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We present a first description of the distribution and characterization of epitheliocystis

infections in brown trout (Salmo trutta) from the upper catchments of twomajor European

rivers, the Rhine and the Rhone. Overall, epitheliocystis was widely distributed, with

70% of the Rhine and 67% of the Rhone sites harboring epitheliocystis positive brown

trout. The epitheliocystis agents Candidatus Piscichlamydia salmonis and Candidatus

Clavichlamydia salmonicola could be identified in both catchments, although their

relative proportions differed from site to site. Additionally, in two rivers in the Rhine

catchment, a new species of Candidatus Similichlamydia was identified. Based on the

histology, infection intensity, and severity of pathological changes were significantly more

pronounced in mixed chlamydial infections, whereas single infections showed only low

numbers of cysts and mild pathology. Infections could be found over a wide range of

temperatures, which showed no correlation to infection prevalence or intensity.

Keywords: Candidatus Piscichlamydia salmonis, Candidatus Clavichlamydia salmonicola, Candidatus

Similichlamydia sp., epitheliocystis, survey, Switzerland, catchment

INTRODUCTION

Epitheliocystis (EP) is a disease name describing an intracellular bacterial infection of finfish gill
and skin epithelia, resulting in hypertrophy of host cells (Hoffman et al., 1969; Paperna and Sabnai,
1980; Desser et al., 1988; Lewis et al., 1992; Nowak and LaPatra, 2006). Nowadays, EP has been
described worldwide in over 90 different species of wild and cultured marine and fresh water fish
(Corsaro and Greub, 2006; Nowak and LaPatra, 2006; Stride et al., 2013a,b). The causative agents
mostly belong to the phylum Chlamydiae, but also include γ- and β-proteobacteria (Kurahashi and
Yokota, 2007; Toenshoff et al., 2012; Mendoza et al., 2013; Katharios et al., 2015; Seth-Smith et al.,
2016). In salmonids, Candidatus Piscichlamydia salmonis (Draghi et al., 2004) and Candidatus
Clavichlamydia salmonicola (Karlsen et al., 2008) were identified so far and these bacterial species
seem to be specific for salmonids and were not identified in any other fish so far. According to
our knowledge, all epitheliocystis agents are quite host-specific. In addition to farmed marine
salmon (Salmo salar) (Draghi et al., 2004), Ca. P. salmonis has also been found in Arctic char
(Salvelinus alpinus) farmed in fresh water (Draghi et al., 2010). In contrast, Ca. C. salmonicola
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appears to be fresh water specific. It was found in farmed
salmon and in wild brown trout (Salmo trutta) (Karlsen et al.,
2008; Mitchell et al., 2010; Schmidt-Posthaus et al., 2012), and
disappeared upon transfer of infected salmon to marine cages
(Mitchell et al., 2010).

In the Northern hemisphere, cultured salmonids appear to
be prone to EP with infections reported for juvenile steelhead
trout (Oncorhynchus mykiss) (Rourke et al., 1984), cultured lake
trout (Salvelinus namaycush) (Bradley et al., 1988), Atlantic
salmon (S. salar L.) (Nylund et al., 1998; Draghi et al., 2004;
Karlsen et al., 2008; Mitchell et al., 2010; Steinum et al., 2010)
and Arctic char (Salvelinus alpinus) (Draghi et al., 2007, 2010).
While infections are mostly well tolerated in older fish (Schmidt-
Posthaus et al., 2001, 2012), high mortalities have been described
in larval and juvenile stages (Miyaki et al., 1998; Draghi et al.,
2004; Nowak and LaPatra, 2006; Katharios et al., 2008; Mitchell
and Rodger, 2011). The reservoir for these Chlamydiae infections
is still unclear. Even though amoebae have been postulated as
a reservoir (Corsaro and Greub, 2006), EP agents could not
be cultivated neither in amoebae nor in any other system. An
alternative environmental reservoir could be widely spread wild
fish populations, like wild brown trout (S. trutta).

