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The family of nitric oxide synthases (NOS) has significant importance in various

physiological mechanisms and is also involved in many pathological processes. Three

NOS isoforms have been identified: neuronal NOS (nNOS or NOS 1), endothelial NOS

(eNOS or NOS 3), and an inducible NOS (iNOS or NOS 2). Both nNOS and eNOS are

constitutively expressed. Classically, eNOS is considered the main isoform involved in the

control of the vascular function. However, more recent studies have shown that nNOS

is present in the vascular endothelium and importantly contributes to the maintenance

of the homeostasis of the cardiovascular system. In physiological conditions, besides

nitric oxide (NO), nNOS also produces hydrogen peroxide (H2O2) and superoxide (O•−)2

considered as key mediators in non-neuronal cells signaling. This mini-review highlights

recent scientific releases on the role of nNOS in vascular homeostasis and cardiovascular

disorders such as hypertension and atherosclerosis.

Keywords: neuronal nitric oxide synthase, nitric oxide, hydrogen peroxide, vascular function, hypertension,

atherosclerosis

INTRODUCTION

Since the early 80s, nitric oxide (NO) is considered an essential endothelium-derived molecule,
crucial to the maintenance of cardiovascular homeostasis (Furchgott and Zawadzki, 1980).
Later on, it became evident that a decrease in the bioavailability of NO participated in several
cardiovascular disorders such as atherosclerosis (Napoli et al., 2006) and hypertension (Hermann
et al., 2006).

NO is biologically generated by a family of three nitric oxide synthase enzymes (NOS) isoforms:
neuronal nitric oxide synthase (nNOS or NOS1), inducible nitric oxide synthase (iNOS or NOS2),
and endothelial nitric oxide synthase (eNOS or NOS3). Although nNOS is abundantly expressed
in neurons, and associated with the control of neuronal functions (Bredt et al., 1990; Bredt and
Snyder, 1992) it is known that this isoform is also expressed in many non-neuronal cells such as
in the endothelium and smooth muscle cells of several types of vessels in animals (Boulanger et al.,
1998; Loesch et al., 1998; Schwarz et al., 1999) and human (Buchwalow et al., 2002). Recent studies
show consistent evidence that this isoform exhibits relevant physiological role in the control of
vascular homeostasis (Kurihara et al., 1998; Fleming, 2003; Hagioka et al., 2005; Seddon et al., 2008,
2009).

Besides NO, nNOS also produces H2O2 in physiological conditions that contributes to
endothelium-dependent vascular relaxation (Capettini et al., 2008, 2010). Impairment in
endothelial nNOS-derived H2O2 production has been implicated in the endothelial dysfunction
in atherosclerosis (Rabelo et al., 2003; Capettini et al., 2011) and hypertension (Silva et al.,
2016). Given the importance of nNOS in health and disease, this mini-review highlights
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recent scientific releases on the role of nNOS in vascular
homeostasis and vascular mal functioning linked to hypertension
and atherosclerosis.

GENE EXPRESSION AND MOLECULAR
STRUCTURE OF nNOS

nNOS gene is positioned on chromosome 12 (12q24.2) and
distributed over a region greater than 200 kb in human genomic
DNA (Hall et al., 1994). It consists of 4299 nucleotides encoding
1434 amino acids (Boissel et al., 1998). nNOS exists as a
monomer/dimer mixture, being the dimer the active form. Each
monomer consists of two domains: N-terminal (catalytic or
oxygenase) and C-terminal (reductase). The N-terminal domain
binds to the thiolate-linked heme group, tetrahydrobiopterin
(BH4), a redox co-factor; L-arginine the substrate, and the
zinc ion. The C-terminal domain has binding sites for flavin
mononucleotide (FMN), flavin adenine dinucleotide (FAD), and
nicotinamide adenine dinucleotide phosphate (NADPH; Masters
et al., 1996; Sagami et al., 2001; Feng et al., 2014).

nNOS REGULATION

Intrinsic Factors
Auto-Inhibitory Domain and C-Terminal Tail
A sequence of 40–50 amino acids inserted in the FMN domain
is related to nNOS auto-inhibition by destabilizing calmodulin
(CaM) binding to the enzyme and inhibiting intra- and inter-
module electron transferring. This interaction occurs in low
intracellular Ca2+ concentration ([Ca2+]i), taking part in the
modulation of nNOS activity (Salerno et al., 1997; Daff et al.,
1999; Garcin et al., 2004). Similarly, nNOS has a tail sequence
of 21–42 amino acids at the C-terminal, related to the enzyme
inhibition. Removal of this extension results in increased
transference rates of electron flow in the reductase domain
(Roman et al., 2000). Deletion of the auto-inhibitory domain and
C-terminal tail results in CaM-independent electron transferring
through the reductase domain, despite CaM is still required to
promote electron transference from the FMN domain to the
heme for NO production (Roman and Masters, 2006).

