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In aged subjects, late-onset Alzheimer’s disease (LOAD) starts in the lateral entorhinal

allocortex where a failure of clearance mechanisms triggers an accumulation of

neurotoxic amyloid-β42 oligomers (Aβ42-os). In neurons and astrocytes, Aβ42-os enhance

the transcription of Aβ precursor protein (APP) and β-secretase/BACE1 genes. Thus,

by acting together with γ-secretase, the surpluses of APP and BACE1 amplify the

endogenous production of Aβ42-os which pile up, damage mitochondria, and are

oversecreted. At the plasmalemma, exogenous Aβ42-os bind neurons’ and astrocytes’

calcium-sensing receptors (CaSRs) activating a set of intracellular signaling pathways

which upkeep Aβ42-os intracellular accumulation and oversecretion by hindering Aβ42-os

proteolysis. In addition, Aβ42-os accumulating in the extracellular milieu spread and reach

mounting numbers of adjacent and remoter teams of neurons and astrocytes which

in turn are recruited, again via Aβ42-os•CaSR-governed mechanisms, to produce and

release additional Aβ42-os amounts. This relentless self-sustaining mechanism drives AD

progression toward upper cortical areas. Later on accumulating Aβ42-os elicit the advent

of hyperphosphorylated (p)-Tau oligomers which acting together with Aβ42-os and other

glial neurotoxins cooperatively destroy wider and wider cognition-related cortical areas.

In parallel, Aβ42-os•CaSR signals also elicit an excess production and secretion of nitric

oxide and vascular endothelial growth factor-A from astrocytes, of Aβ42-os and myelin

basic protein from oligodendrocytes, and of proinflammatory cytokines, nitric oxide

and (likely) Aβ42-os from microglia. Activated astrocytes and microglia survive the toxic

onslaught, whereas neurons and oligodendrocytes increasingly die. However, we have

shown that highly selective allosteric CaSR antagonists (calcilytics), like NPS 2143 and

NPS 89626, efficiently suppress all the neurotoxic effects Aβ42-os•CaSR signaling drives

in cultured cortical untransformed human neurons and astrocytes. In fact, calcilytics

increase Aβ42 proteolysis and discontinue the oversecretion of Aβ42-os, nitric oxide,

and vascular endothelial growth factor-A from both astrocytes and neurons. Seemingly,

calcilytics would also benefit the other types of glial cells and cerebrovascular cells

otherwise damaged by the effects of Aβ42-os•CaSR signaling. Thus, given at amnestic

minor cognitive impairment (aMCI) or initial symptomatic stages, calcilytics could prevent

or terminate the propagation of LOAD neuropathology and preserve human neurons’

viability and hence patients’ cognitive abilities.
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ALZHEIMER’S DISEASE (AD): AN
INTRODUCTION

During the last decades, human lifespan has lengthened due to
progress in medical knowledge and improvements in nutrition
and hygiene. Unfortunately, this has been paralleled with
an increased prevalence of age-related ailments, including
neurodegenerative diseases, which have adversely impacted the
quality of life. The sporadic or late-onset Alzheimer’s disease
(LOAD) is the most prevalent of these dementias striking
∼60 million people worldwide, half of which in the European
Union and United States (Alzheimer’s Association, 2012). AD
has a lengthy (20–45 years) asymptomatic or preclinical phase,
followed by an amnestic minor cognitive impairment phase
(aMCI: 2–6 years) that in most subjects evolves into the terminal
fully symptomatic phase (6–12 years; Selkoe, 2008a,b; Sperling
et al., 2011). AD’s less frequent (1–5% of all cases) early onset
(around 60 years) familial (autosomal dominant) form (EOFAD)
is caused by mutations in genes encoding the amyloid precursor
protein (APP) or presenilin 1 (PSEN1) or presenilin 2 (PSEN2).
These mutations trigger excess production and secretion of
amyloid-β peptides (Aβs) and formation of toxic oligomers
(Aβ-os) and polymers (fibrils). Most EOFAD cases result from
PSEN1 mutations, those from APP and PSEN2 mutations being
rarer (Selkoe, 2008a,b). The dramatic effects elicited by the
Aβs excess due to such mutations have inspired the “amyloid
cascade hypothesis” of AD which posits that Aβ-os precede the
manifestation of toxic hyperphosphorylated (p)-Tau proteins and
neurofibrillary tangles (NFTs) (Hardy and Selkoe, 2002; Selkoe,
2008a,b). Conversely, the “Tau first hypothesis” of AD posits that
just the opposite happens (Attems et al., 2012; Braak and Del
Tredici, 2013; Braak et al., 2013). An extended post-mortem
survey revealed that AD cognitive decline is linked to both Aβs
and p-Taues build-ups (Murray et al., 2015). However, Choi
et al. (2014) provided evidence that, in a 3D human neural stem
cells (NSCs) culture system, the accumulation of Aβ-os precedes
any p-Tau/NFTs materialization thereby validating the “amyloid
cascade hypothesis.” Bilousova et al. (2016) confirmed that this
Aβ-os ⇒ p-Tau sequence occurs also in advanced AD stages,

Abbreviations: α7-nAChR(s), α7-nicotinic acetylcholine receptor(s); AD,

Alzheimer’s disease; (a)MCI, (amnestic) minor cognitive impairment; ANT(s),

astrocyte-neuron team(s); APOE, apolipoprotein E; APP, Aβ precursor protein;

Aβ(s), amyloid-β peptide(s); Aβ42-os, amyloid-β42 oligomers; β-S, BACE1/βS,

β-secretase; CAA, cerebral amyloid angiopathy; CaSR, calcium-sensing receptor;

CKD, chronic kidney disease; EOFAD, early onset familial (autosomal dominant)

AD; fMRI, functional Magnetic Resonance Imaging; GABA, γ-amino butyric acid;

γ-S, γ-secretase; GFAP, glial fibrillary acidic protein; GPCRs, G-protein-coupled

receptors; LDL, low density lipoprotein; LEC, lateral entorhinal allocortex; LOAD,

late-onset (sporadic) AD; LRP1, LDL receptor-related protein 1; LTP, long-term

potentiation; MBP, myelin basic protein; NAHAs, normofunctioning adult human

astrocytes (from cerebral cortex); n.d., not determined; NFTs, neurofibrillary

tangles; NMDA, N-methyl-D-aspartate; NO, nitric oxide; NSCs, neural stem

cells; NVU(s), neurovascular unit(s); p75NTR, p75 neurotrophin (receptor);

PAR-4, prostate apoptosis response-4; pE, pyroglutamate; PET, positron emission

tomography; PKA, protein kinase A; PSEN1/2, presenilin 1/2; (p)-Tau-os,

hyperphosphorylated Tau protein oligomers; (p)-Tau(es), hyperphosphorylated

Tau protein(s); PTH, parathyroid hormone; TF(s), transcription factor(s); Tg,

transgenic; VEGF-A, vascular endothelial growth factor A; VFT, Venus Fly Trap;

WT, wild-type; 7TM, seven transmembrane α-helices region.

strengthening the view that an anti-amyloid therapy must be
started in advance of the tauopathy onset.

Albeit clinically both EOFAD and LOAD present with a
similarly increasing memory failure, at variance with EOFAD’s
known mutations, LOAD’s etiologic factors are manifold and
controversial. The slow concurrence of several age-related
metabolic and vascular defects presumably triggers LOAD by
hindering the mechanisms which effect the brain’s physiological
clearance of Aβs (Domert et al., 2014). Two genetic factors
only are known to aid LOAD’s onset and progression, i.e.,
the heterozygous or homozygous presence of apolipoprotein E
(APOE) ε4 allele(s) and TREM-2 mutations, especially the R47H
one (Ising et al., 2015). AD’s neuropathological hallmarks are
accumulations of Aβs as senile plaques in the neuropil, intra-
neuronal build-ups of p-Taues as insoluble NFTs, a chronic
diffuse neuroinflammation, and the progressive death of neurons
and oligodendrocytes. Such characteristics are detectable and
more intense in wide cortical and subcortical regions starting
at least 15 years ahead of EOFAD’s clinical onset (Braak
and Braak, 1991a; Armstrong, 2011; Benzinger et al., 2013).
Conversely, LOAD starts from neuronal foci in the layer II
of the lateral entorhinal cortex (LEC) of the middle temporal
lobe in humans and AD-model transgenic (Tg) mice (Khan
et al., 2014). Synaptically disconnected and deceasing neurons
stuffed up with Aβs and NFTs appear first in the LEC allocortex
and subiculum/CA1 areas (Braak and Braak, 1991a; Gómez-
Isla et al., 1996; Khan et al., 2014) and later spread slowly to
the parietal lobes and other cognition-related cortical areas of
human AD brains (reviewed in Dal Prà et al., 2015a; Figure 1A).
Remarkably, LEC is the portal through which the perforant
pathway conveys multimodal data illustrating events of the
outside world to the memory-recording hippocampus (Klemm,
2014). Next, the hippocampal allocortex and prefrontal neocortex
mutually interact through the LEC to consolidate integrated
memories (Klemm, 2014). These bidirectional exchanges are
compromised by the ravages LEC suffers at the aMCI stage
of LOAD. Hence, the first clinical harbingers of LOAD are
worsening failures of the declarative memory.

