic nerve activity to the
periphery is associated with AHI severity is unclear. In this study,
we hypothesized that single-unit MSNA assessment in OSAS
patients would provide more accurate information regarding
disease severity compared with multi-unit MSNA.

METHODS

Subjects
OSAS was diagnosed in patients with an AHI of ≥15 or
≥5 with daytime sleepiness. Patients who had more than five
central sleep apnea events per hour were excluded. Patients
were also excluded if they had HF, unstable angina pectoris,
myocardial infarction, and/or coronary revascularization within
4 weeks of the study. HF was defined in accordance with the
American Heart Association/American College of Cardiology
guidelines (Hunt et al., 2009). Briefly, HF was diagnosed if
patients had a left ventricular ejection fraction (LVEF) of ≤40%

Abbreviations: AHI, apnea-hypopnea index; AUC, area under the curve; BF, burst

frequency; BI, burst incidence; BMI, body mass index; ESS, Epworth sleepiness

scale; MSNA, muscle sympathetic nerve activity; PSG, polysomnography; ROC,

receiver operating characteristics curve; SES, sleep efficiency score; SF, spike

frequency; S group, SAS group; SI, spike incidence; SREM, stage rapid eye

movement; SS group, severe SAS group; VSS group, very severe SAS group.

despite optimal treatment for at least 1 month or an LVEF of
>40% with a history of acute pulmonary edema after excluding
other non-cardiogenic diseases. Patients with atrial fibrillation
or any implanted pacemaker devices, including implantable
cardioverter defibrillators or cardiac resynchronization therapy,
were excluded. Patients with an estimated glomerular filtration
rate of<30ml/min/1.73m2 were also excluded. These conditions
can affect sympathetic nerve activity (Hausberg et al., 2002;
Hogarth et al., 2006).

This protocol was approved by the Research Ethics Board of
the University of Kanazawa (Kanazawa, Japan). This study has
been registered in the University Hospital Medical Information
Network Center (UMIN, TOKYO, Japan) Clinical Trials
Registration System as UMIN000017612. All patients provided
informed written consent.

Experimental Protocols
This study was designed as a cross-sectional, observational trial.
All investigators that assessed MSNA and PSG data were blinded
to each patient’s severity and characteristics.

Polysomnography
PSG monitoring was performed overnight in the Sleep
Disorders Laboratory of Kanazawa municipal hospital
using an Embla N7000 system (Natus, San Carlos, CA,
USA). Electroencephalogram (R&K method), right and left
electrooculogram, body position, thoracic, and abdominal
wall motion (Respiratory Inductive Plethysmogram system),
electrocardiogram, or nasal airflow (Thermistor and pressure
sensor), and oxygen saturation, measured using a finger probe
pulse oximeter (Nonin 8000J Adult Flex Sensor, Plymouth, MN,
USA), and the patient’s sleep state were recorded during the
session. Experienced investigators subsequently analyzed these
data using Rembrandt analysis software (Natus, San Carlos,
CA, USA). This inspection method was included in the type 1
category of the American Academy of Sleep Medicine, American
Thoracic Society and the American College of Chest Physicians
manuals for the examination of suspected sleep apnea in adults
(Chesson et al., 2003). Patients were admitted to the laboratory
at 16:00 on the day of measurement, and preparation for PSG
started at 20:00. Measurement started at 21:00 after the lights
were turned off and continued till 6:00 the next morning. All
polysomnography measurements were supervised by a physician
who was registered as a polysomnographic technologist by the
American Academy of Sleep Medicine and a physician certified
in sleep medicine by the Japanese Society of Sleep Research.
Technicians were also qualified and certified.