The presence of EP has been described sporadically in wild
brown trout in Norwegian rivers (Karlsen et al., 2008) and in river
catchments of the (sub) alpine regions of Switzerland (Schmidt-
Posthaus et al., 2001, 2012). Although a native salmonid
species abundant throughout Europe and into Asia, it can
be divided into Salmo trutta trutta, an anadromous or ocean
migrating population and into nonanadromous Salmo trutta
fario or potamodromous Salmo trutta lacustris forms, which
are local resident river populations, which may also migrate
into adjoining lakes. Although attractive as putative reservoir
populations, there is nevertheless no systematic overview on the
distribution, prevalence and abundance of EP causing bacteria
in wild brown trout populations. In this context, it would be
especially interesting to compare brown trout populations of the
Rhine catchments, which theoretically at least, could exchange
with salmonid populations of the North Sea with geographically
separate brown trout populations of the upper Rhone, which
ultimately flows into the salmonid poorMediterranean. For these
reasons, our aim in this present study was to provide the first
overview on the occurrence of EP in resident wild brown trout
populations (Salmo trutta fario) of rivers in the upper reaches
of the Rhine and Rhone. The study examines the geographic
distribution of EP in Swiss brown trout, along with prevalence,
infection intensity, occurrence at different temperatures, and
possible pathological lesions associated with the infection.
Additionally, the bacterial genotypes in the two catchments were
compared to investigate the interspecies relationship between
agents found in the Rhine and the Rhone catchments and their
relationship to agents found in the North Sea.

MATERIALS AND METHODS

Study Catchments
From June to November 2012, wild young-of-the-year (YOY)
brown trout were collected in 52 rivers, whereby 42 rivers

belonged to the Rhine catchment and 10 rivers to the Rhone
catchment (Figure 1). The sampling took place in the frame of
a nationwide project aiming to assess the health status of trout in
Swiss rivers. In most of the rivers, one sampling site was selected,
but in 6 rivers up to 7 sampling sites along the course of the
rivers were included. In total, 46 sampling sites were included
from the Rhine catchment, 18 sampling sites belonged to the
Rhone. Brown trout were sampled by electrofishing over a stretch
of 100m at each site.

Sample Collection
At each sampling site we aimed to investigate 25 YOY brown
trout, however in a number of river sites this number could not
be achieved because of low population numbers. A total of 1442
brown trout were examined from 64 different sampling sites.
The fish collected were euthanized in the field by an overdose
of tricaine methanesulfonate (MS-222 R©, Argent Chemical
Laboratories, Redmont, USA). Each fish was investigated for
external lesions, and the length was measured. Fish were placed
in left lateral position for necropsy and the left operculum was
removed. The first left gill arch was fixed in 10% buffered formalin
for histological examination and the second arch was preserved
in RNAlater (Sigma-Aldrich, Missouri, USA) for polymerase
chain reaction (PCR) and sequencing.

Water Temperature
At most sampling sites, water temperature was measured once at
each sampling site at the date of sampling.

Histopathology
Formalin fixed gill samples were trimmed, embedded in paraffin,
and sections of 4 µm thickness were cut. Sections were stained
with hematoxylin and eosin (H&E). Gill sections were examined
by light microscopy for the presence of cysts, and the cyst number
per gill arch was counted (infection intensity). As all fish were
belonging to the same age class (YOY), the size of the gill arch was
comparable between different animals. Pathological lesions like
edema, inflammation, and lamellar fusion were graded as 0 (no
lesions), 1 (mild pathology), 2 (moderate pathology) to 3 (severe
pathology).

The cyst morphology was used to characterize different types
of bacteria (see also Guevara Soto et al., 2016). Ca. P. salmonis
like cysts (type 1) were characterized by a dark basophilic
amorphous center and clear surrounding halo, up to 10 µm in
diameter.Ca. C. salmonicola like cysts (type 2) were histologically
visible as lightly basophilic granulated cysts, slightly bigger, up
to 15 µm in diameter. Mixed infections (type 3) showed cysts
of both types on one gill arch. This classification based on
morphology was used for all statistical investigations.

16SrRNA Gene PCR and Sequencing
For PCR and sequencing, a subset of locations was selected form
the Rhine and the Rhone catchment. In the Rhine catchment, the
Aabach, Buenz, Emme, Glatt, and Kander were investigated, from
the Rhone, the Aubonne, Boiron, and Venoge. For the Rhine
catchment, locations were randomly selected out of a pool of
locations where we were able to obtain well-preserved samples
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FIGURE 1 | Geographical distribution of infected (red) and non-infected sites (blue) in Rhine (green areas) and Rhone (red area) catchments. Red,

Rhone region; bright green, Rhine region; light green, Limmat region; dark green, Aare region. Beside the locations, the river number (names and according numbers

are given in Table 1), number of infected animals, and total number of investigated animals is given.

in RNAlater. For the Rhone subset, data were obtained from
Guevara Soto et al. (2016).