The present lack of an anti-AD beneficial therapy is due
to several concurrent causes: (i) LOAD’s etiology is still hotly
debated; (ii) EOFAD and LOAD are diseases typical of the
human central nervous system (CNS) whose features can be only
partially modeled in animals because of the huge differences
in brain structures and cellular functions. The significant losses
of hippocampal and neocortical neurons while the astrocytes
survive are emblematic of human AD. Conversely, in most
Tg rodents AD-models neurons are spared whereas astrocytes
undergo an earlier cytotoxic injury and death. That’s why any
drug reportedly “successful” in AD-model animals has failed
the test of clinical trials (reviewed in Han et al., 2015); and
(iii) most previous clinical trials of candidate anti-AD drugs
recruited patients already at the symptomatic stage of EOFAD or
LOAD, viz. their cognitive cortical areas had already undergone
irretrievable damage (Cummings et al., 2014). These failures
have taught at a high cost that any anti-LOAD therapy must
be started as early as possible, i.e., at the aMCI stage or just a
little later for the time being (or earlier when it will be feasible).
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FIGURE 1 | (A) Late-onset AD (LOAD) neuropathology affects increasingly wider cerebral cortical areas. LOAD is a spreading disease which starts from the layer II

neurons of the lateral entorhinal allocortex (LEC) of the temporal lobe and expands progressively to cognition-related upper neocortical areas. Involved brain tissues

undergo deep changes due to concurrent neurotoxic, inflammatory, oxidative, and hypoxic-ischemic processes driven by accumulating Aβ42-os and Aβ fibrils and

later by p-Tau-os and causing the death of susceptible neurons. The diagram represents a view of the LOAD-affected areas (in dark blue color) from the medial-inferior

hemispheric face at an early (Pre-AD), presymptomatic AD) and a late fully symptomatic stage of the illness. (B) The basic organization of the brain’s neurovascular

unit (NVU). NVUs are made up by cerebral astrocyte-neurons teams (ANTs) placed in close contact with capillary vessels. In this cartoon, a “master” astrocyte (in

green color) emits numerous cytoplasmic processes (of which only a few are depicted here), the end-feet of which enshroud two neuronal synapses, touch the

dendrite of a “client” neuron (in blue color), and cover a portion of the outer surface of a capillary vessel (in red color). The neuronal axons are endowed with myelin

sheaths (in yellow color). Both neurons and the astrocyte express the CaSR (yellow ovals). By its placement, the astrocyte acts as a bridge between the capillary

vessel and the neurons, provides the latter with nutrients brought up by the former, protects synapses, and partakes in the upkeep of the brain-blood barrier (BBB; not

shown) functional integrity.

Hitherto, no specific marker of the preclinical stage of LOAD
has been validated. However, changes in cerebrospinal fluid total
Tau protein, p-Tau, and Aβ42 levels, novel techniques of high-
resolution functional Magnetic Resonance Imaging (fMRI), and
genetic risk profiling show the potential of a future early diagnosis
(Nordberg, 2015).

Aβs AND AD NEUROPATHOLOGY

In healthy human brains, neurons steadily produce
physiologically low amounts (∼200 pM) of harmless monomeric
Aβ42s and release them during synaptic activity (Puzzo et al.,
2008, 2011; Abramov et al., 2009; Garcia-Osta and Alberini,
2009). Aβs are synthesized via sequential enzymatic cleaving of
the transmembrane Aβ precursor protein (APP) by BACE1/β-
secretase (β-S) and γ-secretase (γ-S) (Takami and Funamoto,
2012). According to the “classical” view, only neurons express
β-S in normal brains, whereas astrocytes do it only when hit by
stressful insults (Kimura et al., 2005; Lee et al., 2014). However,
proliferatively quiescent untreated normofunctioning adult
human astrocytes (NAHAs) isolated from surgical leftovers of
the temporal lobe cortex and cultured in vitro exhibit, at variance
with rodent astrocytes, low basal levels of β-S and γ-S activity
and hence produce and release trivial amounts of Aβ42 and Aβ40
(Dal Prà et al., 2011; Armato et al., 2013a).

Normally, the production of Aβ40 prevails (90%) on that
of Aβ42 (10%), but in AD the Aβ42/Aβ40 ratio shifts in favor
of Aβ42 (Masters and Selkoe, 2012). Aβ42’s two C-terminal

hydrophobic amino acids, Ala and Ile, cause its greater proclivity
to form aggregates and resist proteolysis with respect to Aβ40
(Kim and Hect, 2005; Masters and Selkoe, 2012). At safe pM
concentrations Aβ42 monomers play important trophic functions
by: (a) inducing an enhanced expression of proteins related to
insulin-like growth factor (IGF) function or transcription factor
(TF) regulation (IGFBP3/5, and Lim only domain protein 4,
respectively); (b) favoring adult neurogenesis in the subgranular
zone of dentate gyrus; (c) modulating synaptic plasticity,
long-term potentiation (LTP), and memories recording in the
hippocampus; (d) sealing blood vessels to preserve blood-brain
barrier (BBB) integrity; and (e) fine-tuning Ca2+ homeostasis
by binding α7-nicotinic acetylcholine receptors (α7-nAChRs)
and enhancing intracellular Ca2+ signals without triggering
intercellular Ca2+ waves in astrocytes. Thus, Aβ42 monomers
assist in the mutual modulation of neuron-astrocyte signals
promoting long-term potentiation (LTP) and memory storing
(Plant et al., 2003; Koudinov and Berezov, 2004; Puzzo et al.,
2008, 2011; Garcia-Osta and Alberini, 2009; Morley et al.,
2010; Cárdenas-Aguayo et al., 2014; Lee et al., 2014; Storck
et al., 2016). Aβ42s are kept at physiological pM levels via the
activity of proteases like insulin-degrading enzyme, neprilysin,
angiotensin-converting enzyme, endothelin-converting enzyme,
and the ubiquitin-proteasome system (López Salon et al., 2003;
Wang et al., 2006). Additional Aβ-disposing mechanisms are
microglial phagocytosis, and dumping into the circulating blood
through the α2-macroglobulin receptor/low density lipoprotein
receptor-related protein 1 (LRP1) (Storck et al., 2016).
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Such monomeric Aβ-clearing mechanisms become
inadequate when mutations of APP or PSEN1 or PSEN2
genes cause an overproduction of Aβs as in EOFAD or when
they significantly decline with age and fail in LOAD (Tarasoff-
Conway et al., 2015). The resulting accumulation of Aβ42s
triggers the assembling of Aβ42 monomers into an assortment
of toxic Aβ42 oligomers (Aβ42-os) of growing sizes eventually
forming Aβ fibrils (Braak and Braak, 1991b; Mawuenyega et al.,
2010; Masters and Selkoe, 2012; Lesnè et al., 2013). In addition,
the generation of long fatty acid–derived oligomers (LFA-os)
via a prion-like mechanism (Kumar and Walter, 2011; Kumar
A. et al., 2012), the increasing presence of the Aβ43 isoform
(Sandebring et al., 2013), and the Aβ-phosphorylating activity
of membrane-bound or extracellular protein kinase A (Kumar
and Walter, 2011; Kumar S. et al., 2012) accelerate the rate of
Aβ-os assembly, reduce their proteolytic or microglia-mediated
clearance, and step up their neurotoxicity. Another toxic species
is pyroglutamate (pE)-Aβ3−42, which amounts to ∼20% of
the total Aβs in AD brains, but is missing among the Aβs
extracted from aged yet cognitively normal brains (Gunn et al.,
2010; Jawhar et al., 2011). In AD-developing human brains,
pE-Aβ3−42 engenders pure or mixed (with other Aβs) highly
toxic oligomers, the amount of which tightly correlates with
the actual rate of cognitive decline (Morawski et al., 2014).
Additionally, the N-truncated Aβ4−42 also abounds in AD
brains and spawns stable Aβ4−42-os which are as neurotoxic as
Aβ1−42-os and pE-Aβ3−42-os in vitro and in the mouse Tg4-42
transgenic line (Bouter et al., 2013). Moreover, interactions
with cell membranes increase the aggregation rate of Aβ42-os
and produce amyloid pores and Ca2+-permeable channels
resulting in an intracellular Ca2+ dyshomeostasis promoting the
neurodegeneration (Mattson, 2007; Kawahara, 2010; Zhao et al.,
2012; Berridge, 2014). However, being pathologically bound
and activated by Aβ42-os, the calcium-sensing receptor (CaSR)
expressed by all types of neural cells is also involved in AD
development via mechanisms implicating much more than Ca2+

influxes.

INTERACTIONS BETWEEN NEURONS AND
ASTROCYTES IN LOAD

Neurons and astrocytes derive from embryonic radial glia acting
as neural stem cells (NSCs) during development (Bonfanti
and Peretto, 2007). Accumulating evidence has shown that
human cortical astrocytes remarkably differ from their rodent
counterparts. They are bulkier, own 10-fold more numerous
primary processes, include the entirely new cortical polar
and interlaminar subtypes, exhibit a different transcriptome as
assessed by genome-wide unbiased comparisons, govern much
broader synaptic domains, and perform more intense and
complex metabolic tasks, e.g., faster Ca2+ waves propagation,
than rodents’ counterparts (Oberheim et al., 2006, 2009, 2012;
Sherwood et al., 2006; Tsai et al., 2012; Zhang et al., 2016).
Astrocytes’ evolutionary changes have affected both human
brain physiology and neuropathology, including AD and other
neurodegenerative disorders. The increased learning capacity

