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Titin is a giant scaffold protein with multiple functions in striated muscle physiology. Due

to the elastic I-band domains and the filament-like integration in the half-sarcomere titin

is an important factor for sarcomere assembly and serves as an adaptable molecular

spring that determines myofilament distensibility. Protein-interactions e.g., with muscle

ankyrin repeat proteins or muscle LIM-protein link titin to hypertrophic signaling and via

p62 and Muscle Ring Finger proteins to mechanisms that control protein quality control.

This review summarizes our current knowledge on titin as a central node for exercise-

induced mechanosignaling and remodeling and further highlights the pathophysiological

implications.
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TITIN—A GIANT MULTIFUNCTIONAL SPRING

The backbone of the sarcomere is composed of three filament systems: the myosin-based thick
filament, the actin-based thin filament, supplemented with the regulatory protein tropomyosin and
the troponin complex, and the titin filament. Titin is a giant protein that spans a half-sarcomere
from the Z-disc to the M-line. Differential splicing of the titin gene results in numerous species-
and muscle-specific titin isoforms. The skeletal muscles isoform type is called N2A titin (3.3–
3.7 MDa) and is expressed as many muscle-specific splice variants (Freiburg et al., 2000; Neagoe
et al., 2003; Prado et al., 2005). The titin filament is sequentially arranged by immunoglobulin-like
domains (Ig-domains), fibronectin-type-3 domains and several so-called unique sequences (us)
(Bang et al., 2001). The NH2-terminal end of titin is anchored in the sarcomeric Z-disc via nebulin
or the cardiac isoform nebulette (Witt et al., 2006), α-actinin 2 (Labeit et al., 2006), and telethonin
(T-CAP) (Granzier and Labeit, 2004; Miller et al., 2004; Lange et al., 2006). In the I-band part
skeletal muscle titin is composed of a series of proximal Ig-domains, the N2A-domain (including
the N2-A unique sequence), the PEVK domain [high abundance of proline (P), glutamic acid (E),
valine (V), and lysine (K)] and the distal Ig-domains. The I-band part is sequentially extended
during sarcomere stretch and represents the main elastic segment of titin (Linke et al., 1996, 1999;
Trombitas et al., 1998; Li et al., 2002). The largest part of the titin molecule lies within the A-band
(Bang et al., 2001) and is tightly associated to myosin and myosin binding protein C (MyBP-C;
Tskhovrebova and Trinick, 2004; Lange et al., 2006). The M-band portion of titin contains several
inserted sequences and the titin-kinase-domain (Figure 1; Bang et al., 2001; Gautel, 2011). Due to
its huge size titin is a scaffolding protein important for sarcomerogenesis and myofibrillar assembly
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(Ehler and Gautel, 2008; Tskhovrebova and Trinick, 2010). Its
central position in the sarcomere and the tight association
to myosin are the basis for titin’s role in maintaining the
structural integrity of the sarcomere during the relaxation-
contraction cycle. By reversible extension of the elastic I-band
domains upon mechanical stretch titin acts as a molecular
spring and defines the passive mechanical properties of
the myofilaments (Granzier and Wang, 1993; Bartoo et al.,
1997).

As differential splicing of titin mainly affects the I-band
portion of the molecule, the size of the expressed titin isoform
represents a major determinant of titin-based myofilament
stiffness (Prado et al., 2005). More dynamically, titin stiffness

is modulated via posttranslational modifications in the elastic
I-band region, e.g., by phosphorylation of a so-called unique
sequence (us) within the N2-B region (N2-Bus; cardiac muscle
specific) and PEVK (cardiac and skeletal muscle). To date,

phosphorylation sites have been identified for cAMP-dependent

protein kinase (PKA; Yamasaki et al., 2002; Krüger et al.,
2009; Kötter et al., 2013), cGMP-dependent protein kinase
(PKG; Krüger et al., 2009; Kötter et al., 2013), Ca2+-dependent
protein kinase C α (PKCα; Hidalgo et al., 2009), extracellular
signal regulated kinase 1/2 (Erk1/2; Raskin et al., 2012), and
Ca2+/calmodulin-dependent protein kinase II delta (CaMKIIδ;
Hamdani et al., 2013; Hidalgo et al., 2013). Phosphorylation