DNA from gills from RNAlater was extracted using the
QIAGEN DNAeasy Blood and Tissue kit (Qiagen, Hilden,
Germany) and stored at−20◦C until use.

PCR was performed initially to generate a 290 bp Chlamydial
signature sequence using the following primers 16SigF: 5′-CGG
CGT GGA TGA GGC AT-3′ and 16Sig R: 5′-TCA GTC CCA
GTG TTG GC-3′ (Everett et al., 1999). Positive gill samples
from the first screening were partly further investigated by 16S
rRNA gene PCR to generate longer fragments of 1089 or 1520
bp using primers 16SigF 5′- TCA GTC CCA GTG TTG GC-3′ in
combination with VR-1 rev 5′-GATAAGGGTTGCGCTCGTTG-
3′ (1089 bp) or 16SB1 rev 5′- TAC GGY TAC CTT GTT ACG
ACT T -3′ (1520 bp).

All PCR reactions were performed in individual 50 µL
reaction mixtures containing 26.7 µl water, 5 µl PCR Buffer
Roche R© 10× (MgCl2 20mM), 5 µl MgCl2 (25 mM), 5 µl dNTP
(10 mM), 2.5 µl each primer (10 µM), 5 µl DNA, and 0.8 µl Fast
Star Taq (Roche, Basel, Switzerland).

The signature amplification used 45 cycles with annealing
at 54◦C and extension at 72◦C for 90 s. The 1089 and
1520 bp amplifications were the same but with an annealing
temperature of 52◦C. PCR products were visualized after agarose
electrophoresis by a BioDoc-IT Imaging System UVP.

Samples that showed positive results for the 1089 or
1520 bp products were purified using the MinElute PCR
Purification Kit (Qiagen, Hilden, Germany) and immediately
cloned using the TOPO TA Cloning R© Kit (pCR R©2.1-TOPO R©

vector) (Invitrogen, California, USA) and One Shot TOP10
chemically competent E. coli (Invitrogen, California, USA).

Plasmids from individual clones were purified using the
QIAPrep Spin Miniprep Kit (Qiagen, Hilden, Germany) and
those with the amplicon inserts were identified using Eco
RI (Biolabs, Massachusetts, USA) according to manufacturer’s
instructions. Positive clones were capillary sequenced by
Microsynth (Balgach, Switzerland). The resulting reads were
assembled and alignments prepared using CLCMainWorkbench
7.6.4. (CLC bio, Qiagen) and compared with published data using
blastn against the Genbank database. Novel 1089 bp sequences of
Ca. Similichlamydia sp. are available in ENA-EMBL under the
accession numbers LT222046–LT222048.

Statistical Analysis
For the statistical analyses, a subset of sample sites was selected,
with only one sampling site per river to avoid bias because of
varying repeated measures per river. Additionally, sampling sites
with only very low numbers of brown trout (n < 9) were also
excluded from the statistical analyses. In total, 45 rivers were
selected for the statistics, 36 from the Rhine catchment and 9
from the Rhone catchment. We calculated the point prevalence
from each river as the percentage of infected fish per total
number of investigated animals at the time point of sampling. To
evaluate differences in prevalence in both catchments, four river
systems (see below) and temperature were calculated by means of
logistic regression models. The river system categorical variables
included Aare, Limmat, Rhine, and Rhone, this last one as the
reference category.
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The number of cysts per gill arch was not normally distributed.
So, differences in the number of cysts per gill arch (infection
intensity) between catchments (Rhone and Rhine), the type
of pathological lesions (edema, inflammation, lamellar fusion),
the type of cyst morphology, and temperature were explored
by means of non-parametric Kruskal-Wallis rank sum tests.
All analyses were carried out in R, version 3.1 (https://www.r-
project.org/) and packages rcmdr, car, Rcmdmisc.