and activity-dependent plasticity of mouse brains engrafted
with human astrocytes confirms this view (Han et al., 2013).
Human brain evolutive changes prevent AD-model animals from
fully emulating human LOAD. This hampers any successful
translation of pharmacological results reaped from AD-model
animals to human clinical settings (Cummings et al., 2014; Han
et al., 2015). Astrocytes’ roles in AD progression deserve a
careful consideration. Such cells are more numerous (from 1.7-
to 2.2-fold at least) than neurons, form gap junction-connected
networks, partake in the assembly of tripartite synapses, and
tightly nestle and chemically insulate neurons with which
physiologically trade several indispensable compounds (Ullian
et al., 2001). Each “master” astrocyte functionally integrates
with up to a 30-odd “client” neurons forming astrocyte-
neuron teams (ANTs; reviewed in Araque and Navarrete, 2010;
Giaume et al., 2010; Halassa and Haydon, 2010). Neighboring
ANTs are reciprocally connected via gap junctions astrocytes’
processes bear. Other astrocytes processes get in touch by
means of their end-feet with the walls of cerebral micro vessels
forming physiologically integrated neurovascular units (NVUs)
(Figure 1B; reviewed in Dal Prà et al., 2014b; Nelson et al.,
2016). Physiologically, the synapses of ANTs “client” neurons
are induced and stabilized by the shrouding end-feet of their
“master” astrocytes. Moreover, the synapses pertaining to a
single neuron can also be enveloped by the processes end-feet
of astrocytes pertaining to neighboring ANTs. Importantly, the
astrocytes of connected ANTs promote or reduce the release of
neurotransmitters into the synapses they wrap thus modulating
neural transmission by (a) sweeping up spilled over glutamate
and K+; (b) releasing “gliotransmitters” like glutamate, ATP, D-
serine, γ-amino butyric acid (GABA), and taurine; and (c) letting
out or taking up, respectively, Ca2+ ions during their Ca2+

waves (Antanitus, 1998; Bushong et al., 2002; Kettenmann and
Ransom, 2013; Gundersen et al., 2015). The term infotropism
defines the control of neurotransmitter release and hence of
synaptic function by the astrocytes (Antanitus, 1998). Astrocytes’
activation is coupled with intracellular Ca2+ transients and
intercellular gap-junction-mediated Ca2+ waves and triggers
both locally and remotely the secretion of gliotransmitters
modulating astrocyte-astrocyte and astrocyte-neuron signaling
(Lee et al., 2014). Moreover, astrocytes express receptors for
other neurotransmitters—like purines, GABA, and N-methyl-
D-aspartate (NMDA)—and control extracellular ion levels (e.g.,
K+), pH, and water volume (reviewed in Kettenmann and
Ransom, 2013). Because of these distinctive properties, human
astrocytes likely play a role as neuronal partners in learning,
memory, and cognition—all functions progressively lost in AD.

In AD, extracellularly accumulating Aβ-os and Aβ fibrils
contact all cellular members of ANTs and NVUs. In Tg
AD-model rodents, while acting as wardens, astrocytes sweep
extracellular Aβs by engulfing them via several Aβ-binding
receptors, like LRP1 and LRP2/Megalin, and next proteolyse
them. Eventually, ingested Aβs are toxic for the astrocytes which
before dying discharge them back into the extracellular milieu.
This promotes the assembly of smaller senile plaques which
are rich in glial fibrillary acidic protein (GFAP; Wyss-Coray
et al., 2003; Nagele et al., 2004; Pihlaja et al., 2008). Thus, an
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initially beneficial clearing of Aβs surpluses by the astrocytes
eventually competes with and wrecks their role as supporters of
neurons metabolism (Pihlaja et al., 2008; Araque and Navarrete,
2010; Giaume et al., 2010; Halassa and Haydon, 2010; Mulder
et al., 2012). In 3 × Tg AD-model mice, as AD slowly
yet inexorably progresses, the pattern of astrocytes’ reactions
changes. Astrocytes’ processes rapidly wither and detach their
shrouding end-feet from the tripartite synapses within the CA1
area and dentate gyrus. An early diffuse astrogliosis develops
surrounding the senile plaques (Rodriguez-Vieitez et al., 2015).

Conversely, in human AD brains, astrocytes become
hypertrophic, conserve their spatial domains, pierce with
their processes Aβ senile plaques, lose part of their glutamate-
metabolizing enzymes, over express GFAP, hyper polymerize
actin, and make and release surplus amounts of cytokines and
chemokines, such as S100β, TNF-α, IL-1β, IL-6, and IFN-γ-
inducible protein-10 (IP-10). The sercreted chemokines induce
circulating leukocytes to cross the BBB and sustain a chronic
neuroinflammation (Perez et al., 2010). In aMCI patients, but not
in healthy individuals, an astrogliosis can be detected (using the
[11] CD-deprenyl marker and Positron Emission Tomography)
which abates during the progression toward full-blown AD
(Choo et al., 2014). This human AD-related astrogliosis co-
occurs with oxidative stress, extracellular accumulation of
glutamate and/or K+, dyslipidemia, and/or folate deficit (Rojo
et al., 2008; Li et al., 2011).

A belief has been prevailing for a long time, i.e., only a
transneuronal diffusion of neurotoxic Aβ-os happens in AD. This
view was experimentally modeled in retinoic acid–differentiated
human SH-SY5Y neurons (Nath et al., 2012; Hallbeck et al.,
2013). Conversely, astrocytes’ own production and secretion of
Aβs as well as their potential contribution to AD progression
was generally neglected. According to such a “classical” view,
astrocytes only played the role of onlookers or at most of
concierges cleansing neuronal debris and/or Aβ fibrils. Reports
of astrocytes stuffed with Aβ42s in human brains with advanced
LOAD strengthened this view (Nagele et al., 2004; Maragakis
and Rothstein, 2006; Avila-Muñoz and Arias, 2014). Yet, because
of their high numbers, even a token increase in astrocytes’
Aβs secretion rate would remarkably raise brain’s load of Aβs
(Busciglio et al., 1993; Corbett and Buss, 2014). Nevertheless,
recent studies have provided evidence that the intracerebral
diffusion of Aβ42-os results from chemical interactions of
astrocytes with neurons, oligodendrocytes, andmicroglia (Skaper
et al., 2009; Bero et al., 2011; Dal Prà et al., 2015a). Such reciprocal
exchanges activate the astrocytes which then express surpluses of
APP and of β-S which act with γ-S to trigger an overproduction
of Aβs in several Tg AD-model mice (Rossner et al., 2005).
The effects of exogenous Aβs on mouse, rat, and human
astrocytes and neurons have been studied in vivo and in vitro.
Physiological patterns of astrocytes’ intercellular Ca2+ waves and
synchronous hyperactivity are changed in Tg AD-model animals
(Kuchibhotla et al., 2009). When exposed to Aβ-os, newborn
rat hippocampal astrocytes exhibited an increased intracellular
Ca2+ concentration ([Ca2+]i). Hence, a Ca2+ dyshomeostasis
occurs in the astrocytes activated by AD (reviewed in Abramov
et al., 2003; Mattson and Chan, 2003; Bezprozvanny and

Mattson, 2008; Berridge, 2014). Moreover, mouse astrocytes
exposed to Aβ25−35 produced and secreted ceramide-stuffed
exosomes (“apoxosomes”) and prostate apoptosis response-4
(PAR-4) protein which would trigger the apoptotic demise of
nearby neurons releasing Aβs surpluses (Wang et al., 2012). In
addition, primary cortical astrocytes from neonatal mouse pups
treated with TNF-α+ IFN-γ or Aβ42 (either in soluble or fibrillar
form) raised the cells’ levels of APP and β-S and their secretion
rate of endogenous Aβ40 (yet, Aβ42 secretion was not assessed).
The authors surmised that neuroinflammation triggers a feed-
forward mechanism pushing the production of endogenous Aβs
in mouse astrocytes (Zhao et al., 2011).

As mentioned above, β–S and γ–S exhibit a discrete basal
activity in untreated (control) NAHAs (Armato et al., 2013a).
Once exposed to exogenous fibrillary or soluble Aβ25−35—an
Aβ42 proxy having the physical and biological features of Aβ42
(Kaminsky et al., 2010)—NAHAs start producing, accumulating,
and secreting surplus Aβ42/Aβ42-os just as human cortical HCN-
1A neurons do (Dal Prà et al., 2011; Armato et al., 2013a).

Under conditions of acute or chronic hypoxia, or during
LOAD or when exposed to exogenous Aβs, APP levels and both
β–S and γ–S activities raise significantly thereby increasing Aβs
production and release (Perez et al., 2010; Dal Prà et al., 2011,
2014a,b; Takami and Funamoto, 2012). This might be due to
Aβ42-os entering the nuclei and binding Aβ-interacting domains
(AβIDs) in the APP and β–S genes promoters sequences causing
their transcriptional activation (Bailey et al., 2011; Maloney and
Lahiri, 2011; Barucker et al., 2014). Lastly, Aβ-activatedmicroglia
release cytokines, like IL-1β or IFN-γ + TNF-α, that induce
cultured adult human astrocytes to synthesize and secrete Aβ40
and Aβ42 (Blasko et al., 2000).

Aβs AS RECEPTORIAL LIGANDS

As mentioned, an exposure to fibrillar or soluble Aβ25−35 elicits
an excess production, accumulation, and secretion of Aβ42 and
Aβ42-os in cultured NAHAs (Armato et al., 2013a; Dal Prà et al.,
2015a). The primary molecular mechanism(s) underlying this
exogenous Aβs⇒ endogenous Aβs self-induction in NAHAs was
(were) initially totally and still partly is (are) unclear. It appeared
that exogenous Aβs interacted with “something” located at the
outer surface of the cells’ plasma membrane (Kam et al., 2014;
Jarosz-Griffiths et al., 2016). At the same time, the question arose
whether this Aβs self-inducing feed-forward mechanism worked
in human neurons too, as it had been shown to do in Aβ-exposed
rat cortical neurons and mouse hippocampal slices (Marsden
et al., 2011). So would Aβs bind and activate the signaling of one
or more receptors? So far, several receptors have been indicated
to interact with Aβs (Table 1). Nevertheless, since Aβs are the
unique ligands for none of them, these Aβ•receptor interactions
have been debated. Yet, once bound to Aβs some of the receptors
did undergo internalization and accumulated intracellularly
(Kam et al., 2014; Jarosz-Griffiths et al., 2016). For example,
highly specific soluble Aβ-os•CaSR complexes were shown to
gather together and form patches at the plasma membrane of
NAHAs prior to be internalized (Dal Prà et al., 2014a,b, 2015b).
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TABLE 1 | Receptor interactions with various Aβ forms.

