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The ATP-sensitive K+-channels (KATP) are distributed in the tissues coupling metabolism

with K+ ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1), KCNJ11 (Kir6.2),

ABCC8 (SUR1), and ABCC9 (SUR2) genes, alternative RNA splicing give rise to

SUR variants that confer distinct physiological properties on the channel. An high

expression/activity of the sarco-KATP channel is observed in various rat fast-twitch

muscles, characterized by elevated muscle strength, while a low expression/activity

is observed in the slow-twitch muscles characterized by reduced strength and frailty.

Down-regulation of the KATP subunits of fast-twitch fibers is found in conditions

characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced

glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor

of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat

tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem

transformation of muscle into meat. The role of KCNJ11 gene in muscle function may

underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The

fiber phenotype and genotype are important in livestock production science. Quantitative

traits including meat production and quality are influenced both by environment and

genes. Molecular markers can play an important role in the genetic improvement of

animals through breeding strategies. Many factors influence the muscle Warner-Bratzler

shear force including breed, age, feeding, the biochemical, and functional parameters.

The role of KCNJ11gene and related genes on muscle tenderness will be discussed in

the present review.

Keywords: meet tenderness, ATP sensitive K+ channels, Warner-Bratzler shear force, skeletal muscle, gene
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INTRODUCTION

The ATP-sensitive K+-channels (KATP) are widely distributed
in the tissues including neurons, vascular, pancreatic beta cells,
cardiac, and skeletal muscles (Amoroso et al., 1990; Zhang
and Bolton, 1996; Liss and Roeper, 2001; Cole and Clément-
Chomienne, 2003; Flagg et al., 2010; Olson and Terzic, 2010). The
multi-level regulation by membrane phospholipids (PIP2), fatty
acids (LC-Acyl-CoA), protein kinases (PKA, PKC), creatin kinase
shuttle, and glycolytic enzymes, pH, hypoxia, and intracellular
nucleotides ensures complexity of metabolic sensing by KATP
channels (Selivanov et al., 2004; Flagg et al., 2010; Mele et al.,
2012; Mohammed Abdul et al., 2015). The main regulator of the
KATP channel is the ATP/ADP ratio, an elevated ATP/ADP ratio
leads to channel closure while the reduction of the ATP/ADP
ratio in the presence ofMg2+ ions determine the channel opening
thereby sensing nucleotides changes (Flagg et al., 2010).

Structure, Distribution, and Regulation of
KATP Channels
The KATP channels are hetero-octameric complexes of
pore-forming inwardly rectifier K+ (Kir6) channel subunits
associated with regulatory sulphonylureas receptor (SUR)
subunits, members of the ATP binding cassette (ABC) family of
membrane proteins. Two Kir6-encoding genes, KCNJ8 (Kir6.1)
and KCNJ11(Kir6.2), and two SUR genes, ABCC8 (SUR1)
and ABCC9 (SUR2), encode mammalian KATP subunits,
but alternative RNA splicing can give rise to multiple SUR
protein variants (e.g., SUR2A and SUR2B) that confer distinct
physiological and pharmacological properties on the channel
complex (Inagaki et al., 1995, 1996; Chutkow et al., 1996;
Babenko et al., 2000; Tricarico et al., 2006; Wheeler et al., 2008).
The nucleotide inhibitory and stimulatory sites are located on
the Kir6.2/Kir6.1 and on SURs subunits of the channel complex,
respectively (Babenko et al., 2000; Flagg et al., 2010).

The SUR subunits carry the binding sites for the KATP
channel blockers used as insulin releasing agents, and for the
KATP channel openers used as cardioprotective and vasodilating
drugs (Babenko et al., 2000; Tricarico et al., 2008a, 2012). These
drugs are also effective on the skeletal muscle KATP channels
(Table 1).

As in cardiac muscle, skeletal muscle KATP channels (sarco-
KATP) remain closed at rest and do not contribute to electrical
activity unless the muscle is stressed. Channel regulation by
intracellular nucleotide, metabolic enzymes, and ATP-ase pumps
are similar to that in cardiac muscle, but the intracellular
acidification is a potent activator of the skeletal muscle subtype
(Tricarico et al., 1997a, 2003, 2012).