Apnea Hypopnea Index
The AHI was determined using standard criteria, which are
described briefly below (Berry et al., 2012). An apnea event was
scored when both of the following conditions were met: (1) a
≥90% drop in the peak signal, measured by an oronasal thermal
sensor, comparedwith pre-event baseline levels (2) that was≥10 s
in duration. Apnea events with a long duration or increased
inspiratory effort were defined as obstructive apnea events, and
lack of inspiratory effort during the apnea event was defined
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as a central apnea event. If inspiratory effort was diminished
and resumed later in the apnea event, it was scored as a mixed
apnea event. A hypopnea event was scored if all of the following
were met: (1) the peak signal excursions dropped by ≥30% of
pre-event baseline using nasal pressure, (2) the duration of the
≥30% drop in signal excursion was≥10 s, and (3) there was≥3%
oxygen desaturation from pre-event baseline or the event was
associated with an arousal. Obstructive hypopnea was defined
when at least one of the following was met during a hypopnea
event: (1) snoring, (2) flattening of the nasal pressure, or (3)
paradoxical motion of the chest and abdominal band excursions
on respiratory inductance plethysmography. Hypopnea events
that lacked these characteristics were defined as central hypopnea
events. The AHI was defined as the number of episodes of apnea
and hypopnea per hour of sleep.

Muscle Sympathetic Nerve Activity
MSNA recordings were taken in patients who had been
diagnosed with OSAS within 1 week after polysomnography. All
data were collected in the morning at 10:00. All participants
were asked to abstain from alcohol and caffeine for 24 h and
were tested at least 12 h post-prandial. Postganglionic MSNA
was recorded from the right peroneal nerve at the fibular head
using a high-impedance (10 M�) tungsten microelectrode. As

described previously (Murai et al., 2006, 2009; Ikeda et al., 2012;
Millar et al., 2015), the common peroneal nerve was detected
by palpation and stimulated electrically at the skin surface.
Investigators inserted a tungsten microelectrode percutaneously
into a motor fascicle of the peroneal nerve. The microelectrode
was adjusted until spontaneous pulse-synchronous, multi-unit
bursts of sympathetic nervous activity could be validated. The
microelectrode was adjusted further until a large unitary spike
could be distinguished from background noise in the recording,
which allowed for single-unit MSNA analysis. Single- and multi-
unit MSNAs were recorded simultaneously from the same
microelectrode. After a 15-min stabilization period, data were
acquired over at least 5min.

The electrodes were connected to a preamplifier at a gain
of 1000 and to an amplifier at a gain of 70. The signal was
fed through a band-pass filter (500–3000Hz) and a resistance-
capacitance integrated circuit with a time constant of 0.1 s to
produce a mean voltage neurogram using a Power Lab recoding
system (Model ML 785/85P; ADI Instruments, Bella Vista,
Australia). The raw nerve signal was obtained at 12 kHz; other
signals were obtained at 1000Hz.

Once offline, experienced investigators identified multi-unit
MSNA peaks in the integrated nerve recording based on the
relationship with cardiac activity in a blinded fashion. Multi-unit

FIGURE 1 | Typical recordings of single- and multi-unit MSNA in three OSAS patients separated by OSAS severity (AHI). (A–C) Show traces of single- and

multi-unit MSNA in an OSAS patient with an AHI of 5–30 events/h, a severe OSAS patient (AHI of 30–55 events/h), and a very severe OSAS patient (AHI of >55

events/h), respectively. White circles indicate multi-unit MSNAs, and black circles indicate single-unit MSNAs. Single-unit MSNAs were confirmed by superimposing

the action potentials.
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MSNA was expressed as the number of bursts per minute (burst
frequency: BF) and the number of bursts per 100 heartbeats
(burst incidence: BI).

Figure 1 shows typical single- and multi-unit integrated nerve
recordings from OSAS patients divided by OSAS severity (AHI).
When the raw neurogram record was clear enough to identify
single-unit MSNA spikes, spike morphology was carefully
inspected by experienced investigators. Single-unit spikes were
defined as (1) spike synchronization with multi-unit MSNA
bursts, (2) triphasic spike morphology with a negative main
phase, and (3) superimposition of candidate action potentials
with minimal variation. Single-unit MSNA was expressed as the
number per minute (spike firing frequency: SF) and the number
per 100 heartbeats (spike firing incidence: SI). Firing probability
was defined as the percentage of heartbeats during which one
or more spikes occurred. The firing probability was calculated
from the number of cardiac intervals showing single-unit spikes
divided by all cardiac intervals. The probability of multiple spikes
was calculated from the number of cardiac intervals in which
multiple spikes (two, three, or four single-unit spikes) were fired
divided by all cardiac intervals with at least one spike. In addition,
the percentage of cardiac intervals showing one, two, three, or
four single-unit spikes was calculated from the number of cardiac
intervals in which each single-unit spike were fired divided by
all cardiac intervals with at least one spike. In this study, four
was the maximum number of single-unit MSNA spikes during
one cardiac cycle, which was the same as our previous study
and the same as others have reported (Elam et al., 2002; Murai
et al., 2012). The inter- and intra-observer correlations of multi-
unit MSNA in this study were 0.890 and 0.91, respectively (p <

0.001) and for single-unit MSNA were 0.88 and 0.91 (p <

0.001). The reproducibility of single-unit MSNA has also been
reported in previous reports (Lambert et al., 2011, Hering et al.,
2013).