Aβ forms Receptor References

Aβ42 monomers Insulin-like growth factor-1 receptor (IGF-1R) Giuffrida et al., 2012

Aβ42 monomers Low-density lipoprotein receptor-related protein 1 (LRP1) Shibata, 2000; Kanekiyo et al., 2013, 2012

Aβ42 monomers Low-density lipoprotein receptor (LDLR) Castellano et al., 2012

Aβ42 monomers Macrophage receptor with collagenous structure (MARCO) Brandenburg et al., 2010

Aβ42 and Aβ40 monomers Advanced glycation end products receptor (RAGE) Du et al., 2012

Aβ42 and Aβ40 monomers Apolipoprotein E (ApoE) receptor Liu et al., 2013

Aβ42 monomers, Aβ42-os α7 nicotinic acetylcholine receptor (α7nAChR) Wang et al., 2000; Jurgensen and Ferreira, 2010

Aβ40 monomers, Aβ42-os Cellular prion protein (PrPC) Nygaard and Strittmatter, 2009; Pflanzner et al., 2012

Aβ42 Formyl peptide receptor (FPR1) Formyl peptide receptor-like 1 (FPRL1) Iribarren et al., 2005; Doens and Fernandez, 2014

Aβ globulomers P/Q-type Ca2+ channels Nimmrich et al., 2008

Aβ42-os, Aβ40-os Frizzled (Fzd) receptor Magdesian et al., 2008

Aβ42-os Insulin receptor Zhao et al., 2008

Aβ42-os α-amino-3-hydroxy-5-methyl-4- isoxazole propionic acid receptor (AMPAR) Zhao et al., 2010

Aβ42-os Amylin 3 (AMY3) receptor Fu et al., 2012

Aβ42-os NMDA-type glutamate receptor Shankar et al., 2007

Aβ42-os, Aβ fibrils Calcium-sensing receptor (CaSR) Ye et al., 1997; Conley et al., 2009; Dal Prà et al.,

2014a,b, 2015b

Aβ42-os, Aβ fibrils p75 neurotrophin (p75NTR) receptor Perini et al., 2002; Chakravarthy et al., 2012

Aβ fibrils SCARA1/2 (microglia) receptor Wilkinson and El Khoury, 2012

Aβ fibrils SCARB2/CD36 receptor Stewart et al., 2010

Aβ fibrils Toll-like receptor 2 (TLR2) Doens and Fernandez, 2014

Aβ fibrils Complement receptor type 3 (CR3) Doens and Fernandez, 2014

Conversely, most of the fibrillar Aβ•CaSR complexes could not
be internalized because of intrinsic mechanical hindrances and
their persistent signaling likely altered crucial cellular functions
with noxious and/or lethal consequences. This happened also
in engineered SK-N-BE neuroblastoma cells over expressing the
whole p75NTR receptor which bound fibrillar Aβs (Perini et al.,
2002). Indeed, p75NTR is also over expressed in the hippocampi
of full-blown LOAD patients (Chakravarthy et al., 2012).

A clue on the topic was offered by observations that a mixture
of three cytokines (i.e., TNF-α, IL-1β, and IFN-γ) or soluble
Aβ40 or fibrillar Aβ25−35 or Aβ1−42 induced a MEK/ERK1/2-
mediated surplus NO production in NAHAs that could be fully
suppressed when the cells were co-treated with a CaSR antagonist
(or calcilytic) like NPS 89686 or NPS 2143 (Nemeth, 2002;
Chiarini et al., 2005; Dal Prà et al., 2005; Armato et al., 2013a).
Such results prompted us to investigate CaSR’s interactions with
Aβs in human cortical astrocytes and neurons (Armato et al.,
2012, 2013a).

THE CaSR IN THE SEVERAL NEURAL
CELL TYPES

The readers looking for more details about the features of the
CaSR are referred to other contributions in this special issue.
Briefly, the CaSR is a member of family C of G-protein-coupled
receptors (GPCRs). Its huge (∼612 amino acids) extracellular
N-terminal domain, named Venus Flytrap (VFT), is linked
via a cysteine-rich region to seven transmembrane α-helices

(TM1–TM7) joined together by extracellular and intracellular
loops altogether forming the 7TM region. Two domains of
the CASR’s intracellular C-terminal tail are necessary for its
expression at the cell surface and its composite signaling
functions which are mediated by G-proteins (Armato et al.,
2012). The two huge VFT lobes of functional CaSR homodimers
bind orthosteric (type I) agonists like Ca2+ (the physiological
ligand), various other divalent or trivalent cations, polyamines,
and aminoglycoside antibiotics (Silve et al., 2005; Armato
et al., 2012; Zhang et al., 2015). The allosteric (type II) CaSR
ligands, like aromatic L-α-amino acids and highly selective
agonists (or calcimimetics) and antagonists (or calcilytics) bind
various 7TM sites (Nemeth, 2002; see also below). The CaSR
swiftly senses any change in the [Ca2+]e (Nemeth, 2002).
Orthosteric type I agonists switch CaSR’s signaling on owing to
a rearrangement of its 7TM region permitting the receptor’s C-
tails to interact with various G proteins. The manifold CaSR’s
signaling pathways involve (i) second messenger-producing
enzymes (e.g., adenylyl cyclase); (ii) phospholipases A2, C, and
D; (iii) protein kinases (e.g., AKT, PKCs, MAPKs,); (iv) Ca2+

influxes via TRPC6-encoded receptor-operated channels; and (v)
transcription factors (TFs; reviewed in Zhang et al., 2015). Like
other GPCRs, CaSRs display the “ligand-biased signaling” feature,
i.e., a specific CaSR signaling pathway may be stably preferred
over the others according to the ligand involved (Leach et al.,
2015). Here we will briefly consider some pathophysiological
effects of CaSR’s signaling regarding the CNS.

The CaSR is expressed by all types of neural cells and
by the endothelial cell and pericytes of the cerebral vessels
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with a variable intensity, which for example is greater in the
hippocampus (Chattopadhyay et al., 2000, 2008; Yano et al.,
2004; Noh et al., 2015). In addition, cultured NAHAs also
express functional CaSRs, less intensely when proliferating but
more strongly when in mitotic quiescence. In any case, CaSR
expression is unaffected by changes in the growth medium Ca2+

levels (Dal Prà et al., 2005).
CASR is a key player in genetic regulation of Ca2+

homeostatic system (Kapur et al., 2010). In addition, CaSR
performs relevant roles outside the Ca2+ homeostatic system,
as for example in the CNS (Riccardi and Kemp, 2012).
Besides upholding local ionic homeostasis, brain cells’ CaSRs
modulate the proliferation, differentiation, and migration of
neurons and oligodendrocytes during development; axonal
and dendritic growth; axons myelination; neurons’ and glial
membrane excitability; olfactory and gustatory signal integration;
presynaptic external Ca2+ signaling at neocortex nerve terminals;
synaptic plasticity; and neurotransmission during perinatal and
adult life. Importantly, an altered expression and/or dysfunction
of the CaSR, as observed in CNS diseases like AD and
ischemia/hypoxia/stroke, also deeply affects CaSR-dependent
neurophysiological processes (Figure 2) (Chattopadhyay et al.,
1999; Vizard et al., 2008; Bandyopadhyay et al., 2010; Chen et al.,
2010; Armato et al., 2012, 2013a; Ruat and Traiffort, 2013; Kim
et al., 2014; Dal Prà et al., 2014a,b, 2015a; Bai et al., 2015; Noh
et al., 2015; Tharmalingam et al., 2016).

The first clue about a potential role for the CaSR in AD
pathophysiology was the degeneration of hippocampal neurons
ensuing Aβ-induced peaks of cytosolic (intracellular) Ca2+

concentration ([Ca2+]i) (Brorson et al., 1995). A second clue
was the assumed ability of fibrillar Aβ25−35 or Aβ1−40 to
open Ca2+-permeable non-selective cation channels (NSCCs)
in hippocampal neurons of wild type (WT) CaSR+/+ rats but
not of CaSR−/− rats (Ye et al., 1997). The authors posited
that Aβs could bind the CaSR since like polyamines they are
endowedwith orderly spaced arrays of positive charges. However,
the same authors had previously observed hefty changes in
pipette cations concentrations in cell-attached recordings and
their replacement with Ca2+ had not affected channel amplitude
or reversal potential (Ye et al., 1996a,b). Taken together, these
results would have suggested the channel was alike permeable
to K+ and Na+ or, alternatively, impermeable to cations like a
Cl− channel. However, the authors did not test his hypothesis.
In this regard, several other authors have reported NSCCs being
activated by decreases of calcium or other CaSR agonists (Hablitz
et al., 1986; Xiong et al., 1997; Immke and McCleskey, 2001;
Smith et al., 2004; Lu et al., 2010; Ma et al., 2012). Overall such
findings do not corroborate the suggestion that Aβs activate
NSCCs in neurons. Rather, Aβs would lessen the likelihood of
NSCC openings or possibly activate Cl− channels like probably
the data from Ye et al. (1997) had demonstrated.