The properties of the sarco-KATP channels are age dependent
in rat fibers. The activity recorded in excised patches from fast-
twitch fibers is low at 5–6 days of postnatal life, increases to a
plateau at 12–13 days, then declines toward adult values after
37 days. Two distinct types of the KATP channel complex can
be distinguished. The early developmental period (5–6 days) is
dominated by a KATP channel having a conductance of 66 pS, a
high open probability of 0.602 which is determined by a reduced
mean close time as compared to that recorded in the adult fibers,

and an IC50 for ATP and glybenclamide of 123.1 and 3.97 µM,
respectively. The later developmental period (from 56 days) is
dominated by a KATP channel having a 71 pS conductance, but
a low open probability of 0.222. This adult channel is also 3.2
and 73.5 times more sensitive to ATP and glybenclamide than
the juvenile channel, respectively (Tricarico et al., 1997b).

The molecular composition of the sarco-KATP channels has
been clarified in adult rat muscle fibers. Hybrid KATP channel
complexes composed of Kir6.2, SUR2A, SUR1, and SUR2B
subunits contribute to functional channels in different muscle
phenotypes (Tricarico et al., 2006). A high expression/activity
of the Kir6.2-SUR2A and Kir6.2-SUR1 channel subunits is
observed in type IIA fast-twitch muscles, characterized by
elevated strength. A low expression/activity of the sarco-
KATP channel is observed in the slow-twitch muscle of the
rat characterized by reduced strength and frailty being more
susceptible to mechanical and chemical insults, and the Kir6.2-
SUR2B subunits contribute to the functional channel in this
muscle phenotype (Table 1). The sarco-KATP channel activity
declines with aging in fast-twitch rat fibers showing surface
channel subtypes characterized by low open probability and
current density (Tricarico and Camerino, 1994).

The age-dependent changes of the KATP channels subtypes
may reflect the different metabolic needs of the muscles during
development and aging.

Role of KATP Channels in Skeletal Muscle
Homeostasis and Fatigue
The role of the sarco-KATP channels in the muscle fatigue has
been extensively investigated. Muscle fatigue is the decline in
force production during prolonged and repetitive stimulation
and many biochemical mechanisms have been proposed to
contribute to this process. One possible mechanism is that
activation of KATP channels, in response to reduction of
ATP/ADP ratio, might underlie a decrease in action potential
duration and hence twitch force. The activation of sarco-
KATP channels after fatigue has developed, helps to preserve a
polarizedmembrane potential and rise of tension that is observed
in Kir6.2−/− muscles that are exposed to fatiguing stimuli
(Gramolini and Renaud, 1997; Gong et al., 2000, 2003; Cifelli
et al., 2007, 2008). KATP channels play a role in Ca2+ handling
and maintaining fiber integrity during exercise. Abolishing
KATP channel activity in fast-twitch muscle fibers leads to a
decrease in peak Ca2+ and tetanic force, increases in resting
unstimulated Ca2+ ions with faster fatigue rate (Cifelli et al.,
2007). The observation that there is extensive fiber damage
in Kir6.2−/− subjected to training protocols corroborates the
conclusion that KATP channel activation is a physiologically
relevant myoprotective mechanism in vivo (Kane et al., 2004;
Thabet et al., 2005). These findings accounts for the observation
that the rate and extent of post-fatigue recovery are decreased
in Kir6.2−/−animals. A similar phenotype has been found in
SUR2−/−mice, that show impaired exercise performance and
extensive fiber damage following exercise (Stoller et al., 2009).

The sarco-KATP channels regulate glucose homeostasis. The
in vitro pharmacological blockade of sarco-KATP channels in
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cell line as well as the down-regulation of the subunits increases
basal or insulin-dependent glucose uptake as observed in KATP
deficient Kir6.2−/− and SUR2−/− animals (Tsiani et al., 1995;
Chutkow et al., 2001; Wasada et al., 2001). In these mice there is
enhanced glucose uptake, consistent with an inhibitory effect of
sarco-KATP activity on glucose uptake (Wasada, 2002). KCNJ11
gene knockout mice (Kir6.2−/−) also have reduced glycogen
storage, lean phenotype, lower body fat, and severe muscle
weakness (Alekseev et al., 2010; Figure 1). Down-regulation
of Kir6.2/SUR2A subunits in skeletal muscle is associated
with abnormal insulin response with severe hypokalemia and
hypoglycaemia in rats (Tricarico et al., 2003, 2008b). It may be
possible that the abnormally enhanced KATP channel activity
as occurring in neonatal diabetes will affect also glucose uptake
into skeletal muscle, thereby exacerbating the hyperglycaemia
(Ellard et al., 2007; McTaggart et al., 2010). Similarly, in obesity
an accumulation of fatty acyl-CoA intermediates, by activating
KATP channels will exacerbate insulin resistance (Wasada et al.,
2001; Wasada, 2002).