of the cardiac specific N2-Bus by PKA, PKG, and CaMKIIδ
increases the persistence length of this region and thereby
decreases titin-based passive stiffness (Krüger et al., 2009;
Hamdani et al., 2013). In contrast, phosphorylation of the
PEVK domain by PKCα decreases the persistence length of
the PEVK region and causes an increase in titin stiffness
(Hidalgo et al., 2009). There is emerging evidence for an
important role of oxidative stress in regulating striated muscle
elasticity (Beckendorf and Linke, 2015). Oxidate stress induces
reversible S-glutathionylation of cryptic cysteines of titin,
which has been identified as a potent mechanism to reduce
titin stiffness depending on the unfolding status of the
immunoglobulin domains (Alegre-Cebollada et al., 2014). It

has further been suggested that oxidative stress may induce S-
nitrosylation of sarcomeric proteins including titin and thereby
depress myofilament Ca2+ sensitivity in intact cardiomyocytes
(Figueiredo-Freitas et al., 2015). Whether the reported S-

nitrosylation affects titin-based passive stiffness remains to be
investigated. Just recently it has been recognized that skeletal
muscle titin can be arginylated on five sites in the A-band
region, where titin associates with myosin, myosin binding
protein C (MyBP-C), and myomesin. Genetic depletion of
arginyltransferase (ATE1) and loss of titin arginylation resulted
in a significant reduction in titin-based passive stiffness (Leite
et al., 2016). Future studies will have to establish whether titin-
arginylation may serve as a degradation signal for selective
autophagy, as recently suggested (Cha-Molstad et al., 2015).
However, further analysis of titin modification will doubtlessly
result in the identification of many more modifications of titin
and their role in striated muscle physiology and pathophysiology
in the near future.

TITIN—A MECHANOSENSOR FOR
HYPERTROPHIC SIGNALING AND
PROTEIN QUALITY CONTROL

Considering its gigantic size and the central position within the
sarcomere, titin is a very potent and likely candidate to sense
alterations of mechanical load. Interactions with more than 20
proteins have been shown until today linking titin to diverse
signaling pathways (Figure 1). These interactions have mainly
been found in the Z-disc, the elastic I-band and the M-band
including the titin kinase (reviewed in Linke and Krüger, 2010;
Kötter et al., 2014a). For a broader overview on this topic the
following paragraph includes data from the more extensively
studied cardiac muscle that may also apply to skeletal muscle.

Located within the Z-disc, a complex formed by muscle
LIM protein (MLP), titin Z1Z2 domains and telethonin (T-
CAP) has been proposed to act as a mechanical stretch sensor
(Knöll et al., 2002, 2011). MLP contains a nuclear translocation
signal that allows MLP to shuttle between the cytoplasm and
the nucleus. In cardiac myocytes induction of biomechanical
stress increased nuclear localization of MLP and was reported
to mediate the onset of hypertrophic remodeling processes
(Boateng et al., 2009). Activated MLP/T-CAP/titin complex
has also directly been linked to hypertrophic signaling by
interaction with the calcineurin/NFAT cascade, which results
in translocation of NFAT to the nucleus and subsequent
activation of target genes e.g., cytokines (Frey et al., 2000;
Olson and Williams, 2000). In C2C12 myoblasts MLP has
been shown to enhance skeletal myogenesis and to be essential
for terminal myocyte differentiation (Kong et al., 1997). Ig-
domains of titin’s N2A-domain have been shown to interact
with the three homologous muscle-ankyrin-repeat proteins
(MARPs), cardiac ankyrin repeat protein (CARP), diabetes
related ankyrin repeat protein (DARP), and ankyrin-repeat-
domain protein-2 (Ankrd2; Miller et al., 2003; Witt et al., 2005b).
MARPs are suggested to fulfill important roles in transcriptional
regulation, myofibrillar assembly, cardiogenesis and myogenesis,
and their altered expression in neuromuscular disorders and
cardiovascular diseases further imply a substantial role in
pathological processes (reviewed in Kojic et al., 2004). However,
the importance of MARPs in regulating the above mentioned
processes is still under debate, as recent evidence from knock-
out studies demonstrated that all three members of the MARP
family are dispensable for normal cardiac function (Bang et al.,
2014). Interestingly, in skeletal muscle, knock-out of all three
MARPs resulted in more compliant muscle fibers with longer
resting sarcomere lengths. Such fibers expressed a longer titin
isoform than wild-type animals, indicating that MARPs and their
interaction with titin may play a role in the passive mechanical
behavior of muscle (Barash et al., 2007). An additional hotspot
for titin-mediated hypertrophic signaling is the M-band region
of the molecule, especially the titin kinase (TK) domain located
in the M-band periphery. In its activated state TK has been
shown to directly interact with the ubiquitin-associated zinc-
finger protein neighbor of-BRCA1-gene-1 (Nbr1), which forms
a signaling complex with p62/SQSTM1 and the muscle ring
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FIGURE 1 | Scheme of titin-domain architecture (N2A-isoform of human skeletal muscle) in a half-sarcomere with selected titin ligands and