Afterwards, Conley et al. (2009) investigated the association of
CASR gene variations in AD susceptibility using a cohort of 692
AD cases and 435 controls. A polymorphic dinucleotide repeat
marker within intron 4 associated with AD, while three non-
synonymous SNPs within exon 7 of the CASR gene associated
with AD only in non-APOE ε4 carriers. In addition, TF activation

assays revealed that both apoE ε4 and ε3 (but not ε2) and
exogenous Aβ1−42 bound and activated CaSR’s signaling. The
authors concluded that the CASR plays a role in AD susceptibility
in the absence of the APOE ε4 allele(s).

Subsequently, the formation of Aβs•CaSR complexes and
their endocytosis was shown to occur in NAHAs by using the
highly specific in situ proximity ligation assay (Dal Prà et al.,
2014a,b, 2015b). As aforesaid, such Aβs•CaSR complexes elicited
a surplus production and secretion of Aβ42 and Aβ42-os from
cortical NAHAs and HCN-1A neurons (Armato et al., 2013a).
These observations imply that all types of human neural and
cerebrovascular cells are susceptible to the neurotoxic effect(s)
elicited by Aβ•CaSR signaling.

CASR gene transcription is regulated by its promoters P1
and P2 which bind several TFs. Recently, the role of TFs in a
number of genes associated with AD has been studied in detail.
Interestingly, the CASR gene promoters bind several TFs which
are involved also in the expression of AD-related genes. Thus,
there exists a deeper than previously thought connection of CaSR
expression regulation with AD pathophysiology (see Table 2 and
references in it). Although CaSR mRNA and protein levels have
not yet been investigated in human AD brains, it is likely that
CASR’s expression be altered in AD because of its co-regulation
by some of the TFs implicated in the disease.

Besides the CaSR, Aβ42-os simultaneously link to many other
surface receptors (Table 1) activating their signaling systems
and changing ion balances prior to be endocytosed by all
types of CNS cells. In so doing, Aβ42-os spark a dense clutter
of cellular responses including mitochondrial over release of
toxic ROS, Ca2+ surges via NMDARs’ activation driving further
mitochondrial releases of ROS, and production of toxic p-Tau
oligomers (p-Tau-os) (Mao and Reddy, 2011; Müller et al., 2011;
Swerdlow, 2011; Kam et al., 2014; Jarosz-Griffiths et al., 2016).
The outcomes are the disconnection of neuronal networks—a
cause of cognitive deterioration—and the damage and death of
susceptible neurons eventually leading to full blownAD (Crimins
et al., 2013; Kayed and Lasagna-Reeves, 2013; Medeiros et al.,
2013).

However, the earliest asymptomatic stages of AD are still
hard to detect because the build-up of highly toxic, synapse
destroying Aβ42-os inside and outside neurons and astrocytes is
imperceptible until senile plaques and NFTs remain undetectable
(West et al., 2004; Selkoe, 2008a,b; Ferreira and Klein, 2011;
Klein, 2013; Medeiros et al., 2013; Dal Prà et al., 2015a). Thus,
in the course of several years the neurotoxic Aβ42-os spread
stealthily from LEC’s layer II to higher cognitive cortical areas
(Khan et al., 2014) and the emergence of AD’s typical hallmarks
(Figure 1A). As it will be discussed below, these events are related
to Aβ42-os•CaSR interactions whose signaling mechanisms are
likely to underlie the developing amyloidosis in AD brains and
hence have crucial therapeutic implications.

Some authors surmise a prion-like mechanism fostering the
Aβ42-os (and p-Tau-os) diffusion in AD brains (Nussbaum et al.,
2013; Morales et al., 2015). Aβ42-os extracted from AD brains
could be passed on from retinoic acid–differentiated human
SH-SY5Y donor neurons to similarly differentiated SH-SY5Y
recipient neurons (Nath et al., 2012; Hallbeck et al., 2013). Most
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FIGURE 2 | The main neural cell types origins, and the effects of Aβ42-os accumulation without or with an added calcilytic. Top left: During development

and in the adult, neurogenesis starts from NSCs that self-renew while giving birth to neurons and glial progenitors. From the latter (also named NG2 cells) stem both

astrocytes and oligodendrocytes. All these cell types express the CaSR (see the text for details). Top right: When Aβ42-os start accumulating in the brain tissues they

soon block the NSCs self-renewal and differentiation of both neurons and oligodendrocytes from their respective precursors. The interactions of Aβ42-os with the

CaSRs (yellow ovals) elicits a surplus production/release of Aβ42-os from neurons and astrocytes, of NO and VEGF-A from astrocytes, and of MBP and Aβ42-os (not

shown) from oligodendrocytes. All these toxic compounds together with later appearing p-Tau-os (not shown), microglial proinflammatory cytokines, and

hypoxia/ischemia due to damaged micro vessels eventually cause an increasing death of neurons and oligodendrocytes (flanking skull and crossbones). Bottom

center: The addition of calcilytic NPS 2143 (short termed here as NPS) thwarts all of the toxic effects elicited by Aβ42-os•CaSR signaling like surplus secretion and

diffusion of additional Aβ42-os, NO, and VEGF-A, hindered differentiation of NSCs, and most of all, the death of neurons and oligodendrocytes, vascular damage, the

later p-Tau-os appearance, and likely microglial activation (the latter two not shown). The findings on neurons and astrocytes indicate the feasibility of calcilytics as

anti-LOAD therapeutics capable of halting Aβ42-os self-promoting and self-maintaining mechanisms (Dal Prà et al., 2015a).
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TABLE 2 | Comparison between CaSR and AD-related genes

transcriptional regulators.

Gene Transcription factor References

CaSR SP1/3*, AP1, STAT1/3, NFκB,

TFIID, Vitamin D, GCM-2

Santpere et al., 2006; Hendy

et al., 2013

APP SP1, AP1, STAT1/3, NFκB,

USF, CTCF, HSF1, SP1-like,

UBP, HIF-1α, CREB, GATA1

Theuns and Van Broeckhoven,

2000; Santpere et al., 2006;

Chen et al., 2013

BACE1 SP1, STAT1/3, NFκB, HIF-1α,

PPAR γ

Santpere et al., 2006; Wen et al.,

2008; Chen et al., 2013

PSEN1 SP1, Ets, CREB Theuns and Van Broeckhoven,

2000; Santpere et al., 2006;

Chen et al., 2013

APOE SP1, TFIID, AP-2, URE3BP,

PPARγ

Theuns and Van Broeckhoven,

2000; Santpere et al., 2006;

Chen et al., 2013;

MAPT SP1, AP-2, Nrf1, MTF1, MBF1,

MepI, GCF

Santpere et al., 2006;

Caillet-Boudin et al., 2015

*Shared transcription factors are in bold characters.

important, an Aβ42-os propagation within the brains of Tg
APP-model mice or WT rats or marmoset (Callithrix jacchus)
monkeys also obtained via injections of AD brain extracts or
punctures made with steel wires coated with the same extracts
(Maclean et al., 2000; Meyer-Luehmann et al., 2006; Eisele et al.,
2009; Langer et al., 2011; Hamaguchi et al., 2012; Rosen et al.,
2012). In such animal models, the diffusion of the injected Aβ42-
os followed the same route as developing AD pursues in humans,
i.e., LEC layer II ⇒ perforant pathway ⇒ hippocampal dentate
gyrus and CA3 area⇒ upper cortical regions (Morrison andHof,
2007; Khan et al., 2014). Besides, a cerebrovascular amyloidosis
was induced after a delay of various months by intraperitoneal
injections of 1000-fold higher doses of Aβ42-os-charged mouse
brain extracts (Eisele et al., 2010). The mechanisms by which
misfolded Aβ42-os (and p-Tau-os) propagate within the brain
are undetermined (Moreno-Gonzalez and Soto, 2011). So far, the
prion-like intrabrain spreading potential of Aβ42-os appears to
be feeble as compared to the infectious capabilities proper of
true prions and to require a direct contact with the neural cells
(Aguzzi and Rajendran, 2009; Irwin et al., 2013). In addition, an
Aβ42-os amplifying mechanism has simultaneously to operate in
order to assist the prion-like diffusion of the brain amyloidosis
(Brettschneider et al., 2015). Hypothetically, this amplifying
mechanism might result from or be aided by the Aβ42-os
own self-induction and self-spreading properties due to their
interaction with the CaSRs of neurons, astrocytes, and other
brain cell types (Dal Prà et al., 2015a).

Aβ•CaSR SIGNALING PROMOTES INTRA-
AND EXTRACELLULAR TOXIC
Aβ42/Aβ42-OS OVERLOADS

By using as preclinical models in vitro cortical nontumorigenic
NAHAs and postnatal HCN-1A neurons brought to a complete
proliferative quiescence, exogenous Aβ25−35-os and Aβ1−42-os

were shown to bind the plasma membrane-inserted CaSRs with
a high specificity. These bonds activated CaSR’s intracellular
signaling pathways which in turn elicited a whole set of
pathophysiological effects in both cell types, including the
death of the HCN-1A neurons (summarized in Table 3; (Dal
Prà et al., 2011, 2014a,b, 2015a,b; Armato et al., 2013a; Ruat
and Traiffort, 2013). As mentioned, an Aβ-os•CaSR-activated
MEK/ERK-dependent pathway mediated NO overproduction in
NAHAs; the same signaling stabilized the HIF-1α•HIF-1β TF
which then entered the astrocytes’ nuclei to trigger a VEGF-A
surplus production and secretion (Dal Prà et al., 2005, 2014b).

By contrast, the mechanisms of the increased synthesis,
accumulation, and release of Aβ42-os elicited through Aβ-
os•CaSR signaling in both NAHAs and HCN-1A neurons are
not as yet fully understood and currently under investigation.
In regard to this topic, an upregulation of the CaSR and an
intensified Aβ-os•CaSR signaling induced the death of neurons
in rodent models of cerebral ischemia/hypoxia/stroke (Kim et al.,
2014). This is a second instance besides LOAD in which Aβ-
os•CaSR signaling kills neurons.