Dimer Stability
The dimerization maintained by the N-terminal domain is
crucial for the catalytic activity of nNOS. Otherwise, the
transport of electrons and formation of nNOS products do not
exist (Stuehr, 1997). Dimer formation has the participation of
residues from the oxygenase domain that form a “hook” which
reaches across to the oxygenase domain of the other subunit to
coordinate dimer formation (Crane et al., 1998). Zinc binding
has a contribution in dimer stabilization (Hemmens et al., 2000).
The disulfide bonds formed by cysteine residues along the nNOS
molecule and BH4 binding are also important to stabilize nNOS
dimeric form (Hemmens et al., 1998; Kamada et al., 2005).

Extrinsic Factors
Phosphorylation
Phosphorylation of nNOS has been shown to be the critical
stage in the activation/inactivation of this isoform. Several

phosphatases and kinases including protein kinase A,
CaM-kinases (CaM-KI and CaMKII), protein kinase C,
and phosphatase 1 may regulate the activity of nNOS. For
instance, CaM-KI and CaM-KII phosphorylate Ser741 and Ser852,
respectively, resulting in reduced activity of the enzyme through
inhibition of CaM binding (Song et al., 2004). Phosphorylation
on Ser1412 (in rat) or Ser1212 (in human) residue is associated
with increased activity of nNOS (Chen et al., 2000; Adak et al.,
2001).

nNOS Uncoupling
The deficiency of L-arginine or BH4 may produce nNOS
uncoupling and the enzyme synthesize superoxide instead of NO.
Recently, it has been reported impaired NO signaling due to
nNOS uncoupling in brain arteries of obese rats and consequent
oxidative stress and vasoconstriction (Katakam et al., 2012).
Moreover, nNOS uncoupling is associated with penile arteries
constriction with erectile dysfunction in a model of metabolic
syndrome (Sanchez et al., 2012).

Protein-Protein Interactions
Protein-protein interaction is one of the key events in controlling
the enzymatic activity of NOS. There are numerous proteins that
may have physical interaction with nNOS in a variety of roles
including activation, inhibition, and trafficking within the cell.

Ca2+/CaM Complex
The increase in [Ca2+]i and its subsequent binding to CaM is the
main modulatory event of nNOS activation (Bredt and Snyder,
1990). The first step of nNOS activation consists of binding Ca2+

in CaM C-terminal domain. In sequence, the CaM C-terminal
domain binds to nNOS. Then, in a similar way, Ca2+ binds to
the CaM N-terminal domain, which also binds to nNOS and
causes the activation of nNOS by the displacement of the auto-
inhibitory domain of the enzyme. When the [Ca2+]i decrease,
CaM dissociates from nNOS, and it becomes inactive again
(Weissman et al., 2002).

Caveolin/Caveolae
Caveolins are scaffolding proteins situated at the caveolae, the
flask-shaped non-clathrin-coated invaginations of the plasma
membrane (Sowa, 2012). In skeletal muscle, nNOS directly
interacts with caveolin-3, involving two distinct and physically
separated caveolin scaffolding domains. This interaction inhibits
nNOS activity (Venema et al., 1997). In a rat model of
myocardial infarction, nNOS upregulation is associated with
an increased binding with caveolin-3 (Bendall et al., 2004).
Moreover, caveolin-1 interacts with the oxygenase and reductase
nNOS domains inhibiting electron transfers (Sato et al., 2004).