Statistical Analysis
All data are presented as means ± SD. Statistical analysis was
performed using SPSS for Windows (version 17.0; SPSS Japan
Inc. Tokyo, Japan) and EZR (Saitama Medical Center, Jichi
Medical University, Saitama, Japan), which is a graphical user
interface for R (The R Foundation for Statistical Computing,
Vienna, Austria). More precisely, it is a modified version of R
commander designed to add statistical functions frequently used
in biostatistics. Univariate regression analysis was performed to
detect correlations between the AHI and other clinical variables
including MSNAs. Based on the results of the univariate analysis,
a multiple regression analysis with stepwise backward selection
was performed to determine the contribution of clinical variables
to AHI severity. A p-value of ≥0.05 was an exclusion criteria for
the stepwise procedure. In univariate and multivariate analysis,
dummy variables are used in the analysis of nominal variables to
include nominal variables into multivariate regression analysis.
One-way ANOVA with Tukey’s post-hoc test was used to analyze
differences between groups. Pearson correlation coefficients were
used to assess associations between study parameters. For all
analyses, p < 0.05 (two-sided) was considered statistically
significant.

RESULTS

PSG measurements were performed for the first time in 186
OSAS patients at our sleep disorder lab (Sleep Disorders
Laboratory of Kanazawa Municipal Hospital) from June 2012 to
April 2014. Of these patients, multi-unit MSNA was performed
in 148. Data from 46 patients were excluded because a single-
unit MSNA reading could not be detected; this was due to a
low signal-to-noise ratio. One hundred and two OSAS patients
were finally included in this study. Characteristics of the study
population are shown in Table 1. The study population consisted
of 75% (n = 77) males and 25% (n = 25) females, with a
mean age of 57 ± 13 years and mean body mass index (BMI)
of 25.9 ± 4.22 kg/m2. The prevalence of hypertension was 57.8%
(n = 59); 8.82% (n = 9) of patients had diabetes, and
29.4% (n = 30) had dyslipidemia. The mean AHI was 34.5
± 21.4 events/h, mean BF was 54.8 ± 12.2 bursts/min, mean
BI was 81.1 ± 13.0 bursts/100 heartbeats, mean SF was 57.7
± 12.9 spikes/min, and mean SI was 85.0 ± 17.1 spikes/100
heartbeats.

TABLE 1 | Baseline characteristics.

CLINICAL CHARACTERISTICS

Age (years) 57 ± 13

Female/Male 25/77

BMI (kg/m2) 25.9 ± 4.22

Hypertension (n, %) 59 (57.8)

Diabetes mellitus (n, %) 9 (8.82)

Dyslipidemia (n, %) 30 (29.4)

Systolic blood pressure (mmHg) 132 ± 16.5

Diastolic blood pressure (mmHg) 81.3 ± 12.2

BF (bursts/min) 54.8 ± 12.2

BI (bursts/100 heart beats) 81.1 ± 13.0

SF (spikes/min) 57.7 ± 12.9

SI (spikes/100 heart beats) 85.0 ± 17.1

SLEEP PARAMETERS

AHI (events/h) 34.5 ± 21.4

ESS 8.14 ± 4.98

SREM (%) 17.3 ± 6.79

SES (%) 73.8 ± 22.9

Arousal index (events/h) 38.3 ± 20.7

3%ODI (events/h) 29.3 ± 22.7

Minimum SpO2 (%) 80.1 ± 8.03

Slow wave sleep (%) 3.58 ± 7.02

MEDICATION (n, %)

ARB or ACEI 33 (32.4)

Calcium antagonist 30 (29.4)

β blocker 7 (6.86)

Diuretic 5 (4.90)

Statin 23 (22.5)

Values are means ± SD. BMI, Body mass index; BF, burst frequency; BI, burst incidence;