titin-based signaling. Numbers indicate six superrepeats with seven modular domains and 11 superrepeats with 11 modular domains within the thick

filament-associated A band titin. T-CAP, telethonin (titin-cap); FHL2, four-and-a-half LIM domain protein 2; Nbr1, neighbor-of-BRCA1-gene-1; MURFs, Muscle RING

finger proteins 1/2; Mdm2, mouse double minute-2 protein; MARPs, muscle ankyrin repeat domain proteins; PKCα, Ca2+-dependent protein kinase α; CaMKII δ,

Ca2+/calmodulin-dependent protein kinase II δ; MyBP-C, myosin-binding protein C; MHC, myosin heavy chain; ATE1, Arginine-tRNA-protein transferase 1; P,

phosphorylation site; Immunoglobulin-like domains (white bars); Fibronectin-like domains (red bars), unique sequences (blue bars), PEVK-elements (yellow bars),

Z-repeats (green bar), TK, titin kinase domain.

finger proteins MuRF1, MuRF2, and MuRF3 (Lange et al., 2005).
Knock down of both MuRF1 and 2 results in cardiac and skeletal
muscle hypertrophy suggesting an inhibitory effect of MuRFs on
hypertrophic signaling (Witt et al., 2008).

Via its binding partners titin is not only linked to hypertrophic
signaling but also to protein-quality-control and the ubiquitin-
proteasome-system. T-CAP interacts with the E3-ligase Mdm2
(Tian et al., 2006).Titin M-band domains A168-170 interact with
MuRF-1 and 2, E3 ligases, which have been shown to bind to
several muscle proteins including troponin I, troponin T, nebulin,
and telethonin, and may thereby mediate their degradation
(Pizon et al., 2002; Centner et al., 2003; Gregorio et al., 2005; Witt
et al., 2005a). In addition to its role in hypertrophic signaling
the Nbr1/p62/SQSTM1 complex targets ubiquitin chains to
substrate proteins and thereby promotes their proteasomal
degradation (Seibenhener et al., 2007). Via interaction with the
autophagosomal membrane anchor LC3, p62, and Nbr1 target
polyubiquitinated proteins to the autophagic protein turnover
machinery (Pankiv et al., 2007; Waters et al., 2009). This is an
important link between the twomain degradation systems within
the cell.

The spring region of titin has further been reported to
associate with protective components of the protein quality
control system. A complex formed by titin’s N2A-domain,
the SET and MYND domain containing protein 2 (Smyd2)
and HSP90 was identified to protect titin from degradation

(Donlin et al., 2012). In addition, small heat shock proteins
(sHSPs) αB-crystallin and HSP27 protect the titin filament from
interfilament-aggregation at the N2A-domains (Kötter et al.,
2014b).

THE ROLE OF TITIN IN
EXERCISE-INDUCED REMODELING OF
SKELETAL MUSCLE

It has long been recognized that eccentric contraction initiates
a cascade of events that eventually leads to cytoskeletal
and sarcomeric disruption, which is followed by invasion
of immune cells as part of the inflammatory response of
the damaged muscle (Fridén and Lieber, 1998). An early
manifestation of the cytoskeletal damage is a dislocation and
loss of the intermediate filament desmin thus disturbing its
function as a linker between the myofibrillar Z-disk and the
cytoskeletal structures of the cell (Lieber et al., 1994). Sarcomeric
injuries include Z-disk streaming, A-band disorganization, and
hypercontracted regions significantly impact the mechanical
performance of the skeletal muscle fibers (Fridén and Lieber,
1998). Histological stainings of exercised fibers already indicated
changes in the intrasarcomeric abundance of titin (Lieber et al.,
1996). More recently, a study using immunogold staining
demonstrated that a single eccentric exercise bout induces
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a dislocation of the COOH terminus of titin toward the A
band and H zone of the sarcomere, indicating exercise-induced
stretch or fragmentation of the titin filament (Macaluso et al.,
2014).