Protein Inhibitor of nNOS (PIN)
The NH2-terminus of nNOS has a binding site for the protein
PIN (Jaffrey and Snyder, 1996). This endogenous protein inhibits
nNOS by destabilizing the dimer isoform. Curiously, some
studies have shown that PIN plays a physiological role in the
control of insulin secretion (Lajoix et al., 2006). Moreover,
neurogenic erectile dysfunction (NED) may be caused by
impairment of nNOS regulation by PIN (Gonzalez-Cadavid and
Rajfer, 2004).
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PDZ Domain
The nNOS PDZ domain has 80–120 amino acid residues located
in the NH2-terminus. The PDZ domain participates in the
formation of active nNOS dimers and interacts with other
proteins in different regions of the cell (Roman et al., 2002). A
study to assess potential ligands for PDZ domain of nNOS was
conducted by screening 13 billion different peptides and had
found that this motif binds to peptides ending with Asp-X-Val.

FORMATION OF nNOS PRODUCTS

NO formation through L-arginine is catalyzed by nNOS in
two steps: the hydroxylation of L-arginine to the intermediate
Nω-hydroxy-L-arginine (NOHA), which is then oxidized to L-
citrulline and NO (Papale et al., 2012). In the first step, NADPH
transfers electrons to FAD and FMN, which have the capacity
to reduce molecular oxygen to superoxide (O•−

2 ) (Figure 1). At
the same time, an electron from flavin-mononucleotide (FMNH)
reduces the heme group (Fe3+ to Fe2+). The reduction of
Fe3+ enables O2 linking resulting in an O2−Fe

2+ complex.
The electron from the complex alternates between Fe2+ and
O2, resulting in the complex O•−

2 Fe3+. In the deficiency of
L-arginine or NOHA, O•−

2 Fe3+ transfers an electron to O2

liberating superoxide (O•−

2 ). Studies have revealed that the heme
group of nNOS oxidase domain is responsible for 90% of O•−

2
formation by this enzyme (Yoneyama et al., 2001). Alternatively,
the intermediate O•−

2 Fe3+ can receive an electron, forming
O2−Fe

3+ that interacts with H+ and releases H2O2 and Fe3+.
In order to make the catalysis of L-arginine possible,

BH4 cofactor must be binding to O•−

2 Fe3+ present in heme
group. Electrons from BH4 cofactor are responsible for the
formation of peroxy complexes (Fe3+-OOH−) with consequent
hydroxylation of L-arginine, resulting in the formation of NOHA
and regeneration of Fe3+ from heme group. In the next step,
NOHA participates in another oxidation-reduction cycle by
binding to Fe3+, which will receive more electrons from the
reductase group, resulting in the cleavage of NOHA and release
of water, L-citrulline and NO (Abu-Soud et al., 1994, 2000; Rosen
et al., 2002).

Therefore, during the enzymatic formation of NO cycle,
nNOS also generates H2O2 and O•−

2 (Figure 1). The production
of these reactive oxygen species (ROS) by nNOS can occur even at
saturating concentrations of L-arginine or NOHA in steps before
the formation of NO (Rosen et al., 2002; Tsai et al., 2005; Weaver
et al., 2005). At the expense of O•−

2 , the production of H2O2 is
strongly increased by BH4 (Rosen et al., 2002).

ROLE OF nNOS IN VASCULAR
HOMEOSTASIS

Emerging evidence shows that nNOS has a physiologically
relevant role in the control of the cardiovascular system. Here, we
outline the recent advances on the role of nNOS in the vascular
function.

There are several reports implicating the participation of
nNOS in cerebral blood flow (CBF; Pelligrino et al., 1993;

FIGURE 1 | Production of nitric oxide (NO), hydrogen peroxide (H2O2),

and superoxide anion (O•−

2
) by nNOS in physiological conditions.

Representation of electrons transport between the reductase and oxidase

domains of nNOS. Nicotinamide adenine dinucleotide phosphate (NADPH)

transfers electrons to the flavin adenine dinucleotide (FAD) and flavin adenine

mononucleotide (FMN) in the reductase domain. In this process, oxygen

receives electrons, being converted in superoxide (O•−

2 ). In the presence of

Ca2+/CaM electrons from the reductase domain, enable nNOS Fe3+ to bind

O2 and to form O2-Fe
2+, in the oxidase domain. During electronic switching

in the heme group, H2O2 is produced, with consequent release of Fe3+. In

the presence of BH4 and NADPH, a nitrogen group is inserted into L-arginine,

generating the intermediate Nω-hydroxy-L-arginine, which is there after

transformed in NO and L-citrulline.

