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Metabolism being a fundamental part of molecular physiology, elucidating the structure

and regulation of metabolic pathways is crucial for obtaining a comprehensive

perspective of cellular function and understanding the underlying mechanisms of its

dysfunction(s). Therefore, quantifying an accurate metabolic network activity map under

various physiological conditions is among the major objectives of systems biology in

the context of many biological applications. Especially for CNS, metabolic network

activity analysis can substantially enhance our knowledge about the complex structure

of the mammalian brain and the mechanisms of neurological disorders, leading to

the design of effective therapeutic treatments. Metabolomics has emerged as the

high-throughput quantitative analysis of the concentration profile of small molecular

weight metabolites, which act as reactants and products in metabolic reactions and

as regulatory molecules of proteins participating in many biological processes. Thus,

the metabolic profile provides a metabolic activity fingerprint, through the simultaneous

analysis of tens to hundreds of molecules of pathophysiological and pharmacological

interest. The application of metabolomics is at its standardization phase in general,

and the challenges for paving a standardized procedure are even more pronounced in

brain studies. In this review, we support the value of metabolomics in brain research.

Moreover, we demonstrate the challenges of designing and setting up a reliable brain

metabolomic study, which, among other parameters, has to take into consideration

the sex differentiation and the complexity of brain physiology manifested in its regional

variation. We finally propose ways to overcome these challenges and design a study that

produces reproducible and consistent results.

Keywords: CNS metabolomics, systems biology, systems medicine, neurophysiology, network medicine,

metabolic network analysis, metabolomic data standardization

THE SYSTEMS BIOLOGY REVOLUTION AND ITS IMPACT ON
BRAIN RESEARCH

The new technologies for high-throughput biomolecular analysis (aka “omics”) enabled the
simultaneous quantification of tens to thousands of molecules at various levels of cellular function.
The comprehensive perspective of molecular physiology that can now be obtained renders
obsolete the “conventional” reductionist approach (Ge et al., 2003; Vidal, 2009), as biological
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systems can be viewed as networks of interacting genes and gene
products (Vidal and Cusick, 2011).

In the case of central nervous system (CNS) research
in particular, network and systems biology greatly enhanced
the available analytical toolbox, when considering the highly
complex, multi-scale in space and time, structure of the
mammalian brain (Geschwind and Konopka, 2009; Bassett
and Gazzaniga, 2011). For a comprehensive understanding
of mammalian brain architecture and function, CNS activity
has to be viewed as the coordinated interaction of the
biomolecular networks of the various brain regions. The
functional role and properties of brain regions are synergistic
and complimentary, but not linearly dependent, requiring
thus systems biology approaches for their elucidation and
interpretation. The high-throughput quantitative nature of omics
studies shifts brain research toward knowledge-based systemic
investigations (Reddy et al., 2013), distinguishing them from the
mainly hypothesis-driven currently performed in the majority
of neurobiology laboratories. The systemic studies can lead to
a comprehensive mapping of mammalian brain function with
respect to neural connections (“connectomics,” e.g., Lichtman
et al., 2014) and molecular fingerprinting [transciptomics,
proteomics, metabolomics (Geschwind and Konopka, 2009)].
These results are expected to advance the in vivo neuroimaging
and functional analysis techniques, like PET, MRI, optogenetics
(de Celis Alonso et al., 2015; Jarvis and Schultz, 2015; Lu and
Yuan, 2015), toward the development of sensitive and accurate
diagnostic tools and the design of personalized therapeutic
treatments.

THE EMERGING ROLE OF
METABOLOMICS

Metabolomics is the most recently introduced among all omics,
with a very rapid growth in the last years. It refers to the high-
throughput analysis of the metabolic network state, through
the simultaneous quantification of the concentrations of free
low molecular weight metabolites, i.e., the metabolic profile.
Since free metabolite concentrations affect and are affected
by the metabolic reaction rates (or fluxes), the metabolic
profile is a metabolic fingerprint, providing a perspective of
the in vivo enzymatic activity, which cannot be obtained
by transcriptomics or proteomics (Hollywood et al., 2006;
Kanani et al., 2008; Patti et al., 2012). Metabolomics can
be readily applied to biological systems under transient
physiological conditions, does not require extensive knowledge
of the metabolic network structure and uses classical analytical
chemistry techniques (Kanani et al., 2008). The metabolomic
data can contribute to the reconstruction of the active
metabolic network, information which in the case of mammalian
brain research can be incorporated to the comprehensive
neural connectome (Sporns, 2011; Ivanisevic and Siuzdak,
2015). Despite its significance, the broad deployment of
metabolomics in systems medicine in general and brain
research in particular, is currently hindered by the lack of

standardized methodologies ensuring accurate and reproducible
results.