The phenotype-dependent KATP activity therefore leads to
a better use of glucose among muscles in proportion to their
metabolic needs. The enhanced expression/activity of the sarco-
KATP channels reduces the glucose uptake in low energetic
demand fast-twitch muscles, while making glucose available to
slow-twitch muscles which are characterized by a high glucose
demand during contraction and reduced expression/activity of
the sarco-KATP channels (Bonen et al., 1981; Megeney et al.,
1993; Tricarico et al., 2006). This mechanism may contribute to
the action of the KATP channels in regulating the rate and extent
of post-fatigue recovery.

The observed differences in KATP channel properties among
muscles in terms of expression/activity and composition of
channel subunits can be related to their specific functions in rat
(Tricarico et al., 2006). The KATP channels of flexor digitorum
brevis (FDB) are indeed composed of SUR1 and SUR2 subunits,
whereas KATP channels of tibialis anterioris (TA), extensor
digitorum longus (EDL), and soleus (SOL) muscles are composed
of SUR2 subunits which aremore responsive tometabolic stresses

FIGURE 1 | Signaling pathways of sarco-KATP and mito-KATP channels in skeletal muscle. Hypoxia-induced lowering of ATP/ADP/AMP ratio activates

mito-KATP channel with mito-swelling, inhibition of succinic dehydrogenase(SDH) of complex II, ATP synthesis, inhibition of glycogen-synthase-kinase-3beta(GSK3β),

closure of the mitochondrial permeability transition pore(MPTP). The high ATP/ADP/AMP ratio activates the phosphatidylinositol-3 kinase/protein kinase

B /mammalian target of rapamycin complex1(mtorC1) (PI3K/Akt/mtorC1) pathway. The AMP-activated protein-kinase(AMPK) inhibits mtorC1 and activates forkhead

box protein O(FOXO). The lowering of ATP/ADP ratio following fatigue activates the sarco-KATP channels with improved post-fatigue recovery. In slow twitch fibers,

protein kinase C(PKC) and extracellular signal-regulated kinases(ERK) may activates sarco-KATP and mito-KATP channels with cytoprotection. Continuous line

indicates activation, dashed line inhibition.
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compared with channel complexes of SUR1. The TA, EDL, and
SOLmuscles are exposed more often to hypoxia and fatigue than
FDB muscle, which shows a different morphology and function
(Table 1).

KATP Channel Subunits Regulate
Apoptosis and Cell Viability
The in vivo down-regulation of KATP channel subunits or the
in vitro long term exposure of the channels to channel blockers
(>24 h) are coupled to apoptosis and atrophic signaling in
isolated fibers (Tricarico et al., 2010; Cetrone et al., 2014; Mele
et al., 2014a,b). The atrophic effects of the channel blockers and
of the apoptotic agent staurosporine are muscle type dependent
and are related with the sarco-KATP channel density. For
instance, the KATP channel blockers induces atrophy after 24 h
of incubation time of fast-twitch fibers that are characterized
by elevated sarco-KATP channels expression/activity, while the
apoptotic agent staurosporine induce atrophy within 6 h of
incubation time affecting slow-twitch fibers that are characterized
by low sarco-KATP channel expression/activity. These findings
corroborate the idea that the high/expression activity of the
sarco-KATP channel subunits is a protective factor against insults
(Cetrone et al., 2014; Mele et al., 2014a).

Emerging evidences suggest that in skeletal and cardiac
muscles the sarco-KATP and mitochondria KATP (mito-
KATP) channels are coupled to the insulin/IGF1-PI3K-Akt-mtor
signaling and/or PKC/ERK pathway (Figure 1). The SUR2A gene
is upregulated by Akt following hypoxia and exerts cytoprotective
action saving intracellular ATP/ADP/AMP ratio which is critical
in regulating the Akt–mtor pathway (Vadlakonda et al., 2013;
Mohammed Abdul et al., 2015). The Akt–mtorC1 pathway
determines protein synthesis also inhibiting FOXO atrophic
signaling in fast-twitch skeletal muscle (Bonaldo and Sandri,
2013).

The sarco-KATP and mito-KATP channels are modulated by
PKC phosphorylation in cardiomyocite and in cell line expressing
the recombinant channels (Light et al., 2000). PKC is coupled
to ERK in skeletal muscle (Ronda et al., 2010). The fact that the
unselective PKC inhibitor staurosporine induces atrophy of slow
fibers which is prevented by diazoxide, suggests that PKC/ERK
plays a role in this muscle phenotype in regulating protein
synthesis (Mele et al., 2014a).