Santizo et al., 2000; Chi et al., 2003). Intraperitoneal injections
of the selective nNOS inhibitor 7-nitroindazole (7-NI) depressed
baseline CBF in rats (Montécot et al., 1997; Gotoh et al., 2001).
Moreover, 7-NI decreased cerebral capillary flow in rats (Hudetz
et al., 1998) and global CBF in cats (Hayashi et al., 2002). In rats,
during hyperbaric conditions, it was found that the increase in
CBF in the cortex prior to the appearance of electrical discharges
was completely inhibited by 7-NI (Hagioka et al., 2005).

Aside from cerebral flow, it has been suggested that
nNOS-derived NO regulates renal circulation. In the presence
of, S-methyl-L-thiocitrulline (SMTC) a nNOS inhibitor, the
vasoconstrictor response to angiotensin II is increased in the
efferent arteriole (Ichihara et al., 1998). Additional evidence was
obtained from nNOS−/− mice, where genetic deletion of nNOS
decreases medullary blood flow in response to angiotensin II
(Mattson and Meister, 2005). In nNOS−/− mice Vallon et al.
(2001) also found that the feedback control of glomerular
vascular tone is attenuated.

Similarly, studies in isolated vessels demonstrate the
participation of nNOS in the control of vascular function.

Frontiers in Physiology | www.frontiersin.org 3 June 2016 | Volume 7 | Article 206

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Costa et al. nNOS in Vascular Homeostasis

In pial arterioles of eNOS−/− mice acetylcholine induced
an nNOS-cGMP-dependent vasodilation (Meng et al., 1996,
1998). Another work confirmed the presence of nNOS in
the endothelium of coronary arteries of eNOS−/− mice and
showed that shear stress activated endothelial nNOS-derived
NO release, compensating the absence of eNOS-derived NO
(Huang et al., 2002). In aorta of nNOS−/− mice the vasodilator
response induced by acetylcholine is reduced (Nangle et al.,
2004). In small mesenteric arteries of female rats the inhibition
of endothelial nNOS contributes to the decrease in the relaxation
induced by estrogen. Furthermore, the same study showed
that estrogen rapidly increased the nNOS activity and nNOS-
mediated NO production in human umbilical vein endothelial
cells (Lekontseva et al., 2011). A year later, the same group
demonstrated that nNOS contributed to the estrogen-mediated
vascular relaxation of mesenteric artery in young, but not in
ovariectomized and aging female rats. In the ovariectomized
and aging group nNOS functionally became a source of O•−

2
(Lekontseva et al., 2012).

Corroborating the above findings, NO release from nNOS also
seems to be important in the control of vascular tone in humans.
Expression of nNOS was found in human aorta, carotid, radial
and mammary artery (Buchwalow et al., 2002), saphenous vein
(Webb et al., 2006), and lung capillary endothelial cells (Lührs
et al., 2002).

The first evidence that nNOS had a function in vascular
regulation in humans was obtained from children suffering from
Duchene muscular dystrophy (DMD). It was shown that nNOS-
derived NO present in skeletal muscle acts in the blood flow and
oxygen transport. nNOS expression is reduced in children with
DMD resulting in increased vasoconstrictor response (Sander
et al., 2000).

Later on, Seddon et al. (2008) showed the relationship between
nNOS and the regulation of blood flow in human. Selective
in vivo inhibition of nNOS with SMTC in healthy men promoted
a reduction in the brachial artery baseline flow. This effect was
eliminated in the presence of L-arginine. A similar reduction was
observed with the non-selective inhibitor of NOS (L-NMMA) but
required a 20-fold higher dose. This study suggested that nNOS-
derived NO has a significant role in the physiological regulation
of microvascular tone in vivo (Seddon et al., 2008). In another
work, the same group investigated the in vivo effects of SMTC
in human coronary dilatation. The infusion of SMTC in healthy
patients reduced baseline coronary blood flow and coronary
artery diameter measured by angiography. They concluded that
local nNOS-derivedNO is a key physiological regulator of human
coronary vascular tone in vivo (Seddon et al., 2009).