SF, spike firing frequency; SI, spike firing incidence; AHI, apnea hypopnea index; ESS,

Epworth sleepiness scale; SREM, Stage REM; SES, sleep efficiency score; ODI, O2

desaturation index; ARB, angiotensin II receptor blocker; ACEI, angiotensin converting

enzyme inhibitor.
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Relationship between AHI and Single- and
Multi-Unit MSNA
The correlation coefficients between AHI and each clinical
parameter that may be affected by AHI tested by univariate
and multivariate regression analyses are shown in Table 2. As
expected, univariate analysis showed that multi-unit MSNA,
expressed as BF and BI, was strongly correlated with AHI (p <

0.001; Figure 2). Single-unit MSNA frequency and incidence
were also significantly correlated with AHI. Interestingly, the
coefficients were higher between AHI and single-unit MSNA
than between AHI and multi-unit MSNA. In addition, BMI and
systolic and diastolic blood pressure were correlated with AHI.
However, as shown inTable 2, multivariate analysis with stepwise
method revealed that SF, BMI, and diastolic blood pressure
were associated with AHI; however, SF had the most strongly
significant relationship with AHI (T = 7.27, p < 0.0001).

Comparison of Baseline Characteristics
According to AHI
Patients were divided into three groups according to AHI. The
least severe group (S) comprised patients with an AHI of 5–30
events/h, the severe OSAS (SS) group comprised patients with an
AHI of 30–55 events/h, and the very severe OSAS (VSS) group
comprised patients with >55 events/h. Patient characteristics
for each group are shown in Table 3. There was no significant
difference in age among the three groups. The VSS and SS groups
had more males than the S group. The VSS group had the highest

TABLE 2 | Regression analysis between AHI and clinical parameters.

AHI

Univariate regression Multivariate regression

analysis analysis

R P β T P VIF

BF 0.437 <0.0001

SF 0.632 <0.0001 0.479 7.27 <0.0001 1.13

BMI 0.580 <0.0001 0.360 5.37 <0.0001 1.17

DM 0.192 0.052

DL 0.128 0.200

Gender 0.217 0.029

Age 0.084 0.399

SBP 0.370 <0.0001

DBP 0.408 <0.0001 0.276 4.35 <0.0001 1.05

AHI, apnea hypopnea index; BF, burst frequency (bursts/ min); BMI, Body mass index

(kg/m2 ); DM, diabetes mellitus (with or without); DL, dyslipidemia (with or without); SBP,

systolic blood pressure (mmHg); DBP, diastolic blood pressure (mmHg); VIF, variance

inflation factor. β-values show standardized regression coefficients. T-values mean t-

statistic.

BMI, which was significantly different from those of both the SS
and S groups. As predicted, sleep parameters were significantly
worse in both the VSS and SS groups than in the S group. In
addition, systolic and diastolic blood pressure were significantly
higher in the VSS and SS groups than in the S group. The
proportion of patients treated with antihypertensive drugs and/or
statins were similar among the three groups.

FIGURE 2 | Relationship between AHI and multi-unit MSNA (A, burst frequency; C, burst incidence) or single-unit MSNA (B, spike frequency; D, spike

incidence). The correlation coefficient between single-unit MSNA and AHI was stronger than that between multi-unit MSNA and AHI. AHI, apnea-hypopnea index;

BF, burst frequency; SF, spike frequency; BI, burst incidence; SI, spike incidence.
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FIGURE 3 | Percentages of cardiac intervals in which one, two, three, or four single-unit spikes were calculated separately. In the VSS group, there was a

significant decrease in the percentage of cardiac intervals that contained one spike compared with the other groups, and a significant increase was observed in the

proportion of cardiac intervals that had four spikes compared with the other groups. There were no statistical differences in the firing properties of the S and SS

groups. S group, AHI of 5–30 events/h; SS group, AHI of 30–55 events/h; VSS group, AHI of >55 events/h. AHI, apnea-hypopnea index.