Diazoxide activates mito-KATP, potentiates PKCε, and
PI3K/Akt/mtorC1 pathways (Kim et al., 2006; Kwon et al., 2006;
Chen et al., 2016). While, the mito-KATP channel blocker 5-
hydroxydecanoate (5HD) and the sulphonylureas show opposite
actions (Khanfar et al., 2013; Mele et al., 2014b).

The opening of mito-KATP channel following low ATP
levels induces mitochondrial swelling of the inner membrane
regulating ATP synthesis (Wojtovich et al., 2013). The mito-
KATP channel was initially identified into the SUR1/Kir6.1
complex that recapitulated mito-KATP channel activity,
including diazoxide activation and 5-hydroxydecanoate
inhibition (Ardehali et al., 2004). Recently, a role for ROMK2
(Kir1) subunit in generating the mito-KATP channel has been
proposed (Foster et al., 2012). Openings of the mito-KATP

channel blocks the mito-permeability transition pore reducing
cytochrome C release in different cells. The mito-KATP channel
is also coupled to the glycogen-synthase-kinase 3beta (GSK-3β)
and connexin 43(Cx43) so that the GSK-3β downregulation
transfers cytoprotective signaling through mitochondrial Cx43
onto mito-KATP channels openings (Rottlaender et al., 2012;
Figure 1).

KATP Channelophaties
The KATP channels are involved in rare genetic
diseases associated with insulin/glucose dis-metabolism,
cardiomyopathy, weakness, and dysmorphisms.

Mutations in the KCNJ11 and ABCC8 genes are now well-
understood to underlie neonatal diabetes mellitus and congenital
hyperinsulinism (Ellard et al., 2007; Flanagan et al., 2007; Arnoux
et al., 2010; McTaggart et al., 2010). Activating mutations in the
KCNJ11 gene encoding for the Kir6.2 subunit is associated with
severe neuro-muscular weakness in permanent neonatal diabetes
(Gloyn et al., 2004).

The SUR1 and SUR2A/B subunits are involved in
neuroprotection following ischemia, and in neurodegenerative
diseases such as Parkinson or Alzheimer’s diseases and aging
(Liss and Roeper, 2001; Zeng et al., 2007; Nelson et al., 2015).
Gain of function and loss of function mutations in the KCNJ8
gene is associated with the J-wave phenomenon and early
repolarization of the hearth, and with the sudden infant death
syndrome, respectively (Kane et al., 2005; Nichols et al., 2013).
Loss-of-function mutations of the ABCC9 gene were found in
patients affected by long-standing atrial fibrillation originating in
the vein of Marshall and in patients with dilated cardiomyopathy
(Kane et al., 2005; Nichols et al., 2013).

Down regulation of the KATP channel subunits of fast-
twitching fibers is associated with hypokalemic periodic paralysis.
This disorder is characterized by attacks of weakness induced
by insulin-glucose infusion and lowering of serum K+ ions
(Tricarico et al., 1998, 1999, 2008b).

Gain of function mutations in the ABCC9 gene encoding for
the cardiac, skeletal and smooth muscles SUR2A/B subunits of
the KATP channel is responsible for the Cantu’ syndrome, a
distinctive multi-organ disease characterized by hypertrichosis,
osteochondrodysplasia, cardiomegaly, and musculo-skeletal
abnormalities (Harakalova et al., 2012).

Involvement of the KCNJ11(Kir6.2) Gene in
the Determination of the Meat Tenderness
Several polymorphisms were detected at KCNJ11 locus in
a sample of Nellore cattle (Tizioto et al., 2013). Among
them, only two SNPs were used to investigate a possible
association with meat tenderness of meat by using the
Warner-Bratzler shear force (WBSF). The first polymorphism,
c.1526C>T(NCBL_ss#537718973) is a synonymous
mutation located in the coding region; the second one,
c.2342T>C(NCBL_ss#537718995) is located in the 3′UTR
region. The SNP c.2342T>C showed an additive effect on WBSF
measured 24 h after slaughter and after 7 days of cold-chamber
aging, with the T allele being associate with reduced WBSF.
No effect of the haplotype was observed (Tizioto et al., 2013).
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The KCNJ11 gene is located on bovine chromosome 15, near
a quantitative trait locus (QTL) for meat tenderness thereby
indicating the involvement of this gene in regulating this muscle
parameter in bovine species (Rexroad et al., 2001; Tizioto et al.,
2013).