RESULTS

Distribution of EP Infections
The geographical distribution of sites harboring infected and
non-infected brown trout in both catchments is shown in
Figure 1. In the Rhine catchment, 33 of 42 rivers were positive
for brown trout with EP infections, while in the Rhone catchment
6 of 10 rivers, sometimes with several sampling sites, showed
brown trout with bacterial cysts on the gills (Figure 1). From a
total of 875 fish collected in the Rhine 161 were positive, while
in the Rhone 567 brown trout were investigated with 47 EP
positive animals. The Rhine catchment was further subdivided in
three main tributary regions, the Aare, Limmat, and the Rhine.
In the Aare region, 18 of 24 river sites harbored epitheliocystis
positive brown trout, in the Limmat 2 out of 4 investigated sites
and in the Rhine there were 13 out of 18 investigated river sites

positive. In the Rhone 12 out of 18 river sites showed EP positive
animals.

Prevalence and Infection Intensity per
Catchment
To evaluate prevalence and intensity data, a subset of sampling
sites (n = 45) (total of 987 investigated animals) was used
(inclusion criteria are described in Sections Materials and
Methods, Statistical Analysis). Based on these data, 29 rivers
(80%) of the Rhine catchment revealed to be positive for EP, while
in the Rhone catchment 5 rivers (55.6%) showed brown trout
with bacterial cysts in the gills. There is a higher probability of
finding infected animals in the Rhine catchment compared to
the Rhone catchment (Logistic Regression model, P = 0.00506).
The comparison of the different river systems rendered only two
effects, with evidence of higher infection risk in the Rhine (P
= 0.00195), followed by the Aare (P = 0.00400). The Limmat
showed no increased risk compared to the Rhone (P = 0.13602).
Within the positive sites, the prevalence of infected animals per
sampling site varied from 4 to 60%, with most sites showing
prevalences of <30% (Figures 2A,B, Table 1).

Regarding the geographical distribution, there was no
clustering visible; sites with high prevalence and infection
intensities were located nearby sites with few positive brown trout
or negative sites (see Figure 1).

FIGURE 2 | (A) Box Plot of the prevalence (%) of EP in Rhine and Rhone catchments. There is a higher probability of finding infected animals in the Rhine catchment

compared to the Rhone catchment (Two-level Logistic Regression model, p < 0.000000). (B) Prevalence of infected animals in tributaries (Aare, Limmat, and Rhine

belonging to the Rhine catchment; Rhone belonging to the Rhone catchment).
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TABLE 1 | Overview of epiheliocystis in brown trout in the two catchments Rhine and Rhone, shown are catchment area, investigated river, region these

rivers belong to, number shown in Figure 1, number of investigated animals (n), sampling date, water temperature measured on the sampling date,

epitheliocystis prevalence (%), and number of positive brown trout per sample, infection intensity calculated by number of cysts per gill arch and

bacteria morphology classified in three classes.

Catchment River Region Number N Sampling

date

T (◦C) Prevalence (%)

(n positive animals)