NEUROTOXIC Aβ•CaSR INTERACTIONS
IN OTHER GLIAL AND
CEREBROVASCULAR CELLS

The extremely complex mammalian CNS harbors several distinct
cell types. Generally, LOAD discussions focus most on neurons,
less on microglia, but leave the other cell types in the shade.
However, several authors have tried to broaden this restricted
viewing by putting astrocytes into the fray (Busciglio et al., 1993;
Blasko et al., 2000; Chiarini et al., 2005; Li et al., 2011; Zhao
et al., 2011; Armato et al., 2013a; Dal Prà et al., 2015a). Indeed,
in our work we have been using both NAHAs and HCN-1A
neurons as separate models to clarify the responses evoked by an
exposure to exogenous Aβ-os. Hence, we do not deem astrocytes
beingmore important players than neurons in LOADpromotion.
Instead, we have been endorsing a holistic view, i.e., all CNS cell
types are likewise important players both in CNS physiology and
LOAD pathophysiology. Consequently, we review below relevant
knowledge concerning the CaSR with respect to LOAD in the
remaining glial cell types and cerebrovascular cells.

Oligodendrocytes
Oligodendrocytes precursors (NG-2 glial cells) generate also
protoplasmic astrocytes (Figure 2) and maybe neurons, and
receive synaptic inputs. These precursors become functionally
impaired and/or damaged with aging (reviewed in Cai
and Xiao, 2016). When NSCs’ differentiation is aimed at
the oligodendrocyte lineage, the expression and activity of
NSCs’ CaSRs are up-regulated, which favors their expansion
and differentiation (Chattopadhyay et al., 2008). Human
oligodendrocytes keep amplifying their numbers up to 5 years of
age, when they amount to ∼5–10% of the total glia. Thereafter,
their turnover remains negligible. Typically, oligodendrocytes’
myelin production and myelin sheaths’ upkeep quickly adapt
to ongoing needs, e.g., learning activities—a feature promoting

Frontiers in Physiology | www.frontiersin.org 9 April 2016 | Volume 7 | Article 134

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Chiarini et al. Alzheimer and Neural Cells’ CaSRs

TABLE 3 | Harmful effects Aβ•CaSR signaling elicits in human neurons and astrocytes.

Cell type Stimulus Pathological effect Effect of adding calcilytic to Aβs Effect of calcimimetic

alone

Neurons, astrocytes Aβ42-os Aβ fibrils Overproduction and diffuse intracellular

accumulation of endogenous Aβ42

monomers and Aβ42-os due to an

increased β-S and γ-S activity and (likely)

to decreases in Aβ proteolysis

Total suppression of intracellular

accumulation of Aβ42 monomers and

Aβ42-os due to increased Aβ-os

proteolysis (no effect on increased β-S and

γ-S activities)

No apparent intracellular

accumulation of Aβs

Neurons, astrocytes Aβ42-os Aβ fibrils Concurrent Aβ40-os intracellular

accumulation

Modest decrease of Aβ40-os intracellular

accumulation

n. d.*

Neurons, astrocytes Aβ42-os Aβ fibrils Surplus secretion of Aβ42-os, but not of

Aβ40-os, along the Golgi/trans-Golgi

pathway and axons ⇒ extracellular

Aβ42/Aβ40 ratios values shift to the

cytotoxic range

Total suppression of surplus release of

Aβ42-os along the Golgi/trans-Golgi

pathway and axons, but increased release

of Aβ40-os⇒ extracellular Aβ42/Aβ40

ratios values remain in the normal range

(NPS 2143 by itself exerts no effect on

basal Aβ42-os secretion)

Significant surplus secretion

of Aβ42-os

Neurons Aβ42-os Aβ fibrils Slow yet progressive death by apoptosis

of the human cortical neurons (in vivo this

is the cause of cognitive decline; Nelson

et al., 2012).

Neurons remain alive and kicking n. d.

Astrocytes Aβ42-os Aβ fibrils NAHAs survive and keep making and

releasing neuron-harming compounds

(see below)

No apparent effect on survival n. d.

Astrocytes Aβ fibrils Increased activity of the glycogen

synthase kinase (GSK)-3β, one of the main

Tau kinases (Armato et al., 2013b).

Total suppression of the surge of GSK-3β

activity (Armato et al., 2013b).

n. d.

Astrocytes Aβ42-os Aβ fibrils Stabilization and nuclear translocation of

the HIF-1α•HIF-1β transcription factor ⇒

expression of VEGF-A, APP, and BACE1

genes ⇒ heightened synthesis/secretion

of VEGF-A and Aβ42/Aβ42-os

HIF-1α destabilization ⇒ deep yet

transient decrease of nuclear

HIF-1α•HIF-1β transfer ⇒ no surplus

production/release of VEGF-A, APP, and

Aβ42/Aβ42-os

n. d.

Astrocytes Aβ42-os, Aβ fibrils Significant yet transient surge of total

CASR protein

Downregulation of total CaSR protein:

modest and transient with NPS 2143

alone but fast, intense and persistent with

Aβs + NPS 2143

No change in total CaSR

protein

Astrocytes Aβ42-os Aβ fibrils Induction and MEK/ERK-dependent

activation of GTP cyclohydrolase-1 (GCH1)

⇒ production of BH4 (tetrahydrobiopterin)

⇒ dimerization and activation of the

concomitantly induced NO synthase

(NOS)-2 ⇒ excess release of NO

Inactivation of GCH1 ⇒ lack of BH4 ⇒ no

dimerization and activation of the

concomitantly induced NO synthase

(NOS)-2 ⇒ no overproduction of NO

n. d.

*n.d., not determined.

neural plasticity. During AD development, at neurotoxic levels
(i.e., in the µM range) Aβ-os switch off the Wnt signaling
of the precursors thereby hindering their differentiation into
oligodendrocytes (Figure 2; Barateiro et al., 2016). In advanced
AD, soluble and fibrillar Aβs and/or p-Taues/NFTs together
with ongoing oxidative stress and neuroinflammation cause
oligodendrocytes’ to dysfunction and die via apoptosis (reviewed
in Cai and Xiao, 2016). Consequently, myelin sheaths break
down first in the hippocampus and fornix, and later in the other
involved areas (Roth et al., 2005). The breakdown of myelin
sheaths releases myelin basic protein (MBP), which by itself
triggers a neurotoxic discharge of NO from cortical NAHAs.
This MBP effect is synergistically amplified by a mixture of
three proinflammatory cytokines (TNF-α, IL-1β, and IFN-γ)
or by soluble Aβ40 (Chiarini et al., 2005). So far, the specific
neurotoxic effects of Aβ-os•CaSR signaling have not been

investigated in human oligodendrocytes, although doing it
would be worthwhile. Interestingly, mature oligodendrocytes
are able to express APP and to produce and secrete both Aβ42
and Aβ40 (Skaper et al., 2009). Therefore, besides neurons and
astrocytes, oligodendrocytes are the third potentially relevant
source of endogenous Aβ42-os in LOAD—a source hitherto
disregarded perhaps because of its progressive cytotoxic damage
and destruction. Thus, a crucial role of Aβ-os•CaSR signaling in
the neurotoxic responses and demise of oligodendrocytes in AD
remains to be proven.

Microglia
At variance with neural cells, microglia arise from circulating
myeloid monocytes which migrated into the CNS during
gestation to act there as macrophage equivalents. In their
physiologically “quiescent” phenotype, microglia promote
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brain development and relevantly upkeep neural environment
homeostasis, immunological surveillance, modulation of
neuronal proliferation and differentiation, pruning of synapses,
and clipping of apoptosing neurons (Saijo and Glass, 2011;
Harry, 2013). Microglia become “activated” in response to
neural tissue injury and then start sweeping up debris from
degenerated neurons and infectious agents (when present),
hence favoring tissue repair (Yang et al., 2010; Lee et al., 2011;
Derecki et al., 2013; McGeer and McGeer, 2015). Moreover,
in AD microglia are persistently activated, keep engulfing
extracellularly accumulating fibrillar and soluble Aβs, and
surround and infiltrate dense core senile plaques where they
promote Aβs fibrillation (reviewed in Rosen et al., 2012).
Additionally, both Aβ fibrils and Aβ42-os trigger the microglia to
secrete proinflammatory cytokines, (e.g., IL-1β, TNF-α, IFN-γ),
chemokines (Lindberg et al., 2005; Färber and Kettenmann, 2006;
Kawanokuchi et al., 2006; Saijo and Glass, 2011; Heneka et al.,
2013; Prokop et al., 2013), ROS, NO, and even N-terminally
truncated Aβ-os (Nagele et al., 2004; Mawuenyega et al., 2010;
Oberstein et al., 2015). The interaction of ROS and NO generates
hyper toxic peroxynitrites (ONOO−). Therefore, both microglia
and astrocytes contribute to kindle and keep going the chronic
neuroinflammation proper of LOAD brains. Furthermore, the
microglial cytokines bind and activate their specific receptors
on the surface of the astrocytes which are thus stimulated to
produce and release additional amounts of Aβ-os, NO, and
VEGF-A besides the amounts of the same agents generated
by the astrocytes own Aβ-os•CaSR signaling (Dal Prà et al.,
2005, 2015a; Chiarini et al., 2010). In turn, these microglia-
elicited astrocytes’ secretions sustain and/or intensify microglia
activation, starting vicious cycles of astrocytes ⇔ microglia
reciprocal interactions. They also stimulate the adjoining ANTs
to produce additional Aβ42-os that keep spreading and via
Aβ-os•CaSR signaling elicit the release of (a) further amounts
of Aβ42-os from neurons and astrocytes; (b) NO and VEGF-A
from astrocytes; (c) MBP and Aβ42-os from oligodendrocytes;
and (d) proinflammatory cytokines, chemokines, ROS, NO, and
N-terminally truncated Aβs from microglia (Blasko et al., 2000;
Lindberg et al., 2005; Kawanokuchi et al., 2006; Mandrekar-
Colucci and Landreth, 2010; Zhao et al., 2011; Prokop et al., 2013;
Oberstein et al., 2015). Thus, self-maintaining and spreading
vicious cycles of reciprocal interactions between microglia and
ANTs’ members keep exerting significant toxic effects on all
neural cell types (Nath et al., 2012) strongly promoting as a
result LOAD progression (Rojo et al., 2008; Nordberg, 2014).
However, likely for cytotoxic reasons microglia’s inflammogenic
role decreases with the progressing of AD (Mizuno, 2012), and
it may even become less relevant than astrocytes’ role due to
the greater numbers, stronger resistance to toxic agents, and
longer-lasting functional activation of the astrocytes (reviewed
in Rosen et al., 2012).