Since fiber lesions were still observed several days after
the exercise it was hypothesized that some of the changes in
the sarcomeric structure represent an intermediate stage of
sarcomerogenesis rather than persistent signs of fiber injury
(Yu et al., 2003). Interestingly, within the first 2 days after a
single eccentric exercise unit titin mRNA expression remains
unaltered (Lehti et al., 2009) and the protein contents of
nebulin and titin were even significantly reduced (Trappe
et al., 2002). This finding possibly indicates an increased
turnover of sarcomeric proteins in response to fiber injury.
At the same time, eccentric exercise was shown to rapidly
elevate the expression of titin-interacting proteins involved
in hypertrophic signaling. Among the altered proteins were
the members of the MARP family (CARP, DARP, Ankrd2)
and MLP (Lehti et al., 2009; Figure 1). Activation of these
proteins probably represents an initial step toward adaptative
remodeling of the exercised muscle and may also be involved
in the initiation of sarcomerogenesis and fiber repair (McKoy
et al., 2005; Shi et al., 2005). Whether such activation of titin-
interacting proteins is directly mediated by exercise-induced
stretching or fragmentation of the titin filament remains to
be elucidated. It is also unclear, whether titin degradation is
performed by the proteasome or the autophagosomal system, or
a combination of both. However, the firm integration of titin
in the sarcomeric structure implies some kind of predigestion
of the molecule to allow subsequent proteasomal degradation.
Such pre-digestion of muscle proteins has previously been
demonstrated in septic muscle and was related to the activity
of the calpain family of proteases (Williams et al., 1999). It
has been demonstrated that acute eccentric exercise altered the
expression levels of Calpain-2, and not of the titin-associated
Calpains 1 or 3 (Lehti et al., 2009), but it significantly increased
the autolysis and subsequent activation of Calpain-3 (Macaluso
et al., 2014). Recent advances revealed that calpain-3 activation
is not mediated by stretch alone, but is facilitated by the Ca2+-
binding protein calmodulin and requires elevated levels of resting
[Ca2+],which occur e.g., during eccentric exercise (Ermolova
et al., 2015).

Taken together, the sarcomeric damage caused by acute
eccentric exercise initiates calpain-mediated degradation of
disrupted sarcomeric filaments, including titin, and at the same
time it mediates a possibly titin-related hypertrophic response
that supports sarcomerogenesis and fiber repair (Figure 2). This
hypertrophic response is further enhanced by repeated exercise,
which results in adaptive muscle remodeling and has been
associated with increased expression of structural sarcomeric
proteins including titin, desmin, and dystrophin (Teran-Garcia
et al., 2005; Bellafiore et al., 2007; Lehti et al., 2007).

Repeated exercise has also been suggested to modulate titin
turnover. A significant reduction in the titin degradation product
T2 was found in the diaphragm of rats that underwent regular
running exercise for a period of several weeks (Hidalgo et al.,
2014). The appearance of the T2 band is likely due to proteolysis

of full-length titin in and near the PEVK region of titin,
which results in a large titin (T2) fragment that contains the
A-band and distal Ig-segments of titin (Helmes et al., 1996).
A previous report showed that in biopsies of vastus lateralis
muscle from different athletic populations the relative amount
of T2 was much lower than in non-athletes (McBride et al.,
2003). However, interpretation of the T2 abundance is not
that simple, as a low abundance of the degradation product
T2 may be explained by increased sarcomere stability with
reduced titin turnover, but it could also be the result of an
increased titin turnover rate that leads to immediate processing
of the large T2 fragment. Hence, the importance of changes
in the abundance of the T2 fragment needs to be further
established.