Differences in Single- and Multi-Unit MSNA
among the Three Groups
Both single- and multi-unit MSNA were significantly augmented
in the VSS group compared with the SS and S groups, as shown
Table 4. The same results were observed in the assessment of
single- and multi-unit MSNA incidents. As shown in Table 4,
the firing probability of single-unit MSNA in the SS and VSS
group was significantly augmented compared with the S group.
The multiple spike incidence in the VSS group was significantly
augmented compared with the other groups. Figure 3 shows the
distribution of cardiac intervals in which there were one, two,
three, or four single-unit spikes firing. In the VSS group, there
was a significant decrease in the percentage of cardiac intervals
that contained one spike compared with the other groups.
The distribution of cardiac intervals in which two and three
spikes occurred tended to increase in the VSS group. Moreover,
significant augmentation was observed in the proportion of
cardiac intervals that had four spikes in the VSS group compared
with other groups. However, the distribution of cardiac intervals
according to spike firings was similar between the S and SS
groups.

DISCUSSION

This is the first report to examine the relationship between
AHI and single- and multi-unit MSNA in OSAS patients. The
novel and important findings from this study are that (1)

BMI, blood pressure, and single- and multi-unit MSNA were
significantly associated with AHI, but single-unit MSNA was
the most significantly correlated with AHI as determine by
multivariate regression analysis and (2) single- and multi-unit
MSNA increased according to AHI severity. However, patients
with an AHI of>55 events/h had a higher proportion of multiple
firing spikes than did the other groups, although the results from
patients with an AHI of 30–55 events/h were not significantly
different than the patients with an AHI of <30 events/h. These
results suggest that in intense sympathoexcitation states like
severe OSAS, single-unit MSNA is useful to evaluate sympathetic
outflow to the periphery.

Classification of OSAS Severity and
Sympathetic Nerve Activity
Generally, sleep apnea is classified as no sleep apnea (AHI 5–
15), mild OSA (AHI 15–30), moderate OSA, and severe OSA
(AHI >30; The Report of an American Academy of Sleep
Medicine Task Force, 1999). Previous studies have demonstrated
that OSAS mortality is increased in patients with an AHI of
>30 events/h, and this can partly be attributed to augmented
sympathetic activity (Chesson et al., 2003; Gami et al., 2005).
In this study, multi-unit MSNA increased with AHI severity.
Multi-unit MSNA is a reliable method with which to assess
sympathetic nerve activity in humans, and augmented multi-unit
MSNA has been shown to correlate with mortality in HF patients
(Barretto et al., 2009). High sympathetic nerve activity is a leading
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TABLE 3 | Comparison of baseline characteristics according to OSAS

severity.

Events/h S: 5∼30 (n = 52) SS: 30∼55 (n = 32) VSS: 55∼ (n = 18)

CLINICAL CHARACTERISTICS

Age 57 ± 14 61 ± 10 52 ± 13

Male (n, %) 18 (34.6) 27 (84.4)* 15 (83.3)*

BMI (kg/m2) 23.9 ± 3.17 27.0 ± 4.01 29.5 ± 4.27*#

Hypertension (n, %) 28 (53.8) 20 (62.5) 11 (61.1)

Diabetes mellitus (n,

%)

1 (1.92) 5 (15.6)* 3 (16.7)

Dyslipidemia (n, %) 17 (32.7) 10 (31.3) 3 (16.7)

Systolic blood

pressure (mmHg)

126 ± 15.4 135.3 ± 14.1* 142.5 ± 17.9*

Diastolic blood

pressure (mmHg)

77.3 ± 10.6 84.3 ± 10.6* 87.6 ± 15.2*

SLEEP PARAMETERS

AHI (events/h) 17.4 ± 6.67 42.5 ± 7.51* 70.0 ± 11.1*#

ESS 8.10 ± 5.05 7.31 ± 4.75 9.72 ± 5.06*

SREM (%) 18.2 ± 7.45 16.7 ± 4.60 15.6 ± 7.94

SES (%) 78.0 ± 26.3 70.9 ± 16.6* 66.8 ± 20.2*

Arousal index

(events/h)

23.8 ± 8.96 43.0 ± 11.2* 71.9 ± 13.9*#

3% ODI (events/h) 12.2 ± 6.93 36.3 ± 11.2* 66.5 ± 15.5*#

Minimum SpO2 (%) 83.9 ± 5.29 78.6 ± 6.92* 71.6 ± 9.19*#

MEDICATION (n, %)

ARB or ACEI 19 (36.5) 9 (28.1) 5 (27.8)