Moreover, the specific outcomes of the interactions between
exogenous Aβ42-os and microglial CaSRs of WT and AD-
model rodents are still undefined notwithstanding their potential
relevance to LOAD therapy (McGeer and McGeer, 2015).
Notably, rat microglia express a functional CaSR capable of
modulating a Ca2+-activated K+ channel (Chattopadhyay et al.,

1999; Yano et al., 2004). In this regard, we recall that the
BV-2 immortalized murine microglial cell line was reported
to constitutively produce and release Aβs. Moreover, and
remarkably, adding exogenous Aβ25−35 or lipopolysaccharide
increased the production and secretion of Aβs from BV-2
microglial cells (Bitting et al., 1996). The authors did not assess
the CaSR’s role in this process. Nevertheless, the findings of
Bitting et al. (1996) and Oberstein et al. (2015) indicate microglia
as a likely fourth source of Aβ-os in LOAD brains. As far as
we know, no study about the CaSR in human microglia has
been reported. Therefore, the role of Aβ-os•CaSR signaling in
microglia deserves further investigations.

Cerebral Vessels
Astrocytic processes’ end-feet envelop the cerebral micro vessels
forming functional NVUs which govern the delivery of nutrients
and oxygen required for the activities of ANTs’ neurons
(Figure 1B). In LOAD, accumulating Aβ42-os, Aβ fibrils, and
NO harm the cells of the cerebral vessels eventually causing
the onset of a cerebral amyloid angiopathy (CAA) which helps
advance LOAD (Nelson et al., 2016). CAA’s degenerative changes
include perivascular ring-like Aβs casts staving off astrocytic
processes’ end-feet, increased vessel walls stiffness, weakened
responses to astrocyte-released vasodilator agents, impeded
neoangiogenesis, and changed BBB permeability, altogether
causing local hypoxic/ischemic lesions (Kimbrough et al., 2015;
Love and Miners, 2015). The latter favor the production/release
of Aβ42-os surpluses, likely via Aβ42-os•CaSR signaling from
adjoining ANTs’ components thus hastening cognitive decline
(reviewed in Helman and Murphy, 2016). The endothelial cells
of human aorta and other vessels express the CaSR (Ziegelstein
et al., 2006). By inference, the endothelia and other cellular
components of the human brain vessels’ walls should also express
the CaSR. Then again, to our knowledge, no study has specifically
addressed the potential toxic effects of Aβ-os•CaSR signaling
on the cerebrovascular walls pericytes, smooth muscle cells,
and endothelial cells in LOAD. Finally, yet importantly, LOAD-
damaged blood vessels can block neurogenesis from NSCs in
the subventricular zone and hippocampus (Figure 2) thereby
thwarting the processing and storage of newmemories (Licht and
Keshet, 2015).

In summary, the interactive dysfunctional responses of all
brain-resident cell types evoked via Aβ-os•CaSR signaling are
likely to play significant roles in the promotion of LOAD
(Brorson et al., 1995; Dal Prà et al., 2015a).

Aβ-os•CaSR INTERACTIONS ADVANCE
LOAD PROGRESSION

During AD development, ANTs’ vital functions can turn into
grievously troublesome ones. When the “client” neurons and
their “master” astrocytes of small foci in the LEC’s layer II
overproduce Aβ42 monomers, they start releasing Aβ42-os into
the synaptic spaces surrounded by the astrocytes’ shrouding end-
feet and into the extracellular milieu. When Aβ42-os spread to
the CA1 area, the formation of new memories begins to fail
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(Bushong et al., 2002).We alreadymentioned that ANTs’ neurons
and astrocytes are endowed with a variety of Aβ42-os-binding
receptors, including the CaSR (Table 1). Next, released Aβ42-
os scatter from the ANTs of origin to contiguous ANTs, in
which they bind and activate the local neurons’ and astrocytes’
CaSRs (Dal Prà et al., 2015a). As a result, both cell types start
producing and releasing additional Aβ42-os, which will keep
spreading and targeting the CaSRs of neurons and astrocytes of
remoter ANTs (Figure 3). Remarkably, Aβ42-os diffuse not only
by contiguity, but also by apparent “jumps” because the blighted
hippocampal neurons project their long axons carrying Aβ42-os
surpluses to the neocortex of far-off cerebral lobes (Figure 1A).
Thus, reiterating feed-forward cycles of this kind which sustain
and amplify themselves via Aβ42-os•CaSRs interactions end up
recruiting the neurons and astrocytes of ever-increasing numbers
of ANTs. The latter will make and release still more Aβ42-os
which will spread to even farther off ANTs. Thus, from the
LEC LOAD neuropathology would reach through this basic
molecularmechanism upper cerebral cortical areas (Dal Prà et al.,
2015a). Aβ42-os•CaSRs and Aβ42-os•PRP

Cs interactions would
next favor the gradual appearance of p-Tau-os which at some later
point will acquire via still undefined mechanism(s) the ability
to self-induce themselves and spread independently of Aβ42-
os. Afterwards, both toxic drivers would hasten AD progression
toward its gloomy conclusion (Dal Prà et al., 2015a).

PHARMACOLOGICAL CaSR
MODULATORS AND LOAD

Various synthetic phenyl alkylamines derivatives endowed with
two-to-four aromatic rings and NH3+ groups selectively act
either as CaSR’s type II allosteric agonists (or calcimimetics;
e.g., NPS R-568, Cinacalcet, and AMG 416) or antagonists (or
calcilytics; e.g., NPS 89636, NPS 2143). Such agents shift to the
right or to the left, respectively, the CaSR’s response curve to
changes in extracellular Ca2+ concentration ([Ca2+]e) (Nemeth,
2002; Saidak et al., 2009; Widler, 2011). These CaSR modulators
bind distinct sites in the 7TM region—both calcimimetics and
calcilytics between TM6 and TM7, but calcilytics alone between
TM3 and TM5 (Petrel et al., 2004). The full therapeutic potential
of CaSR modulators has yet to be gauged in human ailments
(Saidak et al., 2009; Widler, 2011; Ward et al., 2012; Nemeth,
2015). These agents too can promote the “ligand-biased signaling”
according to the specific cell type considered—a feature that
might favor target-specific therapeutic approaches (Davey et al.,
2012; Leach et al., 2015)

Calcimimetics
NPS R-568 and Cinacalcet are presently the best paradigms of
allosteric CaSR agonists as they hinder PTH secretion (Nemeth,
2004, 2013). In clinical settings, Cinacalcet has been and still
is used to manage primary hyperparathyroidism and secondary
hyperparathyroidism due to chronic kidney disease (CKD). It has
been used particularly in patients in chronic dialysis, although
in some of these cases it failed to be effective (Nemeth and
Goodman, 2015; Brunaud et al., 2016). Cinacalcet also averts or

reverses parathyroid hyperplasia in rats and functionally rescues
CaSR’s loss-of function mutations (Nemeth, 2004, 2013; Miller
et al., 2012; Nemeth and Shoback, 2013; Palmer et al., 2013;
Nemeth and Goodman, 2015; Mayr et al., 2016). However,
since CaSR expression is ubiquitous, one should not overlook
that calcimimetics (and calcilytics) may exert PTH-independent
effects in tissues, brain included, other than the parathyroid
glands (Massy et al., 2014). As an example, a Cinacalcet-
triggered protracted CaSR signaling curtailed the mitotic activity
and interfered with the remodeling and barrier function of
oesophageal epithelial cells via catenin-cadherin complexes
disruption, actin cytoskeletal changes, and CaSR reallocation
to the nuclei (Abdulnour-Nakhoul et al., 2015). Various pieces
of evidence discussed in previous sections have denoted the
CaSR’s involvement in AD onset and progression. Remarkably,
calcimimetic NPS R-568 mimics at least one pathological
effect of Aβs•CaSR signaling: it significantly increases the
amount of Aβ42-os secreted by cortical NAHAs (Armato
et al., 2013a; Dal Prà et al., 2015a; Table 2). The potential
clinical implications of this NPS R-568 effect deserve further
assessment.