In this technical context, few large-scale metabolomic studies
of CNS disorders in human have been reported so far,
having, however, already demonstrated the value of high-
throughput vs. small-scale metabolic investigations. They focus
mostly on the untargeted profiling of biological fluids, blood
plasma or serum, and cerebrospinal fluid (CSF) (Holmes
et al., 2006; Kaddurah-Daouk et al., 2012; Yang et al., 2013;
Yoshimi et al., 2016) and a limited number, on the metabolic
fingerprinting of post-mortem human brain (Prabakaran et al.,
2004; Chan et al., 2011; Graham et al., 2013; Jové et al.,
2014), mainly for the investigation of neurodegenerative and
psychiatric disorders. For a comprehensive profiling of brain
tissue avoiding any complications associated with post-mortem
studies, animal models have been used (e.g., Salek et al., 2010;
Constantinou et al., 2011; Davidovic et al., 2011; Chen et al.,
2015; González Domínguez et al., 2015). These studies provide a
holistic perspective of the metabolic alterations underlying brain
dysfunction, furthering our understanding of the molecular basis
of disorders like schizophrenia, bipolar disorder, depression, or
Alzheimer’s disease (AD), opening new research directions and
leading the way toward the detection of specific biomarkers for
the development of personalized diagnostic tools and treatments
(Guest et al., 2015).

STANDARDIZING BRAIN METABOLOMICS
IN SYSTEMS BIOLOGY RESEARCH

Metabolomics in systems biology aims at using the metabolic
profiles to elucidate the dynamics of metabolic pathways and
reveal molecular mechanisms of disorders. This objective is
even more prominent in the context of integrated analyses with
other omics (Martins-de-Souza, 2014). Therefore, metabolomics
should not be viewed as a mere chemometric methodology
employing high-tech analytical chemistry techniques, but as a
multi-step biomolecular analysis, correspondent at the metabolic
level of the transcriptomic and proteomic profiling. In this
context, metabolomics comprises both experimental (pre-
analytical and analytical) and computational parts (Figure 1).
It starts from the educated selection of the biological system
and study group along with the appropriate experimental
design to ensure accurate and sensitive metabolic activity
monitoring, based on the investigated biological question(s), the
handling and collection constraints of the utilized biological
system and the requirements of the analytical technique(s)
used for the metabolic profile acquisition. It ends with the
reconstruction of the relevant metabolic activity network,
used to validate and interpret the acquired metabolomic data
with respect to the examined biological problem. Below, we
describe the metabolomic analysis steps, pointing out issues
in their design and/or execution to be considered when
applied in brain research and proposing ways to address
these concerns, toward standardized analyses with validated
performance.
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FIGURE 1 | Schematical representation of the metabolomic analysis workflow. It comprises a pre-analytical, an analytical, and a computational section,

starting from an educated experimental design toward the reconstruction of the metabolic network activity map for the extraction of biologically relevant conclusions.

Pre-Analytical Section
Experimental Design
In human neurophysiology investigations, metabolomic analyses
have to rely on biofluids, mainly blood and CSF. However, given
the blood-brain barrier (BBB), there are serious doubts whether
sensitive biomarkers of neurodegenerative disorders should be
sought in the blood composition (Trushina et al., 2013). CSF
reflects better the brain physiology, as shown for depression
and AD, respectively, by the metabolomics studies of Kaddurah-
Daouk et al. (2012) and Lista et al. (2014). However, due to the
invasiveness of the collection procedure, most available samples
are from patients of brain disorders, who have to undertake it
as part of their monitoring or treatment. Thus, patient profiles
of a disorder are often used as reference in the analysis of
another, contributing thus to a high variation between studies.
Addressing this issue requires educated experimental designs
with a large number of patients, if available, and sophisticated
statistical methods. Brain tissue analysis is based primarily
on animal models. Post-mortem human tissues are in low
availability and vary with respect to patients’ characteristics,
disease state, therapeutic treatment, cause of death, collection,
and handling procedure, differences that can affect the acquired
metabolic profiles (Samarasekera et al., 2013). On the other
hand, animal model studies depend on the model accuracy
in simulating human pathophysiology (Suvorov and Takser,
2008; McGonigle and Ruggeri, 2014). Regarding metabolism
in particular, a disorder may cause opposite effects in lab
rodents compared to humans (Panzoldo et al., 2011; Blekhman
et al., 2014; Martens, 2015). Brain regional variation should
also be considered, as a comprehensive perspective of brain
pathophysiology can be obtained from the integrated analysis of

multiple brain regions (e.g., Salek et al., 2010; Ivanisevic et al.,
2014).

In human investigations, study groups should be selected
to be matching with respect to gender, age, and other
demographic characteristics. Accuracy and reproducibility
between metabolomic studies in animals require well-controlled
housing and handling conditions, including standardized food
tailored to the study objective(s) (Rathod et al., 2014; Selfridge
et al., 2014) and minimization of any stress situations (Liu
et al., 2013; Heinla et al., 2014) that may affect brain metabolic
physiology. Educated experimental designs allow for mainly
the investigated parameter(s) to be affecting the acquired
results, decreasing the impact of biological variation. Thus,
they support the use of few animals, adhering to the “3R”
(Replacement, Reduction, Refinement) regulations for animal
studies (Graham and Prescott, 2015). Brain studies cannot be
limited to the analysis of one sex/gender or to mixed samples
from both sexes, as the effect of a particular pathophysiology
or the impact of a therapeutic treatment may greatly differ
between sexes (Cahill, 2006; Beery and Zucker, 2011; Miller,
2014), shown also in the metabolomics study of Zhang et al.
(2009). Finally, the experimental design of a CNS metabolomic
analysis should take into consideration the requirements of the
analytical technique used for profile acquisition, regarding the
amount of biofluid or the size of brain tissue required for an
accurate and reproducible performance. In light of the available
sample number, pooling may be necessary, despite preventing
personalized profiling (Schmidt et al., 2009; Chinopoulos et al.,
2011). All parameters to be considered in the experimental
design of brain metabolomic studies are schematically shown in
Figure 2.
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FIGURE 2 | The main biological parameters that have to be considered for an educated experimental design in brain metabolomics.