Intensity (n cysts) median,

5th, 95th percentile

Bacteria

morphology

Rhine Aabach Rhine 1 9 04.09.12 17.7 0 (0) 0 0*

Birs Rhine 2 23 22.08.12 15.5 0 (0) 0 0

Brine Aare 22 21 July 2012 16.8 24 (5) 1,1,3.6 1,2

Buenz Aare 23 21 26.09.12 14.1 10 (2) 8.5,4.45,13 2,3*

Chemibach Rhine 3 22 11.09.12 14.9 23 (5) 7,1.8,60 2,3

Chise Aare 24 25 9.10.12 13.7 12 (3) 5,3.2,17 1,3

Emme Aare 26 25 20.08.12 16 28 (7) 3,1,11 1,2,3*

Engstlige Aare 27 16 26.11.12 5.5 6 (1) 26 3

Glatt Rhine 4 21 20.08.12 21.2 20 (5) 2,1,65 1,2,3

Guerbe Aare 28 25 09.10.12 17.4 44 (11) 8,2.5,138 1,2,3

HohliAa Limmat 6 13 04.10.12 18.6 8 (1) 1 1

Jona Limmat 19 25 19.10.12 15.5 0 (0) 0 0

Kander Aare 29 25 25.10.12 8.5 20 (5) 4,1,29 2,3*

Langeten Aare 30 12 22.08.12 19.9 0 (0) 0 0

Lauche Rhine 7 20 24.10.12 10.8 0 (0) 0 0

Menthue Aare 32 22 20.09.12 11 59 (13) 3,1,11 2,3

Murg Rhine 8 21 24.10.12 13.5 10 (2) 4,2.2,6 2

Necker Rhine 9 13 27.08.12 20 46 (6) 4.5,2.25,9 1,2,3

Nozon Aare 33 26 22.08.12 NI 0 (0) 0 0

Reppisch Limmat 20 25 18.09.12 18.0 8 (2) 1.5,1.05,2 1

Ron Aare 36 25 05.09.12 16.3 0 (0) 0 0

Ruisseau de Vaux Aare 35 14 June 2012 NI 0 (0) 0 0

Salmsacher Aach Rhine 10 28 11.09.12 13 29 (8) 14,2,320 2,3

Scheulte Rhine 11 21 31.08.12 17.1 19 (4) 8,5.3,264 2,3

Seyon Aare 37 24 28.08.12 16.3 4 (1) 25 3

Sihl Limmat 21 24 03.10.12 17.7 4 (1) 55 3

Simme Aare 38 25 11.09.12 10.2 16 (4) 3,1.15,4 2

Sionge Aare 39 25 05.09.12 16 28 (7) 15,4.4,85 1,2,3

Sitter Rhine 12 25 20.10.12 8.7 60 (15) 5,1,23 2,3

Sorne Rhine 13 25 31.08.12 15 16 (4) 14,2.15,47 2,3

Steinach Rhine 14 24 28.08.12 20 17 (4) 7,1.75,26 1,2,3

Surb Aare 40 22 18.09.12 16.5 23 (5) 2,1,36 1,2,3

Thielle Aare 41 26 20.09.12 NI 35 (9) 5,2,100 1,2,3

Toess Rhine 16 26 10.09.12 18.6 19 (5) 2,1,28 1,2,3

Urnaesch Rhine 17 25 28.08.12 21 24 (6) 24,3.25,128 2,3

Urtenen Aare 18 25 11.09.12 16.4 20 (5) 3,1.4,6 1,2,3

Rhone Aubonne Rhone 44 20 11.09.12 15.8 30 (6) 6,1.25,125.3 1,2,3*

Boiron Rhone 45 25 10.07.12 18.6 0 (0) 0 0*

Drance Rhone 46 10 30.10.12 NI 0 (0) 0 0

Drize Rhone 47 25 June 2012 NI 0 (0) 0 0

Flon de Carrouge Rhone 48 25 June 2012 NI 24 (6) 4.5,2.25,13 1,2,3

Grande-Eau Rhone 49 25 17.10.12 NI 20 (5) 1,1,3 2,3

Promenthouse Rhone 50 13 11.09.12 15.3 15 (2) 6,1.5,11 2,3

Ruisseau de Seigneux Rhone 51 25 June 2012 NI 0 (0) 0 0

Venoge Rhone 52 25 17.07.12 17.9 0 (0) 0 0*

Shown is the subset of samples used for the statistical analyses. Bacteria morphology: three types were histologically distinguished: 1: indicative for Ca. P. salmonis, 2: indicative for

Ca. C. salmonicola, 3: Mixed infections with both cyst types; *indicates locations which were randomly selected for sequencing; n = number of animals.
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The infection intensity, as a measure of the number of cysts
per gill arch, is also highly skewed toward small values (Figure 3,
Table 1). Most of the infected fish (143 out of 165) had fewer
than 50 cysts per gill arch. In the Rhine catchment, there are
some outliers with up to 450 cysts per gill arch, mainly in the
Rhine region (Figure 3). However, infection intensity showed no
significant differences between the catchments or the tributaries
(P = 0.2336; Kruskal-Wallis rank sum test).

Morphologies of Epitheliocystis Lesions
Two types of inclusion morphologies were identified, both
leading to hypertrophy of host epithelial cells. Histologically,
the first inclusion was characterized by compact dark basophilic
central bacteria with formation of a clear halo around the
bacterial cyst, leading to margination of the host cell nucleus
(Figure 4A). This morphology is attributable to Ca. P. salmonis
(type 1) (Schmidt-Posthaus et al., 2012; Guevara Soto et al.,
2016). The second cyst type was histologically characterized
by granular, loosely arranged basophilic bacterial material,
with the host cell nucleus mostly not visible (Figure 4C),
representing Ca. C. salmonicola (type 2) (Schmidt-Posthaus
et al., 2012; Guevara Soto et al., 2016). Cysts of both
morphologies were also present on the same gill arch identified
as mixed infection (type 3). The different morphologies
permit a reliable distinction between Ca. P. salmonis and

Ca. C. salmonicola, and form the basis for the following
analyses.