It seems likely that degraded titin does not exert a substantial
amount of passive tension on the affected sarcomere. But
how does exercise modify titin-based myofilament stiffness in
the remaining, non-injured part of the muscle fiber? Recent
studies have demonstrated that exercise induces posttranslational
modifications of titin that affect titin stiffness and may modulate
the mechanical muscle performance. Rats that have been
subjected to a single eccentric exercise bout of 15min. showed
a significant increase in the relative phosphorylation of the
elastic PEVK-domain of titin, which is expected to result in
higher titin-based stiffness of vastus lateralis muscle (Müller
et al., 2014). Similar observations have been reported for mice
after 3 weeks of voluntary running wheel exercise. Diaphragm
samples from these mice also showed increased titin PEVK
phosphorylation, thus indicating elevated titin stiffness (Hidalgo
et al., 2014; Figure 2). The study further provided an additional
explanation for previously reported increases in titin expression
after exercise (Bellafiore et al., 2007). It has been calculated
that in a normal sarcomere one thick filament (Myosin heavy
chain, MHC) can be flanked by a maximum of six titin
molecules (Granzier and Irving, 1995). Hidalgo and colleagues
demonstrated that under non-exercised conditions the titin:
MHC ratio is only ∼3:1 and is raised in response to chronic
exercise training to ∼5:1 (Hidalgo et al., 2014). This too
is considered to translate into elevated myofilament stiffness.
Calcium associates to the PEVK element of titin and reduces the
bending rigidity of this domain (Labeit et al., 2003). As eccentric
exercise elevates resting [Ca2+], titin-based myofilament stiffness
may be further increased upon Ca2+-binding. Interestingly,
elevated [Ca2+] increases titin-based passive stiffness in skeletal
but not in cardiac muscle (Cornachione et al., 2016) This
exercise-induced increase in titin-based myofilament stiffness
may indeed be beneficial for the stressed muscle as it supports
titin’s role in maintaining the central location of the A-
band within the sarcomere. Titin stiffening could therefore
improve sarcomere integrity during muscle exercise and thereby
promote the effectiveness of accelerated contraction-relaxation
cycles.

PATHOPHYSIOLOGICAL IMPLICATIONS

Titin’s emerging role in mediating some of the adaptative
processes induced by muscular exercise also harbors some
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FIGURE 2 | Scheme of titin involvement in muscle adaptation after acute and chronic exercise. The scheme summarizes the current knowledge and the

different levels of stimuli that modulate titin turnover and titin-based myofilament stiffness in response to acute or repeated exercise. It further highlights the interplay of

different signaling pathways that link titin to exercise-induced remodeling processes.

important implications formuscle diseases, especially formuscle-
disuse and atrophy. In rat gastrocnemius muscle paralyzed
with botulinum toxin A (Btx-A) for 3 weeks the proportion
of type IIa and IIx MHC were significantly increased while
the proportion of type IIb MHC was decreased. At the same
time titin content was significantly reduced (Legerlotz et al.,
2009). These findings indicate major changes in the active

and passive mechanical properties of the paralyzed muscle. In
fact, human diaphragm paralyzed for only 2 h during thoracic
surgery already presented selective muscle fiber weakness and
a reduction in the force-generating capacity (Welvaart et al.,
2011). It was further demonstrated that mechanical ventilation
activated the ubiquitin-proteasome pathway (Hooijman et al.,
2015). A rat model of mechanically ventilated rats confirmed
the detrimental effect of even short-term external ventilation on
diaphragm performance. In response to mechanical ventilation
the tested diaphragms displayed a marked reduction of MHC
content and active force generation, as well as a decreased
phosphorylation status of titin and significantly reduced passive
force generation upon stretch (van Hees et al., 2012). These
changes occurred within the first 24 h of mechanical ventilation
and could therefore represent an initial step toward muscle
atrophy. The results of these studies are interesting also from
a therapeutic point of view as altered titin phosphorylation

and titin stiffness could possibly be targeted pharmacologically,
and may therefore represent a potent tool to improve or
even prevent muscle weakness in response to mechanical
ventilation.

CONCLUSION

The currently available literature demonstrates that titin
has multiple roles in exercised skeletal muscle. In response
to exercise-induced tissue damage titin itself is subjected
to dislocation and fragmentation, and probably mediates
important steps toward adaptive hypertrophic signaling. The
remaining titin filaments are stiffened via posttranslational
modification and may thereby improve sarcomere stability and
integrity and contribute to exercise induced force enhancement.
The delicate network of protein modifications is still under
intensive investigation and the constantly improving proteomic
analyses will certainly help to improve our understanding

of skeletal muscle function and regulation in physiological
and pathophysiological conditions. Further studies are needed
to unravel the precise role of titin as a signaling node
in exercise-induced hypertrophy and it needs to be tested
whether titin could be a potential target of pharmacological
or physiological intervention in order to improve muscle
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function in pathological settings such as disuse-induced muscle
atrophy.
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