Sample Collection and Handling
The sample collection and handling is a key step in a
metabolomic analysis as it has to minimally affect the
metabolic physiology of brain tissue and minimize metabolite
loss and/or significant alterations in metabolite concentrations
in the case of biofluids, before the enzymatic quenching.
International directives for collection, handling, storage, and
transport for samples to be used in omic analyses are currently
under development to enable the generation of extensive
and comparable biobanks for omic studies. In all cases, it
is important that the collection and handling procedure has
the shortest duration possible and—if possible—carried out at
4◦C. For these reasons, in blood metabolomics, plasma has
been preferred over serum (Liu et al., 2010; Yu et al., 2011).
Moreover, the anticoagulant cannot be a metabolic intermediate,
should minimally interact with the blood components and its
measurement could be easily separated from the metabolic
profile. Thus, EDTA has been preferred over heparin for
metabolomic and proteomic analyses (Hebels et al., 2013). CSF
collection requires highly trained clinicians as the procedure is
risky and painful (Quinones and Kaddurah-Daouk, 2009). In
post-mortem tissue analyses, metabolomic data normalization
should take into consideration the time after death, the tissue
removal method and duration, the sample freezing method and
storage duration (Samarasekera et al., 2013).

In brain tissue analyses of animal models, there is still a debate
regarding the use of perfusion protocols. As the head can be
isolated from the rest of the body, most reported neurochemistry
studies are based on non-perfused tissues. Perfusion introduces
an additional perturbation potentially affecting the metabolic
physiology of the animal in general and brain tissue in particular.
However, the application of a perfusion protocol is imperative

to separate the brain tissue profile from the blood metabolite
composition, while it cannot be avoided when parallel multi-
organ studies are concerned. PBS or isotonic saline have
been used as perfusion agents. Further studies comparing the
effect of various perfusion protocols on brain metabolomics
are required. In the same context, the use and method of
anesthesia are still debatable in animal brain studies. Following
the anesthesia procedures considered mildest for human should
be the most appropriate measure for metabolomic analyses,
although definite answers for this subject require specialized
investigations (Overmyer et al., 2015). For example, using dry
ice for anesthesia is not appropriate for metabolomic studies as
carbon dioxide may perturb the animal metabolism.

Analytical Section
Free Metabolite Extraction
There is no extraction method for the entire metabolome. The
most commonly used solvents are methanol(/water) for polar
metabolite extraction and chloroform for lipidomic analyses
(Kanani et al., 2008). Various other extraction solvents exist and
protocols should be appropriately selected based on the study
objective.

Selection of the Analytical Technique
Metabolomics uses classical analytical chemistry techniques,
like NMR and mass spectrometry (MS) (Spagou et al., 2011).
NMR is of lower throughput and sensitivity than MS, but all
measuredmolecules are identified.MS is preferred for untargeted
metabolomics, but there are many unidentified peaks. Between
gas chromatography (GC)-MS and liquid chromatography (LC)-
MS, the former is more sensitive, of higher metabolite resolution
and referring to more populated peak databases. However, it
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is limited to compounds of molecular weight lower than 650–
1000 daltons and requires metabolite derivatization, with any
associated biases that need appropriate experimental design
and data normalization (Kanani and Klapa, 2007; Kanani
et al., 2008). If possible, integration of analytical techniques
should be preferred because the technological platforms provide
complementary information, as supported by the combined GC-
MS and UPLC-MS analysis of González Domínguez et al. (2014).

Computational Section
Peak Identification and Quantification
Peak identification and quantification is carried out according
to the analytical technique used. The analysis of NMR
spectra is more standardized compared to that of the MS-
reconstructed chromatograms of untargeted metabolomics in
particular. Software tools for automated feature identification
and quantification are used. In LC-MS, in particular, some
researchers use the entire feature profile for multivariate
statistical analysis in a purely data-driven approach (Meinhardt
et al., 2015). However, the “metabolite-centric” approach, in
which a marker ion is selected to represent and quantify each
metabolite derivative, has been considered more accurate. This
method is “knowledge-driven,” filtering out any biologically
irrelevant chromatographic artifacts and avoiding the inclusion
of mathematical biases in subsequent analysis, originated from
the multiple linearly dependent peaks/features belonging to the
same metabolite (Kanani et al., 2008; Allwood et al., 2009).

Data Validation, Normalization, and Filtering
A significant part of the computational analysis of untargeted
omic profiles is data validation and normalization (Quackenbush,
2001; Kanani et al., 2008). At this step, quality control (QC)
measures are used to evaluate whether all acquired data refer to
the same experimental procedure conditions and are not subject
to systematic experimental biases that can skew their biologically
relevant differences. To this end, QC reference samples are run
before, during and after the acquisition of the metabolic profiles
of an experimental batch (Gika et al., 2016), internal standards
are used and other specialized normalization methods [e.g., for
GC-MS derivatization biases (Kanani et al., 2008)] are applied
to ensure comparability between the analyzed profiles. After
normalization, data that are not consistently detected, have a
low signal to noise ratio, are technical artifacts or are suspect
of experimental biases for which they cannot be appropriately
corrected, are filtered out of further analysis. Standardized QC,
normalization and filtering methods can promote validated
performance among laboratories and assist in the formation of
integrated metabolomic databases for meta-analysis (Steinbeck
et al., 2012; Wishart et al., 2013).