These findings suggest that the expression/activity of the
KATP channel subunits may have relevance in determining the
WBSF in muscles also under different nutritional status (De
Palo et al., 2012). Meat tenderness is affected by breed, gender,
and nutritional status. Biochemical and functional analysis
showed that lower shear force values were associated with more
tender meat. Muscles in the highest tenderness cluster had
the lowest total and insoluble collagen contents, the highest
mitochondrial enzyme activity (isocitrate dehydrogenase), the
highest proportion of slow oxidative fibers, the lowest proportion
of fast-glycolytic fibers, the lowest average muscle fiber cross-
sectional area and showing intramuscular fat (Chriki et al., 2012).

Gene and proteomic analysis identified several gene pathways
associated with tenderness, among these the heat shock proteins,
the calpain/calpastatin and apoptotic genes, the energy and
metabolic genes, and fatty acid related genes pathways have
attracted the attention of several investigators (Hocquette et al.,
2012; Picard et al., 2014). However, it is not always possible
to extrapolate the relevance of these markers to all bovine
population.

Moreover, a significant relationship between the KCNJ11
gene expression level and the WBSF after 7 days of cold-
chamber aging was found, without a significant influence of the
investigated SNPs on gene expression levels (Tizioto et al., 2013).
Although, the KCNJ11 gene encodes for a K+ channels Tizioto
and coworkers reported no significant association between the
two considered SNPs and the K+ content in the meat obtained
by Nellore cattle in Brazil. However, as these authors state, they
did not distinguish between intracellular and extracellular K+

content, being impossible to detect the regulation of K+ flow
(Tizioto et al., 2014). So, to further investigate all these concerns
also in other breeds, genetically distant from Nellore, could be an
interesting perspective.

The role of K+ ions content on meet tenderness is
controversial. It seems that higher levels of K+ ions are related
to meat tenderness, instrumentally evaluated through trained
panel test (Mateescu et al., 2013). The addition of K-lactate in
fresh bovine chuck muscles confers more tenderness to meat
(Walsh et al., 2010). Furthermore, the substitution of Na+ with
K+ ions brought to a higher tenderness of the product evaluating
sensorial profile modifications through panel test (Greiff et al.,
2015). Although, mechanical and instrumental meat tenderness
determination is not strictly correlated to sensorial evaluation
of the same qualitative pattern, different authors recently found
a positive correlation between meat tenderness and K+ ions

concentration. Similar results obtained with different tenderness
evaluation techniques represent a strong confirmation of results.
Actually scientific community is discussing on the best way for
evaluating this important qualitative pattern of meat sensorial
profile, comparing and correlating results obtained by human
based analysis (consumer and panel tests), mechanical analysis
(WBSF and Meullenet–Owens razor shear) and spectroscopy

(visible and near-infrared; Yancey et al., 2010; Emerson et al.,
2013). Besides, some found in Angus breed a heritability
rate of K+ ions concentration indicating also an important
role of genetics in this aspect (Mateescu et al., 2013). Knock
outs mice of K+ channel gene subunits other than KATP
subunits show a similar phenotype (muscle weakness, small
size) supporting the role of K+ ions as a factor involved in the
muscle tenderness. Low intracellular K+ contentmay activates K-
dependent proteolysis effectors such as caspases with a potential
role in the muscle tenderness (Nolin et al., 2016). Moreover,
muscle-specific signaling pathways coupled to the splicing forms
of the KATP channels may play a role (Figure 1).

CONCLUSIONS

Several critical questions remain open for instance the role and
distribution of KCNJ11 gene polymorphisms and related genes
in the Italian cattle breeds which has never been investigated.
The effects of the c.2342T>C and c.1526C>T SNPs at KCNJ11
locus on the expression/activity of the sarco-KATP channel
subunits in ex vivo experiments as well as the cellular phenotype
changes associated with the KCNJ11 gene down-regulation in
the muscles and in different native cell types of cattle are
not known.

The correlation of the fiber phenotypes using biochemical and
histological analysis of the muscle in terms of fiber composition,
fat and collagen contents, qualitative and chromatic aspects with
gene expression, and polymorphisms is another point of interest
(Martin et al., 1985; Schiaffino et al., 1989; Picard et al., 1998;
Duris et al., 2002; Tateo et al., 2007).

Genetic prediction of beef tenderness in bovine breeds
represents an important topic useful to widen knowledge on
the complex phenomena related to mechanical and sensorial
properties of fresh and cured meat, but it could be a fundamental
tool necessary for genetic improvement of meat producing
animals, and of beef at first.
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