All the above works suggesting NO as the mediator of
nNOS function in the regulation of vascular tone were
based on the assumption that NO was the only physiological
vasodilator product of nNOS activation. Our group was the
first to show the importance of nNOS-derived H2O2 in the
endothelium-dependent vascular relaxation. We showed that
nNOS was constitutively expressed in the endothelium of the
mouse aorta and mesenteric resistance artery. Stimulation of
those vessels with acetylcholine promoted increase in H2O2

production. Pharmacological selective nNOS inhibition and
nNOS knockdown decreased endothelium-dependent vascular

relaxation and H2O2 production. Finally, incubation of the
vessels with catalase, an enzyme that degrades H2O2 into O2

and H2O, decreased vascular relaxation (Capettini et al., 2008,
2010; Silva et al., 2016). The participation of nNOS in vascular
homeostasis in physiological and pathological conditions is
summarized in Table 1.

nNOS IN VASCULAR DISEASES

Hypertension
Several studies have indicated that the imbalance in nNOS
expression and/or activity is involved in the mechanism of
pathogenesis of hypertension. In mesenteric arteries from
spontaneously hypertensive rats (SHR), nNOS expression was∼2
times higher than in vessels from control animals (Briones et al.,
2000). A similar result showing increased expression of nNOS in
vascular smooth muscle cells was found in carotid arteries from
SHR. It was shown that activation of nNOS on stimulation by
Angiotensin II occurs in hypertensive but not in normotensive
animals (Boulanger et al., 1998). Interestingly, in SHR rats the
expression and activity of nNOS are decreased in the adrenal
gland. Chronic treatment of SHR with antihypertensive drugs,
increased the expression and activity of nNOS in the adrenal
gland, suggesting that normalization of blood pressure (BP) may
be in part related to an increase in nNOS (Qadri et al., 2001).

BP and vascular function were evaluated in normotensive rats
chronically treated (6 weeks) with the selective nNOS inhibitor 7-
NI. A significant increase in systolic BP was observed in the first
2 weeks of treatment. Corroborating the in vivo study, isolated
vessels showed an attenuated relaxant response to acetylcholine
in the aorta. These results show that nNOS participates in the
regulation of BP and vascular tone (Cacanyiova et al., 2009). In
contrast, in SHR, treatment with 7-NI had no effect in blood
pressure or acetylcholine-induced vasodilatation in the aorta
(Cacanyiova et al., 2009, 2012), suggesting that nNOS function
was lost in hypertension.

A recent study revealed that impairment of nNOS-
derived H2O2 pathway participates in the endothelial
dysfunction and increase in blood pressure in DOCA-salt-
hypertensive mice (Silva et al., 2016). This study showed
that 1-(2-trifluoromethylphenyl) imidazole, a selective
nNOS inhibitor, and catalase, exhibited a more pronounced
reduction of acetylcholine-induced decrease in blood pressure
in normotensive than in hypertensive mice. Moreover, selective
nNOS inhibition and catalase had a greater inhibitory effect in
acetylcholine-induced vasodilatation in control compared to
DOCA-salt mice. Also, acetylcholine-induced H2O2 production
and the expression and functioning of nNOS were considerably
diminished in the resistance mesenteric arteries of DOCA-salt
mice.

Atherosclerosis
The first evidence that nNOS plays a vasculoprotective role
in atherosclerosis came from a work by Wilcox et al. (1997)
that showed a correlation between the progression of plaque
formation and nNOS mRNA. In 1999, Qian et al. performed
experiments with recombinant adenoviruses expressing nNOS
transferred to carotid of hypercholesterolemic rabbits and
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TABLE 1 | Participation of nNOS in the control of vascular function in physiological conditions and during hypertension and atherosclerosis.

Vascular tissue Effect Model References

PHYSIOLOGICAL CONDITIONS

Internal thoracic artery, saphenous

vein, aorta, carotid artery, pancreas

arterioles, and venous

nNOS expression in vascular smooth muscle

and endothelial cells

Human Buchwalow et al., 2002; Webb et al.,

2006

Mammary artery nNOS expression in smooth muscle cells Human Buchwalow et al., 2002

Pulmonary capillary nNOS expression in endothelial cells Human Lührs et al., 2002

Brachial and coronary artery nNOS inhibition decreases baseline flow Human Seddon et al., 2008, 2009