Multivariate Statistical Analysis–Metabolic Network

Reconstruction
Metabolomic data could be analyzed using multivariate statistical
analysis methods for the extraction of correlations between
the various profiles or metabolites, in accordance with other
omics. However, metabolite concentrations may differ over a
wide range of orders of magnitude, so it may be preferable

for standardized values (z-scores) to be used. Furthermore, as
the metabolite concentrations are related through the metabolic
pathway network structure and regulation, interpreting the
metabolomic data in the context of the known metabolic
network greatly enhances their information content, assisting
both in the validation of the statistical analysis results and
in the extraction of biologically relevant conclusions. A major
advantage of metabolomics over other omics is that there
is a larger knowledge of the metabolic compared to other
biomolecular networks. Related tools predicting metabolic
pathway activity frommetabolomic data include pathway activity
prediction profiling—PAPi (Aggio et al., 2010) and metabolite set
enrichment analysis—MSEA (Xia and Wishart, 2010).

Genome-scale reconstructed metabolic networks are available
for human (Duarte et al., 2007) and mouse (Sigurdsson et al.,
2010). The metabolic network reconstruction for specific organs
can be based on the genome-scale reconstructed network of
the particular species and relevant information from metabolic
databases [e.g., KEGG (Kanehisa et al., 2012); MetaCyc (Caspi
et al., 2014)], literature and available metabolomic data. In
this way, using mainly transcriptomic and proteomic data,
genome-scalemetabolic models of human brain tissues have been
developed (Hao et al., 2012; Wang et al., 2012). Accordingly,
we have reconstructed a concise version of the primary
metabolism network of the mouse brain and used it for
metabolomic data interpretation (Constantinou et al., 2011).
However, questions about the potential reversibility of certain
reactions and the ability of the brain to synthesize certain
metabolites vs. obtaining them only through BBB remain open,
to be answered by specialized metabolic investigations preferably
with the use of labeled compounds and CSF metabolomic data.
For the metabolomic analysis of biofluids, there is a need for
reconstructing inter-organ metabolic networks that connect the
biofluid composition with the metabolic activity of the tissues
that contribute to it. This is a challenging task as the relevant
knowledge is not extensive. Combining information from human
metabolism and endocrinology textbooks and literature, we
reconstructed a network connecting the blood plasma metabolic
profile to the central carbon metabolism of liver, adipose, muscle,
and other tissues (Gkourogianni et al., 2014). To the best of our
knowledge, there is no CSFmetabolomic analysis connecting this
data with the brain metabolic network.

CONCLUSIONS AND FUTURE
DIRECTIONS

In the systems biology era, there is a shift from the reductionist
approach toward the use of high-throughput biomolecular
analyses and the interpretation of high-dimensional
biomolecular profiles in the context of networks of genes
and gene products. Metabolomics emerges as the newest omic
analysis that provides a metabolic physiology fingerprint that can
complement the transcriptional and the protein profiles, while
providing additional information about the in vivo enzymatic
activity and regulation. In brain research, the revolutionary
perspective of systems biology triggers the combination
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between molecular biology and neurophysiology toward a new
challenging research field that could be named as molecular
systems neurophysiology. The application of metabolomics
to the study of CNS physiology and pathophysiology will
further our understanding of the CNS metabolic complexity,
expected to provide important insight about the onset,
progression, and treatment of multifactorial neurodegenerative
and psychiatric diseases. However, for the successful deployment
of metabolomics in brain research, issues related to pre-
analytical and analytical steps along with the standardization
of metabolomic data validation and handling have to be
addressed to support its vast utilization as a major systems
biology tool. Accurate reconstruction of the brain metabolic
network, specialized for each brain region, is required. Moreover,
systematic multi-organ studies in which the brain physiology
changes are directly compared with alterations in peripheral
tissues could provide a better understanding of the brain activity
at the body level.

AUTHOR CONTRIBUTIONS

MIK conceived, initiated, and formulated this perspective.
MIK provided her systems biology experience and supervised

CGV’s research of the literature and systems neurophysiology
metabolomic experiments and analyses that contributed to this
perspective. MM contributed her expertise on neurophysiology
research and practice. CGV and MIK drafted the manuscript,
MM edited, and MIK finalized the manuscript. All authors have
read and approved the final manuscript.

ACKNOWLEDGMENTS

We gratefully acknowledge the Bodossakis Foundation and
FORTH/ICE-HT through the TREAT-HEART research
project, Action COOPERATION, Sub-Action II: “Large-Scale
Collaborative Projects” No 09SYN-21-965 for funding the
Ph.D. fellowship of Ms. CGV and the BIOSYS research project,
Action KRIPIS, project No MIS-448301 (2013SE01380036)
for partially funding the animal experiments and the GC-
MS profiling analysis based on which most of the discussed
results and opinions were generated. Both TREAT-HEART and
BIOSYS were funded by the General Secretariat for Research
and Technology, Ministry of Education, Greece and the
European Regional Development Fund (Sectoral Operational
Programme: Competitiveness and Entrepreneurship, NSRF
2007–2013)/European Commission).