Calcilytics
Compounds like NPS 2143, NPS 89636, Calhex, etc., desensitize
the CaSR to [Ca2+]e changes and characteristically increase PTH
secretion (Nemeth, 2004, 2013). Various calcilytics were initially
tested as therapeutics for postmenopausal osteoporosis. But, they
lacked effectiveness because they elicited a PTH oversecretion
which stimulated in parallel both osteogenesis and osteolysis.
This stopped any further clinical testing concerning a potential
anti-osteoporosis activity of calcilytics (Nemeth, 2004, 2013;
Nemeth and Shoback, 2013; Nemeth andGoodman, 2015). Novel
indications for calcilytics are (i) idiopathic hypercalciuria; and
(ii) autosomal dominant hypocalcaemia due to CaSR’s gain-of-
function mutations; as for the latter condition calcilytic NPS
P-795 is being tested as a therapeutic in clinical trials (White
et al., 2009; Letz et al., 2010; Park et al., 2013; Nemeth, 2015;
Nemeth and Goodman, 2015). In addition, calcilytics may
mitigate the airways hyper responsiveness and inflammation
proper of asthma (Yarova et al., 2015). Calcilytics also inhibit
the cellular hyper proliferation typical of pulmonary artery
idiopathic hypertension (Yamamura et al., 2012, 2015)

A further potential indication of calcilytics is LOAD (Armato
et al., 2013a). In fact, we showed that in cultured human
untransformed cortical NAHAs and HCN-1A neurons calcilytics
NPS 2143 and NPS 89696 counteracted all the noxious
consequences—death of the neurons included—brought about
by Aβs•CaSR signaling (Table 3; Armato et al., 2013a; Dal
Prà et al., 2014a,b, 2015a). These preclinical findings indicate
that, by hindering the Aβs•CaSR signaling at the level of
neurons, of all glial cell types, and of cerebrovascular cells,
calcilytics would effectively suppress (or at least significantly
mitigate) the intracerebral propagation of the amyloidosis and its
concurrent neurotoxic effects. By keeping the neurons alive and
functioning, calcilytics would safeguard the patients’ cognitive
faculties. Most remarkably, calcilytics would be the so far unique
anti-LOAD therapeutics simultaneously targeting a number of
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FIGURE 3 | Propagation of LOAD neuropathology to neighboring astrocyte-neurons teams (ANTs). The cartoon shows that an excess of exogenous

Aβ42-os (here short-termed as Aβ42) supposedly reaches first the team of neurons and astrocytes (ANT) at the center and binds their CaSRs (not detailed) triggering

signals that end up increasing the secretion of newly produced endogenous Aβ42-os (red and green circles) from all of the ANT’s cellular members (# 1–5).

(Continued)
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FIGURE 3 | Continued

Blue arrows indicate the diffusion of Aβ42-os from neurons to astrocytes (red solid circles) and from astrocytes to neurons (green solid circles). Numbers 1–5 also

suggest possible sequences of events both intra- and inter-ANTs. While the involved cells undergo cytotoxic changes, including the early death of some neurons (in

green color with skull and crossbones aside), the newly released Aβ42-os spread and reach both neighboring and remoter ANTs (short and long red arrows), starting

via Aβ42-os•CaSR signaling new cycles of surplus production and secretion of endogenous Aβ42-os. The latter will disperse and engage nearby and still farther away

ANTs (not shown) again triggering the same kind of Aβ42-os•CaSR signaling-triggered pathological responses, including additional Aβ42-os oversecretion and

neuronal deaths. Thus, Aβ42-os spread can affect local ANTs (as embodied here by the short and long red arrows) or remoter ANTs via projecting axons carrying the

Aβ42-os (as exemplified here by the big black arrows).

LOAD-promoting processes which Aβs•CaSR signaling triggers
in all types of CNS cells (Armato et al., 2012, 2013a; Dal Prà
et al., 2014a,b, 2015a). Calcilytics reduce neuronal death also
in animal models of ischemia/hypoxia/stroke, i.e., in conditions
that increase Aβ-os production in the affected brain area(s)
(Kim et al., 2014; Bai et al., 2015). These findings too strongly
substantiate our hypothesis about the crucial role of the CaSR
in AD.

Here, some pharmacological notations are in order. Being
lipid-soluble, calcilytics cross the BBB, can be administered by
any route (oral, etc.), and in the presence of exogenous soluble
Aβ-os or fibrillar Aβs (which also release Aβ-os) selectively
antagonize CaSR’s signaling and intensely down regulate the
CaSRs of human cortical astrocytes, and likely neurons and
other CNS cells (Armato et al., 2013a; Dal Prà et al., 2015a).
Calcilytic NPS 2143 is well tolerated by rodents (Nemeth, 2002;
Kim et al., 2014). Recent NPS 2143 derivatives, which stimulate
PTH secretion less intensely, were well withstood by human
subjects during phase I and phase II clinical trials aimed at
assessing the drugs’ anti-osteoporosis activity (in such instances
no consideration was given to brain-related effects; Nemeth
and Shoback, 2013; John et al., 2014). Of late, the NMDA
receptor inhibitors Memantine and Nitromemantine and the
Fyn kinase inhibitor Saracatinib (AZD0530) were suggested as
therapeutics to offset the neurotoxic actions brought about by
extracellularly gathering Aβ-os (Talantova et al., 2013; Kaufman
et al., 2015). It should be realized that the calcilytics’ target, i.e.,
the CaSR, holds an upstream place with respect to NMDARs
and Fyn. Therefore, calcilytics’ ability to hinder any extracellular
Aβ42-os build-up would as well prevent any downstream Aβ42-
os harmful effects involving NMDARs and Fyn. Moreover,
by keeping the extracellular Aβ42/Aβ40 ratio values within
the physiological range, calcilytics would thwart any cytotoxic
effects and hindrance of NSCs differentiation (Figure 2) and of
functions necessary for neurogenesis to occur in the dentate
gyrus subgranular zone. Calcilytics would also safeguard the
structural and functional integrity of cognition-critical upper
cerebral cortical areas (Choi et al., 2013; Lee et al., 2013; Barateiro
et al., 2016). In short, calcilytics would preserve the patients’
ability to store and retrieve memories and to cope with daily
needs, thus improving her/his life’s quality and prospects.

Calcilytics’ failure as therapeutics for osteoporosis due to the
double-edged effects of PTH was a stroke of ill-luck (Nemeth,
2004, 2013; Nemeth and Shoback, 2013; Nemeth and Goodman,
2015). In addition, calcilytics’ potential side effects—e.g., mild
hyperparathyroidism in humans, hypertension in rats—shied
people away from considering their use in clinical settings.

However, calcilytics’ rather mild side effects must be carefully
weighed against the harsh fact that symptomatic LOAD inexorably
kills the patient cognitively several years before her/his actual
physical demise. Hence, just as anticancer chemotherapeutics are
used notwithstanding their potential side effects, once clinical
trials have proven calcilytics therapeutic effectiveness, their side
effects will be a trivial toll against preventing/stopping LOAD
progression.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Astrocytes’ and neurons’ pathophysiology in LOAD brains are
quite intricate and specific for each animal species, brain area,
aging phase, and stage of the illness. Therefore, a deeper
understanding of AD-related metabolic events occurring in
human cortical untransformed astrocytes and neurons has
helped and will help identify ground breaking therapeutic
approaches to LOAD. Differently from neurons, human
astrocytes survive for lengthy terms the exposure to toxic
amounts (in the µM range) of soluble or fibrillar Aβs while
undergoing complex and only partially understood functional
changes collectively defined as activation. The latter include,
amongst others, alterations of (a) the Aβ•α7-nAChR signaling
affecting the intra- and intercellular Ca2+ signaling and
gliotransmitters secretion, and (b) the Aβ•CaSR signaling
triggering a surplus production and secretion of neurotoxic Aβ42-
os, VEGF-A, and NO. However, since the CaSR is endowed
with panoply of intracellular signaling pathways, we undertake
that not all of the toxic metabolic effects prompted by Aβ•CaSR
signaling have been yet identified in human neural cells.
Moreover, the interactions of Aβs with receptors other than
the CaSR and/or Aβs-mediated non-receptorial mechanisms
add other neurotoxic factors (e.g., proinflammatory cytokines,
chemokines, ROS, etc.) which confound the picture. Collectively,
these manifold metabolic responses reveal the deep involvement
of astrocytes in LOAD’s promotion. This view is strengthened by
a recent report demonstrating that, while human neurons release
only Aβ1−42, human astrocytes secrete a remarkable amount of
N-terminally truncated Aβs, including Aβ3−42 moieties that are
transformed into the utterly toxic pE-Aβ3−42 (Gunn et al., 2010;
Morawski et al., 2014; Oberstein et al., 2015). However, here
one should not overlook that oligodendrocytes and microglia
and the cellular components of cerebral vessels also express
the CaSR. Therefore, toxic Aβ•CaSR interactions do also occur
at the level of the latter cell types which may induce the
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production and release of further amounts of Aβ42-os thereby
helping advance AD progression. This field is worth exploring
further because white matter damage, neuroinflammation, and
local hypoxia/ischemia/stroke play relevant roles in LOAD
pathophysiology.

It is noteworthy that allosteric CaSR antagonists or calcilytics
can suppress upstream all the downstream toxic consequences
of Aβ•CaSR signaling in both human neurons and astrocytes,
and likely might do the same in all other neural and vascular
cell types of the CNS. These findings make us posit that
calcilytics would effectively prevent LOAD amyloidosis from
spreading. Moreover, by hindering Aβ42-os accumulation and
diffusion calcilytics would prevent also the ensuing appearance
and spread of the p-Tau-os and their lethal cooperation with
Aβ42-os (Dal Prà et al., 2005, 2014a,b, 2015a; Armato et al.,
2013a).

In conclusion, these findings attest the need to increase our
understanding of CaSR’s pathophysiology in all types of human
untransformed neural cells. In fact, one cannot disregard that
meanwhile LOAD is flaring up worldwide in an epidemic-like
fashion. Therefore, it would be timely to validate the anti-LOAD

effectiveness of calcilytics in clinical trials recruiting aMCI and/or
early symptomatic patients.
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