Calcium antagonist 14 (26.9) 12 (37.5) 4 (22.2)

β blocker 3 (5.77) 3 (9.38) 1 (5.56)

Diuretic 1 (1.92) 3 (9.38) 1 (5.56)

Statin 15 (28.8) 4 (12.5) 4 (22.2)

Values are means ± SD. BMI, Body mass index; BF, burst frequency; BI, burst incidence;

SF, spike firing frequency; SI, spike firing incidence; AHI, apnea hypopnea index; ESS,

Epworth sleepiness scale; SREM, Stage REM; SES, sleep efficiency score; ODI, O2

desaturation index; ARB, angiotensin II receptor blocker; ACEI, angiotensin converting

enzyme inhibitor. *p < 0.05, compared to S group; #p < 0.05, compared to SS group.

cause of cardiovascular diseases and can contribute to higher
mortality in patients with HF as well as chronic kidney disease
(Penne et al., 2009). In addition, we found that the probability of
multiple firings in single-unit MSNA was significantly increased
in patients with an AHI score > 30 events/h (Table 4). Lambert
et al. (2011) observed that the incidence of multiple firing in
single-unit MSNA was associated with cardiac noradrenaline
spillover in humans. These results suggest that high mortality in
OSAS patients with an AHI of >30 events/h may be attributed
to the increased probability of multiple spikes firing during one
cardiac interval.

The results also showed that the distribution of each multiple
spike was significantly augmented in patients with high AHIs
(>55 events/h) compared with other OSAS patients. There were
two reasons to determine the AHI cutoff of 55 events/h. One
was that the mean AHI + standard deviation in this study was
55.9 events/h. Another was that the percentage of four spikes
firing within one cardiac interval in patients with an AHI of
>55 events/h was significantly higher than that in patients with
an AHI of <55 events/h (p = 0.02). However, patients with

TABLE 4 | Comparison of sympathetic nerve activity according to OSAS

severity.

S SS VSS

MULTI-UNIT MSNA

BF (bursts/min) 50.6 ± 9.71 56.3 ± 12.6* 64.6 ± 12.0*#

BI (bursts/100 heart beats) 77.4 ± 12.9 82.6 ± 13.2 89.2 ± 8.57*#

SINGLE-UNIT MSNA

SF (spikes/min) 51.5 ± 10.8 59.0 ± 8.85* 73.2 ± 10.9*#

SI (spikes/100 heart beats) 78.4 ± 15.6 86.5 ± 13.6* 101± 15.7*#

Firing probability (%) 50.4 ± 10.8 55.4 ± 9.67* 60.4 ± 10.1*

Multiple spike incidence (%) 37.5 ± 10.1 40.9 ± 10.2* 49.2 ± 11.2*#

Values are means ± SD. S, SAS group; SS, severe SAS group; VSS, very severe SAS

group; BF, burst frequency (bursts/min); BI, burst incidence (bursts/100 heart beats);

SF, spike firing frequency (spikes/min); SI, spike firing incidence (spikes/100 heart beats).

*p < 0.05, compared to S group; #p < 0.05, compared to SS group.

an AHI of >54 events/h were not significantly different from
those with an AHI of <54 events/h (p = 0.07). These results
suggest that patients with high AHIs (>55 events/h) have a
high sympathoexcitation state, which may contribute to higher
mortality.