REFERENCES

Aggio, R. B. M., Ruggiero, K., and Villas-Bôas, S. G. (2010). Pathway activity

profiling (PAPi): from themetabolite profile to the metabolic pathway activity.

Bioinformatics 26, 2969–2976. doi: 10.1093/bioinformatics/btq567

Allwood, J. W., Erban, A., de Koning, S., Dunn, W. B., Luedemann, A., Lommen,

A., et al. (2009). Inter-laboratory reproducibility of fast gas chromatography-

electron impact-time of flight mass spectrometry (GC-EI-TOF/MS) based plant

metabolomics.Metabolomics 5, 479–496. doi: 10.1007/s11306-009-0169-z

Bassett, D. S., and Gazzaniga, M. S. (2011). Understanding complexity in the

human brain. Trends Cogn. Sci. 15, 200–209. doi: 10.1016/j.tics.2011.03.006

Beery, A. K., and Zucker, I. (2011). Sex bias in neuroscience and

biomedical research. Neurosci. Biobehav. Rev. 35, 565–572. doi:

10.1016/j.neubiorev.2010.07.002

Blekhman, R., Perry, G. H., Shahbaz, S., Fiehn, O., Clark, A. G., and Gilad,

Y. (2014). Comparative metabolomics in primates reveals the effects of diet

and gene regulatory variation on metabolic divergence. Sci. Rep. 4, 5809. doi:

10.1038/srep05809

Cahill, L. (2006).Why sexmatters for neuroscience.Nat. Rev. Neurosci. 7, 477–484.

doi: 10.1038/nrn1909

Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C. A.,

et al. (2014). The Metacyc database of metabolic pathways and enzymes and

the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 42,

742–753. doi: 10.1093/nar/gkt1103

Chan, M. K., Tsang, T. M., Harris, L. W., Guest, P. C., Holmes, E., and Bahn,

S. (2011). Evidence for disease and antipsychotic medication effects in post-

mortem brain from schizophrenia patients.Mol. Psychiatry 16, 1189–1202. doi:

10.1038/mp.2010.100

Chen, X., Xie, C., Sun, L., Ding, J., and Cai, H. (2015). Longitudinal metabolomics

profiling of Parkinson’s disease-related ??-synuclein A53T transgenic mice.

PLoS ONE 10:e0136612. doi: 10.1371/journal.pone.0136612

Chinopoulos, C., Zhang, S. F., Thomas, B., Ten, V., and Starkov, A. A. (2011).

Isolation nad functional assessment of mitochndria from samll amounts of

mouse brain tissue. Methods Mol. Biol. 793, 311–324. doi: 10.1007/978-1-

61779-328-8_20

Constantinou, C., Chrysanthopoulos, P. K., Margarity, M., and Klapa, M. I. (2011).

GC-MS metabolomic analysis reveals significant alterations in cerebellar

metabolic physiology in a mouse model of adult onset hypothyroidism. J.

Proteome Res. 10, 869–879. doi: 10.1021/pr100699m

Davidovic, L., Navratil, V., Bonaccorso, C. M., Catania, M. V., Bardoni, B., and

Dumas, M. (2011). A metabolomic and systems biology perspective on the

brain of the Fragile X syndrome mouse model a metabolomic and systems

biology perspective on the brain of the Fragile X syndrome mouse model.

Genome Res. 21, 2190–2202. doi: 10.1101/gr.116764.110

de Celis Alonso, B., Hidalgo-Tobón, S. S., Menéndez-González, M., Salas-Pacheco,

J., and Arias-Carrión, O. (2015). Magnetic resonance techniques applied to

the diagnosis and treatment of parkinson’s disease. Front. Neurol. 6:146. doi:

10.3389/fneur.2015.00146

Duarte, N. C., Becker, S. A., Jamshidi, N., Thiele, I., Mo, M. L., Vo, T. D.,

et al. (2007). Global reconstruction of the human metabolic network based on

genomic and bibliomic data. Proc. Natl. Acad. Sci. U.S.A. 104, 1777–1782. doi:

10.1073/pnas.0610772104

Ge, H., Walhout, A. J., and Vidal, M. (2003). Integrating “omic” information: a

bridge between genomics and systems biology. Trends Genet. 19, 551–560. doi:

10.1016/j.tig.2003.08.009

Geschwind, D. H., and Konopka, G. (2009). Neuroscience in the era of functional

genomics and systems biology. Nature 461, 908–915. doi: 10.1038/nature08537

Gika, H. G., Zisi, C., Theodoridis, G., and Wilson, I. D. (2016). Protocol

for quality control in metabolic profiling of biological fluids by U(H)PLC-

MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1008, 15–25. doi:

10.1016/j.jchromb.2015.10.045

Gkourogianni, A., Kosteria, I., Telonis, A. G., Margeli, A., Mantzou, E., Konsta,

M., et al. (2014). Plasma metabolomic profiling suggests early indications for

predisposition to latent insulin resistance in children conceived by ICSI. PLoS

ONE 9:e94001. doi: 10.1371/journal.pone.0094001

González Domínguez, R., Garcia-Barrera, T., Vitorica, J., and Gomez-Ariza, J.

L. (2014). Region-specific metabolic alterations in the brain of the APP/PS1

transgenic mice of Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis.