Aorta Reduction of Acetylcholine-induced

vasodilation

nNOS−/−mice Nangle et al., 2004

nNOS-derived H2O2 contributes to

endothelium-dependent vascular relaxation

Mice Capettini et al., 2008, 2010

Pial arteriole Acetylcholine-induced

nNOS-cGMP-dependent vasodilation

eNOS−/− mice Meng et al., 1996, 1998

Renal cortical and medullary blood

vessels

Decrease in medullary blood flow in response

to angiotensin II

nNOS−/−mice Mattson and Meister, 2005

Coronary artery Endothelial nNOS-derived NO maintains

flow-induced dilation

eNOS−/− mice Huang et al., 2002

Glomerular vessels Attenuation of the feedback control of

glomerular vascular tone

nNOS−/−mice Vallon et al., 2001

Mesenteric artery nNOS participates in estrogen-induced

relaxation

Female Rats Lekontseva et al., 2011, 2012

Renal efferent arteriole nNOS inhibition increases the vasoconstrictor

response to angiotensin II

Rats Ichihara et al., 1998

Cerebral vasculature nNOS inhibition decreases cerebral blood flow Rats Santizo et al., 2000; Gotoh et al.,

2001; Chi et al., 2003; Hagioka et al.,

2005

Cerebral vasculature nNOS inhibition decreases cerebral blood flow Cats Hayashi et al., 2002

HYPERTENSION

Aorta and in vivo experiments nNOS inhibition decreases vascular tone and

increases blood pressure in normotensive but

not in SHR

Rats Cacanyiova et al., 2009, 2012

Carotid artery Increase in nNOS expression and functioning SHR Boulanger et al., 1998

Mesenteric artery Increase in nNOS expression SHR Briones et al., 2000

Decrease in nNOS-derived NO bioavailability in

old animals

SHR Ferrer et al., 2003

impairment of nNOS-derived H2O2 production

contributes to endothelial dysfunction

DOCA-salt-hypertensive

mice

Silva et al., 2016

ATHEROSCLEROSIS

Aorta Increase in atherosclerotic plaque formation apoE−/− nNOS−/− double

knockout mice

Kuhlencordt et al., 2006

nNOS-derived H2O2 contributes to endothelial

dysfunction

apoE−/− mice Capettini et al., 2011

nNOS mRNA is expressed in atherosclerotic

lesions

Human Wilcox et al., 1997

Carotid artery nNOS accelerates neointimal formation and

constrictive vascular remodeling

Carotid artery ligation in

nNOS−/− mice and rat

balloon injury model

Morishita et al., 2002

nNOS gene therapy decreases markers of

atherosclerosis

Cholesterol-fed rabbit Qian et al., 1999

SHR, spontaneously hypertensive rats.

showed a marked reduction in expression of adhesion molecules
and infiltration of inflammatory cells. Additionally, a reduction
in lipid deposition was observed after gene transfer. In
another work, nNOS−/− mice exhibited accelerated neointimal
formation and constrictive vascular remodeling caused by blood

flow disruption in a model of carotid artery ligation. It was
also observed that selective inhibition of nNOS decreased cGMP
production, inducing an increase in vasoconstrictor response and
accelerating neointimal formation in a rat balloon injury model
(Morishita et al., 2002). Using a double knockout mouse (nNOS
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DKO) that combined genetic deletion of nNOS (nNOS−/−)
with a model of atherosclerosis (apoE−/−), Kuhlencordt et al.
(2006) showed that the absence of nNOS accelerated the
atherosclerotic plaque lesion. After 14 weeks following a
“Western-type” atherogenic diet, nNOS DKO animals showed
66% increase of lesion area, compared to apoE−/− control
mice.

nNOS-derived H2O2 also seems to participate in endothelial
dysfunction in atherosclerosis. Capettini et al. (2011) showed that
selective pharmacological inhibition of nNOS, nNOS knockdown
and catalase reduced the vasodilator effect of acetylcholine,
diminished NO and abolished endothelial-dependent H2O2

production in wild-type mice, but had no effect in ApoE−/−

animals. In addition, nNOS functioning was decreased in
ApoE−/− mice compared to controls.

CONCLUSIONS

Thismini-review summarizes puzzling information on the role of
nNOS in the control of vascular homeostasis under physiological

and diseases conditions. Recent data indicates that nNOS is
constitutively expressed in the endothelial cells of different types
of vessels in animals and human. More importantly, nNOS-
derived products such as NO and H2O2 play an important role
in the control of vascular function and blood pressure. Finally,
nNOS participates in the physiopathology of hypertension and
atherosclerosis.
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