Mixed infections were encountered most frequently, while
single infections with Ca. C. salmonicola were found least
often (Figure 5). The significant association between the mixed
infections and the number of cysts per gill arch indicates that
infection intensity is higher in mixed infection compared to
single infection with either of the two bacterial types (Kruskal-
Wallis rank sum test, P < 0.0000).

Pathology
Ca. P. salmonis infection usually showed a mild to moderate
epithelial cell hyperplasia, mild edema and infiltration with
mainly lymphocytes (Figure 4B), while Ca. C. salmonicola
infection was only rarely associated with a host reaction
(Figure 4C). Infection intensity (number of cysts per gill arch)
was weakly associated with some of the pathological changes
(Kruskal-Wallis rank sum tests: P = 0.052, P = 0.0011, P =

0.1609, edema, inflammation, and lamellar fusion, respectively)
(Figure 6).

Associations with Site Temperature
Neither prevalence nor infection intensity was associated with
site temperature. EP was present at a wide range of temperatures

FIGURE 3 | (A) Box plot of number of cysts per gill arch in Rhine and Rhone catchment. (B) Number of cysts per gill arch in tributaries (Aare, Limmat, and Rhine

belonging to the Rhine catchment; Rhone belonging to the Rhone catchment) (note the logarithmic scale in the y axis).
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FIGURE 4 | (A) Brown trout (Salmo trutta), gills, Ca. P. salmonis cysts characterized by condensed basophilic intracellular material surrounded by a clear halo; up to

20 µm in diameter. Closed arrowheads indicate edema in the subepithelial area, open arrowheads indicate scattered infiltration with mainly lymphocytes. HE, bar = 50

µm. (B) Ca. P. salmonis cysts (e.g., arrowheads), lamellae showing fusion, infiltration with lymphocytes, macrophages, and eosinophilic granular cells (open

arrowheads) and subepithelial edema (arrows). HE, bar = 50 µm. (C) Ca. C. salmonicola cyst characterized by granular loosely arranged material, up to 20 µm in

diameter. In the surrounding tissue only scattered edema (closed arrowheads) is visible. HE, bar = 50 µm.

FIGURE 5 | Box Plot of morphology type and number of cysts per gill

arch (infection intensity) (note the logarithmic scale in the y axis).

from 5.5 to 21.2◦C. Even high prevalence (>30% prevalence) is
present at disparate temperatures (8.7–20◦C) (Figure 7).

Sequencing Data
For PCR and sequencing, a subset of locations was selected
from the Rhine and the Rhone catchments. In the Rhine
catchment, the Aabach, Buenz, Emme, Glatt, and Kander were
investigated, from the Rhone, the Aubonne, Boiron, and Venoge
were selected. For the Rhone subset, data were obtained from
Guevara Soto et al. (2016). Nearly full length (1089 bp) or
full length (1520 bp) products could not always be obtained,
whereas the 290 bp chlamydial signature sequence amplification

was a robust method for screening, although this short sequence
has limited value for detailed phylogenetic analysis. Comparing
this common 290 bp chlamydial signature sequence region of
all amplificates, 89% of all sequences obtained were found to
be 99–100% identical to published sequences (Draghi et al.,
2004; Karlsen et al., 2008; Guevara Soto et al., 2016) of either
Ca. P. salmonis (66/133) or Ca. C. salmonicola (52/133). The
remaining 11% (only found in two sites, Emme and Buenz)
were divided between three closely related sequences, all 97%
identical to published (Steigen et al., 2015) Ca. Similichlamydia
labri sp. (8/133) or more distantly related chlamydial sequences
only 82% identical to various environmental Chlamydiae (Horn
and Wagner, 2001) (7/133). Whereas from the latter, we could
only amplify 290 bp sequences, we were able to obtain 1089 bp
sequences for the novelCa. Similichlamydia sp. and these we have
deposited in ENA-EMBL data bank. Each river investigated had
its own distribution pattern. Aabach, Emme, Glatt, and Buenz
all showed higher numbers of Ca. P. salmonis compared to Ca.
C. salmonicola, similar to the pattern seen in sites in the Rhone
catchment (Venoge, Boiron, Aubonne), whereas in the Kander,
nearly all (19/21) were Ca. C. salmonicola. Although molecular
and histological data measured different parameters (presence of
DNA vs. morphologically discernable cysts), the sequencing data
generally supported the dominance of Ca. P. salmonis and Ca.
C. salmonicola in the brown trout population. This is especially
noticeable in the Aabach, where histologically there were no cysts
visible. Possible explanations for this finding include that not all
Chlamydia infections seem to be visible as cysts and that different
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FIGURE 6 | Box Plots of severity of pathological lesions (edema, infiltration, lamellar fusion) and number of cysts per gill arch (infection intensity) (note

the logarithmic scale in the y axis).