1842, 2395–2402. doi: 10.1016/j.bbadis.2014.09.014

González Domínguez, R., Garcia-Barrera, T., Vitorica, J., and Luis Gomez-Ariza,

J. (2015). Application of metabolomics based on direct mass spectrometry

analysis for the elucidation of altered metabolic pathways in serum from the

APP/PS1 transgenic model of Alzheimer’s disease. J. Pharm. Biomed. Anal. 107,

378–385. doi: 10.1016/j.jpba.2015.01.025

Frontiers in Physiology | www.frontiersin.org 6 May 2016 | Volume 7 | Article 183

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Vasilopoulou et al. Metabolomics in Brain Research

Graham, M. L., and Prescott, M. J. (2015). The multifactorial role of the 3Rs

in shifting the harm-benefit analysis in animal models of disease. Eur. J.

Pharmacol. 759, 19–29. doi: 10.1016/j.ejphar.2015.03.040

Graham, S. F., Chevallier, O. P., Roberts, D., Hölscher, C., Elliott, C. T., and Green,

B. D. (2013). Investigation of the human brainmetabolome to identify potential

markers for early diagnosis and therapeutic targets of Alzheimer’s disease.Anal.

Chem. 85, 1803–1811. doi: 10.1021/ac303163f

Guest, P. C., Guest, F. L., and Martins-de Souza, D. (2015). Making sense of

blood-based proteomics and metabolomics in psychiatric research. Int. J.

Neuropsychopharmacol. doi: 10.1093/ijnp/pyv138. [Epub ahead of print].

Hao, T., Ma, H.-W., Zhao, X.-M., and Goryanin, I. (2012). The reconstruction and

analysis of tissue specific human metabolic networks.Mol. Biosyst. 8, 663–670.

doi: 10.1039/C1MB05369H

Hebels, D. G. A. J., Georgiadis, P., Keun, H. C., Athersuch, T. J., Vineis, P.,

Vermeulen, R., et al. (2013). Performance in omics analyses of blood samples

in long-term storage: opportunities for the exploitation of existing biobanks

in environmental health research. Environ. Health Perspect. 121, 480–487. doi:

10.1289/ehp.1205657

Heinla, I., Leidmaa, E., Visnapuu, T., Philips, M. A., and Vasar, E. (2014).

Enrichment and individual housing reinforce the differences in aggressiveness

and amphetamine response in 129S6/SvEv and C57BL/6 strains. Behav. Brain

Res. 267, 66–73. doi: 10.1016/j.bbr.2014.03.024

Hollywood, K., Brison, D. R., and Goodacre, R. (2006). Metabolomics:

current technologies and future trends. Proteomics 6, 4716–4723. doi:

10.1002/pmic.200600106

Holmes, E., Tsang, T. M., Huang, J. T. J., Leweke, F. M., Koethe, D., Gerth, C.

W., et al. (2006). Metabolic profiling of CSF: evidence that early intervention

may impact on disease progression and outcome in schizophrenia. PLoS Med.

3:e327. doi: 10.1371/journal.pmed.0030327

Ivanisevic, J., Epstein, A. A., Kurczy, M. E., Benton, P. H., Uritboonthai,

W., Fox, H. S., et al. (2014). Brain region mapping using global

metabolomics. Chem. Biol. 21, 1575–1584. doi: 10.1016/j.chembiol.2014.

09.016

Ivanisevic, J., and Siuzdak, G. (2015). The role of metabolomics in brain

metabolism research. J. Neuroimmune Pharmacol. 10, 391–395. doi:

10.1007/s11481-015-9621-1

Jarvis, S., and Schultz, S. R. (2015). Prospects for optogenetic augmentation

of brain function. Front. Syst. Neurosci. 9:157. doi: 10.3389/fnsys.2015.

00157

Jové, M., Portero-Otín, M., Naudí, A., Ferrer, I., and Pamplona,

R. (2014). Metabolomics of human brain aging and age-related

neurodegenerative diseases. J. Neuropathol. Exp. Neurol. 73, 640–657.

doi: 10.1097/NEN.0000000000000091

Kaddurah-Daouk, R., Yuan, P., Boyle, S. H., Matson, W., Wang, Z., Zeng,

Z. B., et al. (2012). Cerebrospinal fluid metabolome in mood disorders-

remission state has a unique metabolic profile. Sci. Rep. 2:667. doi: 10.1038/

srep00667

Kanani, H., Chrysanthopoulos, P. K., and Klapa, M. I. (2008). Standardizing

GC-MS metabolomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 871,

191–201. doi: 10.1016/j.jchromb.2008.04.049

Kanani, H., and Klapa, M. I. (2007). Data correction strategy for metabolomics

analysis using gas chromatography-mass spectrometry. Metab. Eng. 9, 39–51.

doi: 10.1016/j.ymben.2006.08.001

Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M. (2012). KEGG for

integration and interpretation of large-scale molecular data sets. Nucleic Acids

Res. 40, 109–114. doi: 10.1093/nar/gkr988

Lichtman, J. W., Pfister, H., and Shavit, N. (2014). The big data challenges of

connectomics. Nat. Neurosci. 17, 1448–1454. doi: 10.1038/nn.3837

Lista, S., Zetterberg, H., Dubois, B., Blennow, K., and Hampel, H. (2014).