Assessment of Single-Unit MSNA in OSAS
Patients
Previous studies, including our own, have reported that single-
unit MSNA is a more accurate and reliable assessment of
sympathetic nerve activity in both healthy and diseased patients
(Macefield et al., 1999; Hogarth et al., 2011; Murai et al., 2012;
Hering et al., 2013; Millar et al., 2015). Multi-unit MSNA is
limited in that it cannot exceed heart rate, and because it
is mostly regulated by arterial baroreceptors, burst occurrence
is synchronized with cardiac interval. Single-unit MSNA can
assess the multiple firings of individual muscle vasoconstrictor
neurons during one cardiac interval, and it is not restricted by
heart rate. The most important advantage of single-unit MSNA
analysis is the ability to demonstrate multiple spikes firing within
one cardiac interval. Single-unit MSNA reveals the sympathetic
firing mechanism to the periphery. The first mechanism is an
increase in the firing frequency of vasoconstrictor fibers that
are already active. The second mechanism is an increase in
multiple firing within one cardiac interval. The last mechanism
is the recruitment of previously silent fibers. Increased multiple
firing incidents within one cardiac interval is a state of intense
sympathoexcitation in both healthy subjects (in the Valsalva
maneuver) and HF patients (Murai et al., 2012). Elam et al.
(2002) reported that in eight OSAS patients, the single-unit
MSNA frequency exceeded multi-unit MSNA during one cardiac
interval. These findings are consistent with our results in
that the number of multiple firing spikes within one cardiac
interval increased in very severe OSAS patients. In addition
to previous findings, we demonstrated that increased firing
characteristics of single-unit MSNA were correlated with AHI
severity. Interestingly, our data showed that the distribution of
each spike firing did not differ between patients with an AHI of
<30 events/h and those with an AHI of 30–55 events/h. However,
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the single-unit MSNA frequency, incidence, and multiple firing
incidence were significantly higher in patients with an AHI of 30–
55 events/h than in patients with an AHI of <30 events/h. These
findings suggest that the mechanism of the increase in multiple
single-unit sympathetic firing within one cardiac interval may be
maintained until the patient reaches a state of very severe OSAS.
In fact, our data showed that the patients with an AHI of >55
events/h had significantly higher blood pressure than the less
severe groups.

Clinical Implications
The augmentation of multi-unit MSNA in OSAS patients,
both during sleep and waking hours, is well established. The
relationship between OSAS severity and sympathoexcitation is
poorly understood, and the underlying mechanism responsible
for sympathetic nerve activity in OSAS remains unclear.
However, our results strongly suggest that long-term, apnea-
induced hypoxia can contribute to increased sympathetic nerve
activity. Several studies have demonstrated that continuous
positive airway pressure (CPAP) treatment improves left
ventricular (LV) function in OSAS patients (Kaneko et al., 2003)
and inhibits sympathetic nerve activity (measured by MSNA or
overnight urinary norepinephrine excretion). CPAP treatment
has also been reported to lower norepinephrine levels (Bradley
et al., 2005) and reduce risk after heart transplantation (Arzt
et al., 2007); however, not all studies have shown improved
LV function (Somers et al., 2008). The results from this study
suggest that the reduction in AHI by CPAP treatment is not
necessarily accompanied by the inhibition of single-unit MSNA
firing. Greenwood et al. (2001) demonstrated that single-unit
MSNA frequency is associated with LV hypertrophy. In some
OSAS patients, MSNA may not be inhibited by CPAP treatment
even though the AHI is reduced; in these cases, multi-unit MSNA
underestimates sympathetic firing in very severe OSAS patients.
Further studies involvingmore patients are needed to confirm the
effects of CPAP on the single-unit MSNA response to LV function
and mortality.

Limitations
This study has some limitations. First, the sampling size in this
study was relatively large, but confounding factors still need to be
considered. However, this study had an extremely large sampling
size compared with other studies. Second, most of the patients
(>50%) had been previously treated with antihypertensive drugs

such as angiotensin converting enzymes, angiotensin receptor
blockers, calcium channel blockers, or thiazide diuretics. These
drugs may affect sympathetic nerve activity, and in fact, some
antihypertensive drugs have been reported to inhibit sympathetic
nerve activity. However, even in patients treated with these drugs,
sympathetic nerve activity was still associated with sleep apnea
severity, although the proportion of the patients treated with
antihypertensive drugs and/or statins were similar among the
three groups. In addition, there have been no reports about these
effects on MSNA in OSAS patients, except for CPAP. Our results
showed that single-unit MSNA was still higher in severe OSAS
patients treated with antihypertensive drugs. Lastly, this study
was a cross-sectional study that did not include any morbidity

or mortality endpoints. Further studies are needed to elucidate
the interaction between single-unit MSNA and cardiovascular
mortality in OSAS patients.

CONCLUSION

In this study, we found that single- and multi-unit MSNA was
significantly associated with OSAS severity. Moreover, single-
unit MSNA was the most significantly correlated with AHI. The
multiple firing spikes ratio measure by single-unit MSNA was
significantly higher in very severe OSAS patients. These results
suggest that single-unit MSNA is a more accurate reflection of
sleep apnea severity and firing property alterations, especially in
patients with very severe OSAS.
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