FIGURE 7 | Plot of prevalence point data (%) and water temperature

(◦C).

gill arches were examined for histology and sequencing, therefore
different patterns could be present on different gill arches.

DISCUSSION

In fish of the genera Salmo and Salvelinus, three bacterial species
inducing epitheliocystis were identified so far; Ca. P. salmonis,
Ca. C. salmonicola and recently Ca. Brachiomonas cysticola
(Draghi et al., 2004, 2010; Mitchell et al., 2010, 2013; Schmidt-
Posthaus et al., 2012; Toenshoff et al., 2012; Contador et al.,
2016; Guevara Soto et al., 2016). Consistent with these results, the
species we found most frequently infecting brown trout were Ca.
P. salmonis and Ca. C. salmonicola. Molecular data to support
this statement are based on a selection of river sites, where
well preserved samples could be achieved. To further confirm
the presence of chlamydial species in the histologically visible
cysts, additional studies dealing with immunohistochemistry or
in-situ hybridization would be necessary, although in previous
studies we could unequivocally demonstrate the presence of Ca.
P. salmonis and Ca. C. salmonicola in the cysts because of typical
morphological features using transmission electron microscopy
(Schmidt-Posthaus et al., 2012; Guevara Soto et al., 2016).

In this survey, we could demonstrate a wide distribution
of epitheliocystis infections in the upper catchments of two
major rivers in Europe, the Rhine and the Rhone, indicating

that these agents are endemic in the upper reaches of these
two river systems. Infections were found more often and were
more intensive in the Rhine tributaries compared to the Rhone
catchment. Molecularly, the epitheliocystis agents found in the
Rhine and the Rhone catchments were similar. Additionally, Ca.
P. salmonis in Swiss brown trout were the same as previously
identified in salmonids in the North Sea (Draghi et al., 2004).
Up to about 100 years ago, Atlantic salmon (S. salar) were
still migrating from the North Sea and the Atlantic Ocean into
the alpine regions of Switzerland for spawning (Mertens et al.,
2011). Since then, rivers were remodeled and construction of
power stations blocked the way up the Rhine into the Swiss
tributaries. Therefore, if salmon are the primary hosts, then the
epitheliocystis agents must have been exchanging between the
North Sea and the Rhine headwaters via migrating salmon in
the past. This would not explain the similar distributions in the
headwaters of the Rhone, which is rather indicating an exchange
of trout between rivers of the Rhine and Rhone catchments,
possibly due to translocation of trout. However, the river-specific
proportions of chlamydial species seen in our study indicate a
more recent site and/or river specific development of chlamydial
infections. This locally specific pattern could be seen before in
our recent studies in single river systems in the Rhine as well as
in the Rhone catchment (Schmidt-Posthaus et al., 2012; Guevara
Soto et al., 2016). Such a distribution would be consistent with
local populations of Salmo trutta fario as the primary hosts, which
can be either resident within stretches of rivers or have restricted
migration patterns between river sites and the connected lakes.
Additionally, there are no salmon farms in Switzerland so far
and no resident wild salmon populations which could serve as a
source of infection. To investigate possible environmental factors
influencing distribution of chlamydial species, their prevalence
or infection intensities, further studies will be needed which will
investigate differences between involved rivers in possible stress
factors like water quality, habitat structure, or water temperature.

Maximal sampling size per river site was 25 animals, therefore
negative results have a limited statistical reliability. However,
we could show that the epitheliocystis infection is widely
distributed in Swiss rivers with highly variable prevalence,
infection intensities and proportions of identified bacterial
species. These results are only applicable to the time point of
sampling and no data are available so far about the temporal
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development of the disease during different years. To investigate
this phenomenon, consecutive samplings at the same river sites
at the same time points would be necessary.