Cerebrospinal fluid analysis in Alzheimer’s disease: technical issues and future

developments. J. Neurol. 261, 1234–1243. doi: 10.1007/s00415-014-7366-z

Liu, L., Aa, J., Wang, G., Yan, B., Zhang, Y., Wang, X., et al. (2010). Differences

in metabolite profile between blood plasma and serum. Anal. Biochem. 406,

105–112. doi: 10.1016/j.ab.2010.07.015

Liu, X., Wu, R., Tai, F., Ma, L., Wei, B., Yang, X., et al. (2013). Effects of group

housing on stress induced emotional and neuroendocrine alterations. Brain

Res. 1502, 71–80. doi: 10.1016/j.brainres.2013.01.044

Lu, F. M., and Yuan, Z. (2015). PET / SPECT molecular imaging in clinical

neuroscience : recent advances in the investigation of CNS diseases. Quant.

Imag. Med. Surg. 5, 433–447. doi: 10.3978/j.issn.2223-4292.2015.03.16

Martens, G. A. (2015). Species-related differences in the proteome of rat

and human pancreatic beta cells. J. Diabetes Res. 2015, 1–11. doi:

10.1155/2015/549818

Martins-de-Souza, D. (2014). Proteomics, metabolomics, and protein

interactomics in the characterization of the molecular features of major

depressive disorder. Dialogues Clin. Neurosci. 16, 63–73.

McGonigle, P., and Ruggeri, B. (2014). Animal models of human disease:

challenges in enabling translation. Biochem. Pharmacol. 87, 162–171. doi:

10.1016/j.bcp.2013.08.006

Meinhardt, M. W., Sévin, D. C., Klee, M. L., Dieter, S., Sauer, U., and Sommer,

W. H. (2015). The neurometabolic fingerprint of excessive alcohol drinking.

Neuropsychopharmacology 40, 1259–1268. doi: 10.1038/npp.2014.312

Miller, V. M. (2014). Why are sex and gender important to basic physiology and

translational and individualized medicine? Am. J. Physiol. Heart Circ. Physiol.

306, H781–H788. doi: 10.1152/ajpheart.00994.2013

Overmyer, K. A., Thonusin, C., Qi, N. R., Burant, C. F., and Evans, C. R.

(2015). Impact of anesthesia and euthanasia on metabolomics of mammalian

tissues: studies in a C57BL/6J mouse model. PLoS ONE 10:e0117232. doi:

10.1371/journal.pone.0117232

Panzoldo, N. B., Urban, A., Parra, E. S., Oliveira, R., Zago, V. S., da Silva, L. R.,

et al. (2011). Differences and similarities of postprandial lipemia in rodents and

humans. Lipids Health Dis. 10, 86. doi: 10.1186/1476-511X-10-86

Patti, G. J., Yanes, O., and Siuzdak, G. (2012). Innovation: Metabolomics: the

apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13, 263–269. doi:

10.1038/nrm3314

Prabakaran, S., Swatton, J. E., Ryan, M. M., Huffaker, S. J., Huang, J. T.-J., Griffin,

J. L., et al. (2004). Mitochondrial dysfunction in schizophrenia: evidence

for compromised brain metabolism and oxidative stress. Mol. Psychiatry 9,

684–697. doi: 10.1038/sj.mp.4001511

Quackenbush, J. (2001). Computational analysis of microarray data. Nat. Rev.

Genet. 2, 418–427. doi: 10.1038/35076576

Quinones, M. P., and Kaddurah-Daouk, R. (2009). Metabolomics tools for

identifying biomarkers for neuropsychiatric diseases. Neurobiol. Dis. 35,

165–176. doi: 10.1016/j.nbd.2009.02.019

Rathod, R., Khaire, A., Kemse, N., Kale, A., and Joshi, S. (2014). Maternal omega-3

fatty acid supplementation on vitamin B12 rich diet improves brain omega-3

fatty acids, neurotrophins and cognition in the Wistar rat offspring. Brain Dev.

36, 853–863. doi: 10.1016/j.braindev.2013.12.007

Reddy, P. S., Murray, S., and Liu, W. (2013). “Knowledge-driven, data-

assisted integrative pathway analytics,” in Bioinfromatics: Concepts, Methologies,

Tools and Applications, ed Information Resources Management Association

(Hershey, PA: IGI Global), 173–196. Available online at: http://www.igi-global.

com/chapter/knowledge-driven-data-assisted-integrative/76062

Salek, R. M., Xia, J., Innes, A., Sweatman, B. C., Adalbert, R., Randle,

S., et al. (2010). A metabolomic study of the CRND8 transgenic

mouse model of Alzheimer’s disease. Neurochem. Int. 56, 937–947. doi:

10.1016/j.neuint.2010.04.001

Samarasekera, N., Salman, R. A. S., Huitinga, I., Klioueva, N., McLean, C. A.,

Kretzschmar, H., et al. (2013). Brain banking for neurological disorders. Lancet

Neurol. 12, 1096–1105. doi: 10.1016/S1474-4422(13)70202-3

Schmidt, R., Diba, K., Leibold, C., Schmitz, D., and Buzsáki, G. (2009). Single

trial phase precession in the hippocampus. J. Neurosci. 29, 13232–13241. doi:

10.1523/JNEUROSCI.2270-09.2009

Selfridge, J. E.,Wilkins, H.M., Lezi, E., Carl, S.M., Koppel, S., Funk, E., et al. (2014).

Effect of one month duration ketogenic and non-ketogenic high fat diets on

mouse brain bioenergetic infrastructure. J. Bioenerg. Biomembr. 47, 1–11. doi:

10.1007/s10863-014-9570-z

Sigurdsson, M. I., Jamshidi, N., Steingrimsson, E., Thiele, I., and Palsson, B. Ø.

(2010). A detailed genome-wide reconstruction of mouse metabolism based on

human Recon 1. BMC Syst. Biol. 4:140. doi: 10.1186/1752-0509-4-140

Spagou, K., Theodoridis, G., Wilson, I., Raikos, N., Greaves, P., Edwards, R., et al.

(2011). A GC-MS metabolic profiling study of plasma samples from mice on

low- and high-fat diets. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 879,

1467–1475. doi: 10.1016/j.jchromb.2011.01.028

Frontiers in Physiology | www.frontiersin.org 7 May 2016 | Volume 7 | Article 183

http://www.igi-global.com/chapter/knowledge-driven-data-assisted-integrative/76062
http://www.igi-global.com/chapter/knowledge-driven-data-assisted-integrative/76062
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Vasilopoulou et al. Metabolomics in Brain Research

Sporns, O. (2011). The human connectome: a complex network. Ann. N.Y. Acad.

Sci. 1224, 109–125. doi: 10.1111/j.1749-6632.2010.05888.x

Steinbeck, C., Conesa, P., Haug, K., Mahendraker, T., Williams, M., Maguire,

E., et al. (2012). MetaboLights: towards a new COSMOS of metabolomics

data management. Metabolomics 8, 757–760. doi: 10.1007/s11306-012-

0462-0

Suvorov, A., and Takser, L. (2008). Facing the challenge of data transfer from

animal models to humans: the case of persistent organohalogens. Environ.

Health 7, 58. doi: 10.1186/1476-069x-7-58

Trushina, E., Dutta, T., Persson, X. M. T., Mielke, M. M., and Petersen,

R. C. (2013). Identification of altered metabolic pathways in plasma

and CSF in mild cognitive impairment and Alzheimer’s disease using

metabolomics. PLoS ONE 8:e63644. doi: 10.1371/journal.pone.00

63644

Vidal, M. (2009). A unifying view of 21st century systems biology. FEBS Lett. 583,

3891–3894. doi: 10.1016/j.febslet.2009.11.024

Vidal, M., and Cusick, M. (2011). Interactome networks and human disease. Cell

144, 986–998. doi: 10.1016/j.cell.2011.02.016

Wang, Y., Eddy, J. A., and Price, N. D. (2012). Reconstruction of genome-scale

metabolic models for 126 human tissues usingmCADRE. BMC Syst. Biol. 6:153.

doi: 10.1186/1752-0509-6-153

Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y., et al. (2013).

HMDB 3.0-The human metabolome database in 2013. Nucleic Acids Res. 41,

801–807. doi: 10.1093/nar/gks1065

Xia, J., and Wishart, D. S. (2010). MSEA: a web-based tool to identify biologically

meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 38,

71–77. doi: 10.1093/nar/gkq329

Yang, J., Chen, T., Sun, L., Zhao, Z., Qi, X., Zhou, K., et al. (2013).

Potential metabolite markers of schizophrenia. Mol. Psychiatry 18, 67–78. doi:

10.1038/mp.2011.131

Yoshimi, N., Futamura, T., Bergen, S. E., Iwayama, Y., Ishima, T., Sellgren, C.,

et al. (2016). Cerebrospinal fluid metabolomics identifies a key role of isocitrate

dehydrogenase in bipolar disorder: evidence in support of mitochondrial

dysfunction hypothesis. Mol. Psychiatry. doi: 10.1038/mp.2015.217. [Epub

ahead of print]. Available online at: http://www.nature.com/mp/journal/vaop/

ncurrent/pdf/mp2015217a.pdf

Yu, Z., Kastenmüller, G., He, Y., Belcredi, P., Möller, G., Prehn, C., et al. (2011).

Differences between human plasma and serum metabolite profiles. PLoS ONE

6:e21230. doi: 10.1371/journal.pone.0021230

Zhang, X., Liu, H., Wu, J., Zhang, X., Liu, M., and Wang, Y. (2009).

Metabonomic alterations in hippocampus, temporal and prefrontal cortex

with age in rats. Neurochem. Int. 54, 481–487. doi: 10.1016/j.neuint.2009.

02.004

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Vasilopoulou, Margarity and Klapa. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 8 May 2016 | Volume 7 | Article 183

http://www.nature.com/mp/journal/vaop/ncurrent/pdf/mp2015217a.pdf
http://www.nature.com/mp/journal/vaop/ncurrent/pdf/mp2015217a.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive

	Metabolomic Analysis in Brain Research: Opportunities and Challenges
	The Systems Biology Revolution and its Impact on Brain Research
	The Emerging Role of Metabolomics
	Standardizing Brain Metabolomics in Systems Biology Research
	Pre-Analytical Section
	Experimental Design
	Sample Collection and Handling

	Analytical Section
	Free Metabolite Extraction
	Selection of the Analytical Technique

	Computational Section
	Peak Identification and Quantification
	Data Validation, Normalization, and Filtering
	Multivariate Statistical Analysis–Metabolic Network Reconstruction


	Conclusions and Future Directions
	Author Contributions
	Acknowledgments
	References