A transmission of the epitheliocystis agents from wild brown
trout downstream to farmed salmon or other farmed salmonid
species and vice versa is possible and a reservoir status of
the brown trout for epitheliocystis species typical for salmonid
species can be hypothesized. This hypothesis is supported by
the fact that infections in the brown trout are only associated
with mild pathological lesions, especially for infections with
Ca. C. salmonicola. This indicates a long-lasting co-evolution
resulting in a well-balanced host-pathogen relation. Infections
with Ca. P. salmonis and mixed infections were leading to more
severe pathology as was also shown before (Schmidt-Posthaus
et al., 2012; Guevara Soto et al., 2016), but in most cases it
is unlikely that these infections will induce clinical signs and
elevated mortality. To investigate if brown trout are the only
reservoirs for these chlamydial species in the headwater regions
of the Rhine and Rhone or if other salmonid species can also
serve as reservoir, additional investigations into other salmonid
species naturally inhabiting these rivers would be necessary. Even
if infections with Ca. P. salmonis and Ca. C. salmonicola seem to
be specific for salmonids, other fish species or even invertebrates
could serve as transport hosts for the bacteria. However, until
now, there are no studies investigating this hypothesis.

The fact that we found genetically identical agents in the Rhine
and the Rhone catchment can be due to transmission of the
bacteria between Rhine and Rhone catchments via translocation
of fish or passively via human activities during recent times.
Stocking of brown trout in Swiss rivers is practiced since
several decades and translocation of animals between different
catchments was likely in the past (Bernet et al., pers. comm.).
The Rhone is eventually draining into the Mediterranean, where
neither Ca. P. salmonis nor Ca. C. salmonicola nor the salmonid
hosts have been identified so far. However, the infection status in
the downstream areas of the Rhone itself and its tributaries is not
known. These rivers are inhabited by salmonids known as hosts
for the identified chlamydial species, like brown trout.

In two rivers, Emme and Buenz, a high diversity of
chlamydial species was found with uncultured Neochlamydia
and Ca. Similichlamydia sp. in the subset of bacteria identified
molecularly. This is the first report of Ca. Similichlamydia sp.
infections in brown trout and this bacterial species was not
identified in freshwater so far. Until now, reports of infections
with Ca. Similichlamydia sp. are restricted to marine hosts
and no infections in salmonids have been described (Stride
et al., 2013a,b; Steigen et al., 2015). The closest relative to the
strain found in our study is Ca. Similichlamydia labra sp. nov.,
a species recently identified in ballan wrasse used as cleaner
fish on Atlantic salmon in sea water cages (Steigen et al.,
2015). Infections of salmon in the same environment are not
mentioned. To further characterize the new chlamydial species
found in brown trout in our study, in-depth investigations in
the phylogenetic relationship will be necessary. The sequences of
the strains found in our study have been deposited with EMBL
under the following accession numbers: LT222046–LT222048.
In this respect, it is worth noting that PCR alone is not a

suitable method to distinguish agents of chlamydial infections in
brown trout, as primers are directed against a general Chlamydial
signature sequence. However, for screening purposes the use
of even the short 290 bp sequence is a practical and efficient
method (Everett et al., 1999; Guevara Soto et al., 2016). This also
gives the advantage of detecting all Chlamydial agents causing
epitheliocystis and not being restricted to single bacterial species.
To confirm the results and identify the bacterial species involved,
sequencing of the PCR products, either directly or after cloning,
is always necessary.

In the past, epitheliocystis infections were correlated to water
temperature with a seasonal occurrence mainly during summer
and autumn (Schmidt-Posthaus et al., 2012). However, in the
present study, no correlation could be found between water
temperature and prevalence or infection intensity, although
the sampling represents “snapshots,” and we were not able to
repeatedly sample the same sites throughout the year. In this
study, the latest investigations in the year were performed in
November with positive fish found at this time point. Therefore,
it is still unclear whether epitheliocystis incidences in brown
trout continue throughout the winter months and provide a
reservoir for the following year. Temperature independence of
epitheliocystis infections, namely infections with Ca. B. cysticola,
were also seen in lake trout (S. namaycush, Walbaum) raised for
stocking. Contador et al. (2016) describe infection and mortality
peaks during winter months with mortality reaching up to 40%.
Further studies investigating the same populations of brown
trout throughout the year, along with other fish within the same
river sites, are clearly necessary if we are aiming to gain an
in-depth understanding into the propagation of this disease.
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